文档库 最新最全的文档下载
当前位置:文档库 › 生理止血原理

生理止血原理

生理止血原理
生理止血原理

生理止血、血液凝固与纤维蛋白溶解(血凝,凝血过程,抗凝,纤溶,血小板,止血功能( 关键词:生理止血;血液凝固;血凝;凝血过程;抗凝;纤维蛋白溶解;纤溶;血小板;止血功能)

小血管损伤后血液将从血管流出,但在正常人,数分钟后出血将自行停止,称为生理止血。用一个小撞针或注射针刺破耳垂或指尖使血液流出,然后测定出血延续的时间,这一段时间称为出血时间(bleeding tim e)。出血时间的长短可以反映生理止血功能的状态。正常出血时间为1-3分钟。血小板减少,出血时间即相应延长,这说明血小板在生理止血过程中有重要作用;但是血浆中一些蛋白质因子所完成的血液凝固过程也十分重要。凝血有缺陷时常可出血不止。

生理止血过程包括三部分功能活动。首先是小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。其次,更重要的是血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。接着,在局部又迅速出现血凝块,即血浆中可溶的纤维蛋白源转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。显然,生理止血主要由血小板和某些血浆成分共同完成。

一、血凝、抗凝与纤维蛋白溶解

血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。血纤维交织成网,将很多血细胞网罗在内,形成血凝块。血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。

血浆内具备了发生凝血的各种物质,所以将血液抽出放置于玻璃管内即可凝血。血浆内又有防止血液凝固的物质,称为抗凝物质(anticoagulant)。血液在血管内能保持流动,除其他原因外,抗凝物质起了重要的作用。血管内又存在一些物质可使血纤维再分解,这些物质构成纤维蛋白溶解系统(简称纤溶系统)(fibrinloytic system)。

在生理止血中,血凝、抗凝与纤维蛋白溶解相互配合,既有效地防止了失血,又保持了血管内血流畅通。

(一)血液凝固

凝血因子血浆与组织中直接参与凝血的物质,统称为凝血因子(blood clotting factors),其中已按国际命名法用罗马数字编了号的有12种(表3-4)。此外,还有前激肽释放酶、高分子激肽原以及来自血小板的磷脂等直接参与凝血过程。除因子Ⅳ与磷脂外,其余已知的凝血因子都是蛋白质,而且因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ以及前激肽释放酶都是蛋白酶。这些蛋白酶都属于内切酶,即每一种酶只能水解某两种氨基酸所形成的肽键。因而不能将某一知肽链分解成很多氨基酸,而只能是对某一条肽链进行有限的水解。通常在血液中,因Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ都是无活性的酶原,必须通过有限水解在其肽链上一定部位切断或切下一个片段,以暴露或形成活性中心,这些因子才成为有活性的酶,这个过程称为激活。被激活的酶,称为这些因子的“活性型”,习惯上于该因子代号的右下角加一“a”字来表示。如凝血酶原被激活为凝血

酶,即由因子Ⅱ变成因子Ⅱa。因子Ⅶ是以活性型存在于血液中的,但必须有因子Ⅲ(即组织凝血激酶)同时存在才能起作用,而在正常时因子Ⅲ只存在于血管外,所以通常因子Ⅶ在血流中也不起作用。

表3-4 按国际命名法编号的凝血因子

凝血过程凝血过程基本上是一系列蛋白质有限水解的过程,凝血过程一旦开始,各个凝血因子便一个激活另一个,形成一个“瀑布”样的反应链直至血液凝固。凝血过程大体

图3-4凝血过程的三个阶段简图

上可分为三个阶段(图3-4):即因子χ激活成χa;因子Ⅱ(凝血酶原)激活成Ⅱa(凝血酶);因子Ⅰ(纤

维蛋白原)转变成Ⅰa(纤维蛋白)。

因子χ的激活可以通过两种途径。如果只是损伤血管内膜或抽出血液置于玻璃管内,完全依靠血浆内的凝血因子逐步使因子χ激活从而发生凝血的,称为径内源性激活途径(intrinsic route);如果是依靠血管外组织释放的因子Ⅲ来参与因子χ的激活的,称为外源性激活途径(extrinxic route),如创伤出血后发生凝血的情况。医.学全.在.线网站https://www.wendangku.net/doc/4c13062172.html,

1.内源性途径一般从因子Ⅻ的激活开始。血管内膜下组织,特别是胶原纤维,与因子Ⅻ接触,可使因子Ⅻ激活成Ⅻa。Ⅻa可激活前激肽释放酶使之成为激肽释放酶;后者反过来又能激活因子Ⅻ,这是一种正反馈,可使因子Ⅻa大量生成。Ⅻa又激活因子Ⅺ成为Ⅺa。由因子Ⅻ激活到Ⅺa形成为止的步骤,称为表面激活。表面激活过程还需有高分子激肽原*参与,但其作用机制尚不清楚。表面激活所形成的Ⅺa再激活因子Ⅸ生成Ⅸa,这一步需要有Ca2+(即因子Ⅳ)存在。Ⅸa再与因子Ⅷ和血小板3因子(PF3)及Ca2+组成因子Ⅷ复合物,即可激活因子Χ生成Χa。血小板3因子可能就是血小板膜上的磷脂,它的作用主要是提供一个磷脂的吸附表面。因子Ⅸa和因子χ分别通过Ca2+而同时连接于这个磷脂表面,这样,因子Ⅸa即可使因子χ发生有限水解而激活成为χa。但这一激活过程进行很缓慢,除非是有因子Ⅷ参与。因子Ⅷ本身不是蛋白酶,不能激活因子х,但能使Ⅸa激活因子χ的作用加快几百倍。所以因子Ⅷ虽是一种辅助因子,但是十分重要。遗传性缺乏因子Ⅷ将发生甲型血友病(hemophilia A),这时凝血过程非常慢,甚至微小的创伤也出血不止。先天性缺乏因子Ⅸ时,内源性途径激活因子χ的反应受阻,血液也就不易凝固,这种凝血缺陷称为B型血友病(hemophilia B)。

2.外源性途径由因子Ⅶ与因子Ⅲ组成复合物,在有Ca2+存在的情况下,激活因子χ生成χa。因子Ⅲ,原名组织凝血激酶,广泛存在于血管外组织中,但在脑、肺和胎盘组织中特别丰富。因子Ⅲ为磷脂蛋白质。Ca2+的作用就是将因子Ⅶ与因子χ都结合于因子Ⅲ所提供的磷脂上,以便因子Ⅶ催化因子χ的有限水解,形成χa。

Χa又与因子Ⅴ、PE3和Ca2+形成凝血酶原酶复合物,激活凝血酶原(因子Ⅱ)生成凝血酶(Ⅱa)。在凝血酶原酶复合物中的PF3也是提供磷脂表面,因子Χa和凝血酶原(因子Ⅱ)通过Ca2+而同时连接于磷脂表面,χa催化凝血酶原进行有限水解,成为凝血酶(Ⅱa)。因子Ⅴ也是辅助因子,它本身不是蛋白酶,不能催化凝血酶原的有限水解,但可使χa的作用增快几十倍。

因子χ与凝血酶原的激活,都是在PF3提供的磷脂表面上进行的,可以将这两个步骤总称为磷脂表面阶段。在这一阶段中,因子Ⅱ(凝血酶原)、因子Ⅶ、因子Ⅸ和因子χ,都必须通过Ca2+连接于磷脂表面。因此,在这些因子的分子上必须有能与Ca2+结合的部位。现已知,因子Ⅱ、Ⅶ、Ⅸ、х都是在肝中合成。这些因子在肝细胞的核糖体处合成肽链后,还需依靠维生素K的参与,使肽链上某些谷氨酸残基于γ位羧化成为γ-羧谷氨酸残基,构成这些因子的Ca2+结合部位。因此,缺陷维生素K,将出现出血倾向。

凝血酶(thrombin)有多方面的作用。它可以加速因子Ⅶ复合物与凝血酶原酶复合物的形成并增加其作用,这也是正反馈;它又能激活因子ⅩⅢ生成ⅩⅢa;但它的主要作用是催化纤维蛋白原的分解,使每一分子纤维蛋白原从N-端脱下四段小肽,转变成为纤维蛋白单体(fibrin monomer),然后互相连接,特别是在ⅩⅢa作用下形成牢固的纤维蛋白多聚体(fibrin polymers),即不溶于水的血纤维。上述凝血过程可见图3-5表示。

一般来说,通过外源性途径凝血较快,内源性途径较慢,但在实际情况中,单纯由一种途径引起凝血的情况不多。

图3-5血液凝固过程示意图

S;血管内皮下组织PF3:血小板3因子PK:前激肽释放酶1:因子Ⅷ复合物

K:激肽释放酶2:因子Ⅶ复合物HK:高分子激肽原3:凝血酶原酶复合物

在凝血的某些阶段,内源性途径与外源性途径之间存在着功能的交叉,也就是说,这两条途径之间具有某些“变通”的途径。例如,外源性的因子Ⅶa和Ⅲ可以形成复合物直接激活因子Ⅸ,从而部分代替了因子Ⅺ和Ⅻa的功能。这一机制得以解释为什么在因子Ⅸ缺乏时的出血倾向,较因子Ⅺ和Ⅻ缺乏时更为严重。另一方面,内源性因子Ⅻ的裂解产物和因子Ⅸa也能激活外源性的因子Ⅶ。

(二)抗凝系统的作用

正常人1ml血浆含凝血酶原约300单位,在凝血时通常可以全部激活。10ml血浆在凝血时生成的凝血酶就足以使全身血液凝固。但在生理止血时,凝血只限于某一小段血管,而且1ml血浆中出现的凝血酶活性很少超出8-10单位,说明正常人血浆中有很强的抗凝血酶活性。

现在已经查明,血浆中最重要的抗凝物质是抗凝血酶Ⅲ(antithrombinⅢ)和肝素,它们的作用约占血浆全部抗凝血酶活性的75%。抗凝血酶Ⅲ是血浆中一种丝氨酸蛋白酶抑制物(serine protease inhibitor)。因子Ⅱa、Ⅶ、Ⅸa、χa、Ⅻa的活性中心均含有丝氨酸残基,都属于丝氨酸蛋白酶(serine protease)。抗凝血酶Ⅲ分子上的精氨酸残基,可以与这些酶活性中心的丝氨酸残基结合,这样就“封闭”了这些酶的活性中心而使之失活。在血液中,每一分子抗凝血酶Ⅲ,可以与一分子凝血酶结合形成复合物,从而使凝血酶失活。

肝素是一种酸性粘多糖,主要由肥大细胞和嗜碱性粒细胞产生,存在于大多数组织中,在肝、肺、心和肌组织中更为丰富。

肝素在体内和体外都具有抗凝作用,肝素抗凝的主要机制在于它能结合血浆中的一些抗凝蛋白,如抗凝血酶Ⅲ和肝素辅助因子Ⅱ(heparin cofactorⅡ)等,使这些抗凝蛋白的活性大为增强。当肝素与抗凝血酶Ⅱ的某一个ε-氨基赖氨酸残基结合,则抗凝血酶Ⅲ与凝血酶的亲和力可增强100倍,使两者结合得更快,更稳定,使凝血酶立即失活。当肝素与肝素辅助因子Ⅱ结合而激活后者时,被激活的肝素辅助因子Ⅱ特异性地与凝血酶结合成复合物,从而使凝血酶失活,在肝素的激活作用下,肝素辅助因子灭活凝血酶的速度可以加快约1000倍。

肝素还可以作用血管内皮细胞,使之释放凝血抑制物和纤溶酶原激活物,从而增强对凝血的抑制和纤维蛋白的溶解。此外,肝素能激活血浆中的脂酶,加速血浆中乳糜微粒的清除,因而减轻脂蛋白对血管内皮的损伤,有助于防止与血脂有关的血栓形成。

天然肝素是一种分子量不均一的混合物,分子量为3000-57000不等。这种不均一是生物合成过程有差异所致。不同分子量肝素的生物作用也不完全相同。一般将分子量在7000以下肝素称为低分子量肝素。低分子量肝素只与抗凝血酶Ⅱ结合,而分子量较大的肝素除了能与抗凝血酶Ⅲ结合外,还能与血小板结合,结果不仅抑制血小板表面凝血酶的形成,而且抑制血小板的聚集与释放。由于分子量较大的肝素抗凝作用的环节较多,作用较为复杂,易引起出血倾向,而低分子时肝素具有半衰期较长,抗凝效果好和引起出血倾向少等优点,因而更适于作为外源性抗凝剂。

从化学本质看,凝血过程是一系列酶促反应链,其中主链是一系列丝氨酸蛋白酶的作用。组成抗凝系统的一类物质是血浆中存在的多种丝氨酸蛋白酶抑制物。上述抗凝血酶Ⅲ是其中最为重要的一种。属于丝氨酸蛋白酶抑制物的抗凝物质还有能抑制补体第1成分和因子Ⅻa、Ⅺa、的C1抑制物(C1inhibitor),广谱的蛋白酶抑制物a2-巨球蛋白(a2-macroglobulin)等。抗凝系统中的另一类物质是辅因子抑制物,这类抑制物通过对凝血辅因子如因子Ⅴ和Ⅷ活性的抑制而实现抗凝作用。下述的蛋白质C和凝血酶调制素都是属于这类抗凝物质。

蛋白质C(protein C)是近年来引起注意的另一种具有抗凝作用的血浆蛋白,分子量为62000,它由肝合成,并有赖于维生素K的存在。蛋白质C以酶原形式存在于血浆中,蛋白质C在凝血酶的作用下发生有限的酶解过程,从分子上裂解下一个小肽后即具有活性。激活的蛋白质C与血管内皮表面存在的辅因子凝血酶调制素(thrombomodulin)结合成复合物,在Ca2+存在的条件下这种复合物使蛋白质C的激活过程大大加快。激活的蛋白质C具有多方面的抗凝血、抗血栓功能,主要的作用包括:①灭活凝血因子Ⅴ和Ⅷ。这种灭活也是一种酶解过程,即是把因子Ⅴ和Ⅷ的重链进行水解,使他们与磷脂的结合力降低。这种灭活反应需要有Ca2+的存在,反应的速度是很快的;②限制因子Χa与血小板结合。存在于血小板表面的因子Ⅴa是因子Χa的受体。当因子Χa与这种受体结合后,可使因子Χa的活性大为增强。由于激活的蛋白质C 能使因子Ⅴa灭活,使因子Χa与血小板的结合受到阻碍,结果可使因子Χa激活凝血酶原的作用大为减弱;

③增强纤维蛋白的溶解。激活的蛋白质C能刺激溶酶原激活物的释放,从而增强纤溶活性。激活的蛋白质

C的这一作用只有在内皮细胞存在的情况下才能实现。维生素K缺乏或患肝病可使蛋白质C的合成减少;某些病理情况造成血管内皮广泛损伤时使凝血酶调制减少,这种减少转而使蛋白质C的激活受阻。不论是蛋白质C减少或活化受阻都增加了形成血栓的倾向。

体外延缓或阻止血液凝固的因素:①降低温度,当反应系统的温度降低至10℃以下时,很多参与凝血过程的酶的活性下降,因些可延缓血液凝固,但不能完全阻止凝血的发生;②光滑的表面,也称不湿表面,可减少血小板的聚集和解体,减弱对凝血过程的触发,因而延缓了凝血酶的形成。例如,将血液盛放在内表面涂有硅胶或石蜡的容器内,即可延缓血凝,③去Ca2+,由于血液凝固的多个环节中都需要Ca2+的参加,因此如在体外向血液中加入某些能与钙结合形成不易解离但可溶解的络合物,从而减少了血浆中的Ca2+,防止了血液凝固。由于少量枸橼酸钠进入血液循环不致产生毒性,因此常用它作抗凝剂来处理输血用的血液。此外,实验室中可使用草酸铵、草酸钾和螯合剂乙二胺四乙酸(ECTA)作抗凝剂,它们能与Ca2+结合不易溶解的复合物。但它们对机体有害,因而不能进入体内。

(三)纤维蛋白溶解

在生理止血过程中,小血管内的血凝块常可成为血栓,填塞了这一段血管。出血停止、血管创伤愈合后,构成血栓的血纤维可逐渐溶解,先形成一些穿过血栓的通道,最后可以达到基本畅通。血纤维溶解的过程,称为纤维蛋白溶解(简称纤溶)。

纤维蛋白溶解(纤溶)系统包括四种成分,即纤维蛋白溶解酶原(plasminogen)(纤溶酶原,血浆素原)、纤维蛋白溶解酶(plasmin)(纤溶酶,血浆素)、纤溶原激活物与纤溶抑制物。纤溶的基本过程可分两个阶段,即纤溶酶原的激活与纤维蛋白(或纤维蛋白原)的降解(图3-6)。

图3-6纤维蛋白溶解系统

1.纤溶酶原激活纤溶酶原很可能是在肝、骨髓、嗜酸性粒细胞与肾中合成的;在正常成年人每100ml 血浆中约含10-20mg纤溶酶原,婴儿较少,妇女晚期妊娠时增多。

纤溶酶原激活物分布广而种类多,主要有三类:第一类为血管激活物,在小血管内皮细胞中合成后释放于血中,以维持血浆内激活物浓度于基本水平。血管内出现血纤维凝块时,可使内皮细胞释放大量激活物。所释放的激活物大都吸附于血纤维凝块上,进入血流的很少。肌肉运动、静脉阻断、儿茶酚胺与组胺等也可使血管内皮细胞合成和释放的激活物增多。第二类为组织激活物,存在于很多组织中,主要是在组织修复、伤口愈合等情况下,在血管外促进纤溶。肾合成与分泌的尿激酶就属于这一类激活物,活性很强,

有助于防止肾小管中纤维蛋白沉着。第三类为依赖于因子Ⅻ的激活物,例如前激肽释放酶被Ⅻa激活后,所生成的激肽释放酶即可激活纤溶酶原。这一类激活物可能使血凝与纤溶互相配合并保持平衡。

血浆中的激活物的半衰期约13分钟,通常迅速被肝清除。

纤溶酶原的激活也是有限水解的过程,在激活物的作用下,脱下一段肽链成为纤溶酶。

2.纤维蛋白(与纤维蛋白原)的降解纤溶酶和凝血酶一样,也是蛋白酶,但是它对纤维蛋白原的作用与凝血酶不同。凝血酶只是使纤维蛋白原从其中两对肽链的N-端各脱下一个小肽,使纤维蛋白原转变成纤维蛋白。纤溶酶却是水解肽链上各单位的赖氨酸-精氨酸键,从而逐步将整个纤维蛋白或纤维蛋白原分割成很多可溶的小肽,总称为纤维蛋白降解产物。纤维蛋白降解产物一般不能再出现凝固,而且其中一部分有抗血凝的作用。

纤溶酶是血浆中活性最强的蛋白酶,但特异性较小,可以水解凝血酶、因子Ⅴ、因子Ⅷ、激活因子Ⅻa;促使血小板聚集和释放5-羟色胺、ADP等;还能激活血浆中的补体系统;但它的主要作用是水解纤维蛋白原和纤维蛋白。血管内出现血栓时,纤溶主要局限于血栓,这可能是由于血浆中有大量抗纤溶物质(即抑制物)存在,而血栓中的纤维蛋白却可吸附或结合较多的激活物所致。正常情况下,血管内膜表面经常有低水平的纤溶活动,很可能血管内也经常有低水平的凝血过程,两者处于平衡状态。

3.抑制物及其作用血液中存在的纤溶抑制物主要是抗纤溶酶(antiplasmin),但其特异性不大,例如,a2-巨球蛋白能普遍抑制各种内切酶,包括纤溶酶、胰蛋白酶、凝血酶、激肽释放酶等。每一分子a2-巨球蛋白可结合一分子纤溶酶,然后迅速被吞噬细胞清除。血浆中a1-抗胰蛋白酶也对纤溶酶有抑制作用,但作用较慢,然而它分子量小,可渗出血管,控制血管外纤溶活动。看来这些抑制物的作用,是广泛控制在血凝与纤溶两个过程中起作用的一些酶类。这对于将血凝与纤溶局限于创伤部位,有重要意义。

(四)表面激活与血液的其他防卫功能

血管损伤后暴露出内膜下组织,通过表面激活使因子Ⅻ激活成因子Ⅻa,因子Ⅻa 又激活肽释放酶成为激肽释放酶,而激肽释放酶又可激活因子Ⅻ,从而形成一个正反馈环,可形成足够的Ⅻa 和激肽释放酶。这样,不但同时激活了血凝和纤溶系统,也激活了补体系统和激肽系统(图3-7)。补体激活的一些产物和激肽都是作用很强的趋化因子,能吸收吞噬细胞到受损伤的部位,产生非特异性免疫反应;这样使生理止血功能与免疫功能相配合,有效的保护机体,减少创伤带来的损害。

图3-7表面激活也血液各种防卫功能关系示意图

PK:前激肽释放酶Pn:纤溶酶原K:激肽释放酶Pn:纤溶酶

HK:高分子激肽原CI:补体Kn:激肽Ⅻ与Ⅻa,因子Ⅻ及其激活型

二、血小板的止血功能

因血管创伤而失血时,血小板在生理止血过程中的功能活动大致可以分为两段,第一段主要是创伤发生后,血小板迅速粘附于创伤处,并聚集成团,形成较松软的止血栓子;第二段主要是促进血凝并形成坚实的止血栓子。

(一)血小板粘附与聚集

止血中较松软的血小板止血栓子的形成,要经过血小板粘附与聚集两个过程。

血管损伤后,流经此血管的血小板被血管内皮下组织表面激活,立即粘附于损伤处暴露的胶原纤维上。参与血小板粘附过程的主要因素包括:血小板膜糖蛋白I(GPI)、vonWillebrand因子(vW因子)和内皮下组织中的胶原。当血小板缺乏GPI或胶原纤维变性时,血小板粘附(thrombocyte adhesion)功能便受损。发生血小板粘附过程的可能机制是vW因子再与血小板膜上的特异受体结合。此外,血小板膜上的糖苷移换酶活性和胶原蛋白分子的构型与粘附也有着密切关系。

粘附主要是一种表面现象,粘附一旦发生了,血小板的聚集过程(thrombocyte aggregation)也随即发生。聚集是指一些血小板相互粘连在一起的过程。聚集开始时,血小板由圆盘形变成球形,并伸出一些貌似小刺的伪足;同时血小板脱粒,即原来贮存于致密颗粒内的ADP、5-羟色胺等活性物质被释放。ADP释放和某些前列腺素的生成,对聚集的引起十分重要。

1.ADP的作用在体外实验中看到,ADP是使血小板聚集最重要的物质,特别是从血小板释放出来的这种内源性ADP尤其重要。在血小板悬液中加入小量ADP(浓度在0.9μmol/L以下),能迅速引起血小板聚集,但很快又解聚;若加入中等剂量的ADP(1.0μmol/L左右),则在第一聚集时相结束和解聚后不久,又出现

第二个不可逆的聚集时相,这是由于血小板释放的内源性ADP所引起的;若是加入大量ADP,则迅速引起不

可逆的聚集,即直接进入聚集的第二时相.以不同剂量的凝血酶加入血小板悬液,也可使血小板发生聚集;而且与ADP相似,随着加入剂量的逐渐增加,可看到从只有第一时相可逆性聚集,到出现两个时相的聚集,再到直接进入第二时相的聚集.因为,用腺苷阻断内源性ADP的释放或用腺苷三磷酸双磷酸酶(apyrase)以破坏ADP,均可抑制凝血酶引起的聚集,说明凝血酶的作用可能是由于凝血酶与血小板细胞膜上的凝血酶受体结合后,引起内源性ADP释放所引起的。加入胶原也可引进悬液中的血小板聚集,然而只有第二时相的不可逆聚集,一般认为这也是由于胶原引起内源性的ADP释放所致。医学全在线https://www.wendangku.net/doc/4c13062172.html,

一般能引起血小板聚集的物质均可使血小板内cAMP减少,而抑制血小板聚集的则使cAMP增多。因而目前认为,可能是cAMP减少引起血小板内Ca2+增加,促使内源性ADP释放。

ADP引起血小板聚集,还必须有Ca2+ 和纤维蛋白原存在,而且要消耗能量。将血小板悬浮于缺乏葡萄糖的溶液中数小时,或用药物阻断或减弱血小板产生ATP的代谢过程,均将抑制血小板的聚集。ADP 也不能使洗净了的血小板聚集,除非加入纤维蛋白原;但凝血酶和胶原可使洗净了的血小板聚集。因为在这种情况下,可使血小板a 颗粒内的纤维蛋白原释放。

ADP是通过血小板膜上的ADP受体引起聚集的。目前认为,血小板膜上有表面ATP酶,这是防止血小板相互粘聚所必需的,而ADP可抑制表面ATP酶的活性;ADP还可使血小板暴露出磷脂表面,因而可以通过Ca2+“搭桥”而互相粘聚。

2.血小板前列腺素类物质的作用血小板质膜的磷脂中含有花生四烯酸,血小板细胞内有磷脂酸A2。在血小板被表面激活时,磷脂酶A2也被激活。在磷脂酶A2的催化作用下,花生四烯酸从质膜的磷脂中分离出来。花生四烯酸在血小板的环氧化酶作用下,产生前列腺素G2和H2(PGG2、PGH2)。PGG2和PGH2都是环内过氧化物,有很强的引起血小板聚集的作用。但是PGG2和PGH2都很不稳定,可以直接生成小量PG E2和PGF2。PGH2可以在血栓素合成酶的催化作用下,形成大量血栓素A2(thromboxane A2,TXA2)。TXA2 使血小板内cAMP减少,因而有很强的聚集血小板的作用,也有很强的收缩血管的作用。TXA2也不稳定迅速转变成无活性的血栓素B2(TXB2)。咪唑(imidazole)可抑制血栓素合成酶,所以有防止血小板聚集

生成前列腺环的作用。此外,正常血管壁内皮细胞中有前列腺环素合成酶,可以催化血小板生成的PGH

素(prostacyclin,PGI2)。PGI2可使血小板内cAMP增多,因而有很强抑制血小板聚集的作用,也有很强的抑制血管收缩的作用。PGI2也很不稳定,迅速变成无活性的6-酮-PGF1a。关于由花生四烯酸衍变成TXA2与PGI2的过程可参看图3-8。

图3-8血小板前列腺素与血栓素的合成

在发现TXA2和PGI2之后,曾设想在正常情况下可能是血管壁的PGI2与血小板的TXA2之间保持了平衡,因而使血小板不致聚集。可以设想,血管损伤暴露内皮下组织时,一方面激活血小板和激活内源性凝血途径,损坏的血管组织释放凝血因子Ⅲ又激活外源性凝血途径,于是在此局部迅速形成凝血酶;另一方面血管损伤使局部血管壁PGI2减少。这样,由此血管通过的血小板即粘附于损伤处的胶原纤维上,随即血小板也发生变形、聚集,并激活磷脂酶A2,导致合成TXA2,TXA2可使血小板内cAMP减少而游离Ca2+增多,以致血小板脱粒释放内源性ADP,又使更多的血小板聚集,迅速形成松软的止血栓子。

(二)血小板与凝血

血小板对于血液凝固有重要的促进作用,如将血液置于管壁涂一薄层硅胶的玻璃管中,使血小板不易解体,虽然未加入任何抗凝剂,血液可保持液态达72小时以上;若加入血小板匀浆则立即发生凝血。这说明血小板破裂后的产物对于凝血过程有很强的促进作用。

血小板表面的质膜结合有多种凝血因子,如纤维蛋白原、因子Ⅴ、因子Ⅺ、因子ⅩⅢ等。a-颗粒中也含有纤维蛋白原、因子因子ⅩⅢ和一些血小板因子(PE),其中PF2和PF3都是促进血凝的。PF4可中和肝素,PF6则抑制纤溶。当血小板经表面激活后,它能加速凝血因子Ⅻ和Ⅺ的表面激活过程。血小板所提供的磷脂表面(PF3),据估计可使凝血酶原的激活加快两万倍。因子Ⅹa和因子Ⅴ连接于此磷脂表面后,还可以免受抗凝血酶Ⅲ和肝素对它们的抑制作用。

当血小板聚集形成止血栓时,凝血过程已在此局部进行,血小板已暴露大量磷脂表面,为因子Ⅹ和凝血酶原的激活提供了极为有利的条件。血小板聚集后,其α颗粒中的各种血小板因子释放出来,促进血纤维的形成和增多,并网罗其它血细胞形成凝块。因而血小板虽逐渐解体,止血栓子仍可增大。血凝块中留

下的血小板有伪足伸入血纤维网中,这些血小板中的收缩蛋白收缩,使血凝块回缩,挤压出其中的血清而成为坚实的止血栓,牢牢地封住血管缺口。

在表面激活血小板和血凝系统时,同时也激活了纤溶系统。血小板内所含的纤溶酶及其激活物将释放出来。血纤维和血小板释放的5-羟色胺等,也能使内皮细胞释放激活物。但是由于血小板解体,同时释放出PF6和另一些抑制蛋白酶的物质,所以在形成血栓时,不致受到纤溶活动的干扰。

生理性止血概论

生理性止血 正常情况下,小血管受损后引起的出血,在几分钟内会自行停止,这种现象称为生理性止血。以模板式刀片法测定,正常人出血时间(BT)不超过9分钟。 (一)生理性止血基本过程 生理性止血过程主要包括血管收缩、血小板血栓形成和血液凝固三个过程。 1.血管收缩生理性止血首先表现为受损血管局部和附近的小血管收缩,使局部血流减少。若血管破损不大,可使血管破口封闭,从而制止出血。引起血管收缩的原因有以下三个方面:①损伤性刺激反射性使血管收缩;②血管壁的损伤引起局部血管肌源性收缩;③黏附于损伤处的血小板释放5-HT、TXA2等缩血管物质,引起血管收缩。 2.血小板止血栓的形成血管损伤后,由于内皮下胶原的暴露,1~2s内即有少量的血小板黏附于内皮下的胶原上。局部受损红细胞释放的ADP和局部凝血过程中生成的凝血酶均可使血小板活化而释放内源性ADP和TXA2,进而促进血小板发生不可逆聚集,使血流中的血小板不断地聚集、黏着在已黏附固定于内皮下胶原的血小板上,形成血小板止血栓,从而将伤口堵塞,达到初步的止血作用。 3.血液凝固血管受损也可启动凝血系统,在局部迅速发生血液凝固,使血浆中可溶性的纤维蛋白原转变成不溶性的纤维蛋白,并交织成网,以加固止血栓,称二期止血。最后,局部纤维组织增生,并长入血凝块,达到永久性止血。 (二)血液凝固 血液凝固是指血液由流动的液体状态变成不能流动的凝胶状态的过程。其实质就是血浆中的可溶性纤维蛋白原转变成不溶性的纤维蛋白的过程。纤维蛋白交织成网,把血细胞和血液的其他成分网罗在内,从而形成血凝块。血液凝固是一系列复杂的酶促反应过程,需要多种凝血因子的参与。 1.凝血因子血浆与组织中直接参与血液凝固的物质,统称为凝血因子。目前已知的凝血因子主要有14种,其中按国际命名法以发现的先后顺序用罗马数字编号的有12种,即凝血因子Ⅰ~ⅩⅡ(简称FⅠ~FⅩⅡ,其中FⅤⅠ是血清中活化的FⅤ(FⅤa),已不再被视为一个独立的凝血因子〉。此外还有前激肽释放酶、高分子激肽原等。在这些凝血因子中,除FⅤ、ⅠⅤ是 Ca2+外,其余的凝血因子均为蛋白质,而且FⅡ、FⅤⅡ、FⅠⅩ、FⅩ、FⅩⅠ、FⅩⅡ和前激肽释放酶都是丝氨酸蛋白酶,能对特定的肽链进行有限水解;但正常情况下这些蛋白是以无活性的酶原形式存在,必须通过其他酶的有限水解而暴露或形成活性中心后,才具有酶的活性,这一过程称凝血因子的激活。如FⅡ被激活后表示为FⅡa、FⅢ、FⅤ、FⅤⅢ和高分子激肽原在凝血反应中起辅因子的作用,可使相应的丝氨酸蛋白酶凝血因子的催化速率增快成千上万倍。除FⅢ外,其他凝血因子均存在于新鲜血浆中,且多数在肝内合成,其中FⅡ、FⅤⅡ、FⅠⅩ、FⅩ的生成需要维生素Ⅹ的参与,故它们又称依赖维生素K的凝血因子。依赖维生素K的凝血因子的分子中均含有γ-羧基谷氨酸,和Ca2+结合后可发生变构,暴露出与磷脂结合的部位而参与凝血。 2、凝血的过程血液凝固是由凝血因子按一定顺序相继激活,生成的凝血酶最终使纤维蛋白原变为纤维蛋白的过程。因此,凝血过程可分为凝血酶原酶复合物〔也称凝血酶原激活复合物)的形成、凝血酶的激活和纤维蛋白的生成三个基本步骤。 (1)凝血酶原酶复合物的形成:凝血酶原酶复合物可通过内源性凝血途径和外源性凝血途径生成。 1)内源性凝血途径:内源性凝血途径是指参与凝血的因子全部来自血液,当血液与带负电荷的异物表面接触时,首先是ΜⅡ结合到异物表面,并被激活为ΜⅡa,ΜⅡa的主要功能是激活ΜI 成为ΜIa,从而启动内源性凝血途径。FⅩⅡa还能通过前激肽释放酶的激活而正反馈促进ΜⅡa的形成。从ΜⅡ结合于异物表面到ΜIa的形成过程称为表面激活。表面激活所生成的ΜIa在Ca2+存在的情况下可激活FIX生成的FIXa。FIXa在Ca2+的作用下与FⅤⅢa在活化的血小板提供的膜磷脂表面结合成复合物(因子X酶复合物),可进一步激活Μ,生成Μa。 FⅤⅢa作为辅因子,可使FIXa对Μ的激活速度提高20万倍。FⅤⅢ或FIX的缺乏均可导致因子X酶复合物生成障碍,分别称为血友病A或血友病B。 2)外源性凝血途径:由来自于血液之外的组织因子(TF)暴露于血液而启动的凝血过程,称为外源性凝血途径,又称组织因子途径。在生理情况下,约有0.5%的FⅤⅡ处于活化状态 (FⅤⅡa)。当血管损伤时,暴露出组织因子,后者与FⅤⅡa相结合而形成FⅤⅡa-组织因子复合物,在

凝血机制及凝血四项意义及止血药分类

凝血机制 一、血小板有止血功能,凝血因子也有止血功能,二者之间的联系? 简单的说,血小板参与的止血属于一期止血,凝血因子参与的止血属于二期止血,二者是相辅相成的关系,在止血过程中,血小板为血液凝固中的凝血因子的激活提供磷脂表面,而血液凝固中由凝血因子按一定顺序相继激活而生成的凝血酶又可加强血小板的活化。 具体可以从一个概念开始:什么叫做生理性止血。正常情况下,小血管受到损伤后引起的出血,在几分钟内就会自行停止,这种现象称为生理性止血。临床上经常用小针刺破耳垂或者指尖,使血液自然流出,然后测定出血延续的时间,正常人不超过9min(模板法),出血时间的长短反应生理性止血功能的状态,生理性止血功能减退,就有出血的倾向,生理性止血功能过度激活,就有血栓形成的风险。 生理性止血过程:1.血管收缩、2.血小板血栓形成、3.血液凝固。 ①血管收缩:损伤刺激引起的局部缩血管反应,血管收缩,使局部血流减少,如果血管破损不大,直接可使血管破口封闭,从而止血;②血小板血栓形成:血管内膜损伤,内皮下胶原暴露,1-2s内即有少量血小板聚集粘附,这些少量的血小板起到“识别定位”的作用,紧接着会有源源不断的血小板聚集成团,形成一个松软的止血栓以填塞伤口,这就是一期止血;③血液凝固:血管内膜损伤,内膜下组织暴露,也可以激活血浆中的凝血系统,在局部迅速发生血液凝固,使可溶性的纤维蛋白原变为不可溶性的纤维蛋白,并交织成网,把松

软的血小板凝块与血细胞缠结成血凝块,血栓变得更坚实,能更有效地起止血作用,这是二期止血。 伴随着血栓的形成,血小板释放多种活性物质,激活周围血小板,促进血管收缩,促纤维蛋白形成等多种方式加强止血,所以说PLT和凝血因子在生理性止血过程中是相辅相成的关系。 血小板参与的是一期止血,他的特点是反应快,缺陷是没有纤维蛋白原的“捆绑”,所形成的血栓不牢固。凝血因子参与的是二期止血,特点是血栓牢固,调控精细,但是反应较慢。两种凝血机制缺一不可。 二、内源性凝血途径和外源性凝血途径的关系? 可从生理性止血的第三步:血液凝固讲起,血液凝固的定义,简称凝血,是指血液由流动的液体变为不能流动的凝胶状态的过程,实质就是凝血因子按一定顺序相继激活生成凝血酶,最终使血浆中可溶性的纤维蛋白原变为不可溶性的纤维蛋白的过程,他是一系列复杂的酶促反应,需要多种凝血因子的参与。 目前已知的凝血因子共有14个,其中已按国际命名法按发现的先后顺序用罗马数字编了号的有12种,即凝血因子Ⅰ-XIII(因为凝血因子VI后被证实是血清中活化的凝血因子V,所以不再被视为一个独立的凝血因子),此外,还有前激肽释放酶、高分子激肽原。除III因子外,其他凝血因子均存在于新鲜血浆,且多数在肝内合成;除Ⅳ因子是钙离子,其余已知的凝血因子均为蛋白质;

生理止血原理

生理止血、血液凝固与纤维蛋白溶解(血凝,凝血过程,抗凝,纤溶,血小板,止血功能( 关键词:生理止血;血液凝固;血凝;凝血过程;抗凝;纤维蛋白溶解;纤溶;血小板;止血功能) 小血管损伤后血液将从血管流出,但在正常人,数分钟后出血将自行停止,称为生理止血。用一个小撞针或注射针刺破耳垂或指尖使血液流出,然后测定出血延续的时间,这一段时间称为出血时间(bleeding tim e)。出血时间的长短可以反映生理止血功能的状态。正常出血时间为1-3分钟。血小板减少,出血时间即相应延长,这说明血小板在生理止血过程中有重要作用;但是血浆中一些蛋白质因子所完成的血液凝固过程也十分重要。凝血有缺陷时常可出血不止。 生理止血过程包括三部分功能活动。首先是小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。其次,更重要的是血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。接着,在局部又迅速出现血凝块,即血浆中可溶的纤维蛋白源转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。显然,生理止血主要由血小板和某些血浆成分共同完成。 一、血凝、抗凝与纤维蛋白溶解 血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。血纤维交织成网,将很多血细胞网罗在内,形成血凝块。血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。 血浆内具备了发生凝血的各种物质,所以将血液抽出放置于玻璃管内即可凝血。血浆内又有防止血液凝固的物质,称为抗凝物质(anticoagulant)。血液在血管内能保持流动,除其他原因外,抗凝物质起了重要的作用。血管内又存在一些物质可使血纤维再分解,这些物质构成纤维蛋白溶解系统(简称纤溶系统)(fibrinloytic system)。 在生理止血中,血凝、抗凝与纤维蛋白溶解相互配合,既有效地防止了失血,又保持了血管内血流畅通。 (一)血液凝固 凝血因子血浆与组织中直接参与凝血的物质,统称为凝血因子(blood clotting factors),其中已按国际命名法用罗马数字编了号的有12种(表3-4)。此外,还有前激肽释放酶、高分子激肽原以及来自血小板的磷脂等直接参与凝血过程。除因子Ⅳ与磷脂外,其余已知的凝血因子都是蛋白质,而且因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ以及前激肽释放酶都是蛋白酶。这些蛋白酶都属于内切酶,即每一种酶只能水解某两种氨基酸所形成的肽键。因而不能将某一知肽链分解成很多氨基酸,而只能是对某一条肽链进行有限的水解。通常在血液中,因Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ都是无活性的酶原,必须通过有限水解在其肽链上一定部位切断或切下一个片段,以暴露或形成活性中心,这些因子才成为有活性的酶,这个过程称为激活。被激活的酶,称为这些因子的“活性型”,习惯上于该因子代号的右下角加一“a”字来表示。如凝血酶原被激活为凝血

止血和凝血机制

止血和凝血机制: 止血:血管壁、血小板、凝血机制凝血酶原转化 血管壁:脆性、通透性、舒缩性;PF3(血小板释放)凝血活酶形成 血小板功能:附着胶原纤维、基底膜ADP/TXA2(血小板释放)—血小板大量聚集形成血小板血栓(可逆、短暂)—释放出血管活性物质,增强血管收缩 纤维蛋白原产生纤维蛋白丝在血小板凝血周围形成纤维蛋白原网血栓收缩素纤维蛋白进一步收缩形成稳定的血凝块(持久)

1、血浆凝血酶原时间(PT) PT是血检前状态、DIC及肝病诊断的重要指标,作为外源性凝血系统的过筛试验,也是临床口服抗凝治疗剂量控制的重要手段(表1)。PTA<40%提示肝细胞有大片坏死,凝血因子合成减少。如肝衰早期30%<PTA<40%;中期20%<PTA<30%;晚期PTA <20%。 表1:ACCP(美国胸科医师协会)推荐的INR目标值 疾病状态 IN R I NR 目标值 预防静脉血栓形成;治疗静脉血栓形成;治疗肺栓塞;预防体循环栓塞;生物瓣换瓣;急性心肌梗死(预防体循环栓塞);瓣膜病房颤 IN R 2.0~ 3.0 目 标值 2.5 机械瓣换瓣(高危);急性心肌梗死(预防心肌梗死复发);某些血栓病人和抗磷脂抗体综合症 IN R 2.5~ 3.5 目 标值 3.0

主动脉双叶机械性瓣膜 IN R 2.0~ 3.0 目 标值 2.5 延长见于: a、广泛而严重的肝脏实质性损伤,主要由于凝血酶原及有关各凝血因子生成障碍。 b、VitK不足,合成Ⅱ、Ⅶ、Ⅸ、Ⅹ因子均需VitK。当VitK不足时生成减少而致凝血酶原时间延长。亦见于阻塞性黄疸。 c、DIC(弥散性血管内凝血),因广泛微血管血栓而消耗大量凝血因子。 d、新生儿自然出血症、先天性凝血酶原缺乏抗凝治疗。缩短见于:血液呈高凝状态时、为弥散性血管内凝血早期、心梗、脑血栓形成 2、凝血酶时间(TT) 延长见于:肝素或类肝素物质增多、AT-Ⅲ活性增高、纤维蛋白原量和质异常 3、部分活化凝血活酶时间(APTT) 反映血浆中凝血因子Ⅷ、Ⅸ、Ⅺ、Ⅻ水平,是内源性凝血系统的筛选试验。常用APTT对肝素抗凝治疗进行监控。延长见于:a、凝血因子Ⅷ、Ⅸ、Ⅺ、Ⅻ缺乏b、凝血因子Ⅱ、Ⅴ、Ⅹ及纤维蛋白原减少c、有肝素等抗凝物质存在d、纤维蛋白原降解产物增多e、DIC

生理学试题及答案第三章-血液

第三章血液 一、名词解释 1、血细胞比容 2、血量 3、渗透压 4、血沉 5、生理性止血 6、血液凝固 7、血清 8、凝血因子 9、血型 10、交叉配血试验 二、填空题 1、血液由和两部分组成。

2、正常成人的血量约占体重的,即每公斤体重有 ml 血液。 3、全血、血浆和红细胞的比重分别由、和的数量决定。 4、血浆中最重要的缓冲对是。 5、正常成年女性红细胞的数量为,血红蛋白浓度为。 6、临床最常见的贫血类型是,其根据红细胞的形态特点,又称为。 7、正常成年人白细胞数量为,其中嗜碱性粒细胞所占的比例为 % 。 8、目前已知的凝血因子共有种,其中唯一不存在血浆中的凝血因子是,不是蛋白质的凝血因子是,大多数凝血因子以形式存在于血浆中。 9、内、外源性凝血途径分别由凝血因子、启动。 10、血液中最重要的抗凝血物质是。 11、目前发现的红细胞血型系统有32个,其中与临床关系最为密切的是和。

12、Rh血型系统中抗原性最强的抗原是。根据红细胞膜上有无该抗原,分为和。 三、选择题 1、血清是指 A、血液去掉纤维蛋白 B、血液加抗凝剂后离心沉淀后的上清物 C、血浆去掉纤维蛋白及其他某些凝血因子 D、全血去掉血细胞 E、血浆去掉蛋白质 2、血清与血浆的主要区别在于血清缺乏 A、纤维蛋白 B、纤维蛋白原 C、凝血因子 D、血小板 E、Ca2+ 3、组织液与血浆成分的主要区别是组织液内 A、不含血细胞 B、蛋白含量低 C、Na+含量高 D、K+含量高 E、Cl-含量高 4、下列哪项不是血浆蛋白的生理功能 A、运输 O2 和 CO2 B、缓冲功能 C、参与生理止血

生理性止血

生理性止血 正常情况下,小血管破损后引起的出血在几分钟内便自行停止,这种现象称为生理性止血。生理性止血过程主要包括血管挛缩,血小板血栓和纤维蛋白凝块的形成与维持三个时相。 首先是受损伤局部及附近的血管挛缩,若破损不大,可使血管破口封闭,收缩机制有两种;一为神经性,二是肌源性。 其次是血管内膜损伤,内膜下组织暴露,激活血小板,使血小板粘附、聚集于内膜组织,形成一个松软的止血栓填塞伤口实现初步止血。血小板与非血小板表面的粘着,称为血小板粘附。参与血小板粘附的主要成分包括血小板膜糖蛋白,内膜下组织和血浆成分。粘附的血小板相互之间进一步附着的过程称为血小板聚集。另外血管收缩使血流速度减小,局部的血小板和凝血因子浓度有所升高,易于发挥作用。生理性致聚剂主要有:ADP、肾上腺素、5-羟色胺、组胺、胶原、凝血酶、前列腺素类物质等;病理性致聚剂如细菌、病毒、免疫复合物,药物等。 血小板受到刺激聚集后,将贮存在致密体、α-颗粒或溶酶体内的活性物质排出的现象,称血小板释放。由于血小板有粘附、聚集和释放的特性,因此,血小板参与生理性止血的全过程。血小板的促凝活性主要包括以下几方面: (1)激活的血小板为凝血因子提供磷脂表面,能够参与内源性凝血途径无修改因子X 和凝血酶原的激活。 (2)血小板质膜表面能够结合许多凝血因子。 (3)血小板激活后,释放颗粒的内容物,加固凝块,如ADP,5-HT等。 血液凝固或血凝是指血液由流动的液体状态转变成不能流动的胶冻状的过程。血液凝固后1~2小时,血凝块会发生回缩,并释出淡黄色的液体,称为血清。血清与血浆的区别,在于前者缺乏参与凝血过程被消耗掉的一些凝血因子和纤维蛋白,但增添了少量血液凝固时由血管内皮细胞和血小板释放出来的化学物质,血清不可以再凝。 血浆与组织中直接参与血液凝固的物质,统称为凝血因子。FⅣ是Ca2+,除Ca2+与磷脂外,其余的凝血因子均为蛋白质,FⅡ、FⅦ、FⅨ、FⅩ的合成必须有维生素K参与,故它们又称依赖维生素K的凝血因子。血中具有酶特性的凝血因子都以无活性的酶原形式存在,必须通过有限水解作用后,暴露或形成活性中心才能被激活,这一过程称为凝血因子的激活。在凝血中起酶促作用的因子有FⅡ、FⅦ、FⅨ、FⅩ、FⅪ、FⅫ以及F;除Ca2+以外,起辅因子作用的是FⅤ、FⅦ、F和高分子量激肽原;最后起底物作用的是纤维蛋白原(FⅠ)。在凝血中被消耗的因子是FⅡ、FⅤ、FⅦ和FⅧ,最不稳定的凝血因子是FⅤ和FⅧ。 凝血过程的瀑布学说认为凝血是一系列凝血因子相继酶解激活的过程,最终结果是凝血酶和纤维蛋白凝块的形成,而且每步酶解反应均有放大效应,是一种正反馈反应。这一过程包括内源性凝血和外源性凝血两条途径。这两条途径的主要区别在于启动方式和参加凝血因子不完全相同。 但两者并不是各自完全独立的。它们的联系有:两条途径都能激活FX,形成一条最终生成凝血酶和纤维蛋白凝块的共同途径。凝血酶是一多功能的凝血因子,其主要作用是使纤维蛋白原分解,纤维蛋白单体相互聚合,形成不溶于水的交联纤维蛋白多聚体凝块。此外,生成的凝血酶可激活FV、FⅦ、FⅧ、FⅫ、F;还可使血小板活化而提供凝血因子相互作用的有效膜表面,产生更多的凝血酶,使凝血过程不断加速,但是凝血酶又可直接或间接激活蛋白C系统,灭活FVa和FⅧ从而制约凝血过程的继续,这是使凝血过程局限于损伤部位的机制之一。 目前认为,外源性凝血途径在体内生理性凝血反应的启动中起关键性作用,组织因子被认为是启动子,由于组织因子嵌在细胞膜上,可起"锚定"作用,使凝血限于局部。凝血过程由外源性凝血途径启动后,一方面通过生成的少量凝血酶反过来激活内源性凝血因子FⅨ、

正常止血凝血机制

正常止血凝血机制 文章来源:健康热线发表时间:2006-12-05 10:49:00 关键字:止血凝血 正常的止血步骤可分为两个阶段。首先是初步止血,指在微血管和小血管破裂后立即发生的止血。包括血管的反应性收缩,血小板在VWF 存在下粘附于血管内皮下暴露的胶原组织,形成白色血栓;第二步止血是凝血机制参与,以凝血酶形成为中心,以纤维蛋白形成而告终的过程,最后产物是牢固的红色血栓堵住了伤口达到止血目的。另外抗凝和纤溶成份的存在又有助于防止凝血酶和纤维蛋白形成的范围扩大,它能使止血局限于血管破损部位。 (一)血管因素血管壁的结构和功能是否正常和止血有密切关系。 而血管壁的结构与血管周围组织的正常与否也有关系。血管的舒缩受神经、体液及局部因素控制,当创伤时,血管收缩,使血流减慢,有利于凝血物质局部积聚及血小板粘附,聚集增加,故有利于止血。 另外血管内皮细胞能合成内皮下一些粘附蛋白,这些粘附蛋白,不仅为血管内皮细胞提供了一个适宜附着面,同时可和血小板表面受体结合,诱导血小板粘附,聚集,形成止血栓。如VWF就是一个大分子糖蛋白,存在于血浆及内皮下组织,它是血小板粘附于内皮下组织的桥梁; 纤维结合蛋白存在于所有血管基底膜,由内皮细胞合成。它含有许多细胞和粘附蛋白结合位点,使纤维结合蛋白能够与许多粘附蛋白相互作用,构成错综复杂的基质网。

内皮素(ET)是一种内皮细胞因子,是迄今发现的最强缩血管物质,是血管紧张素Ⅱ的10倍,近来还发现它有3种亚型,对许多组织都有生物学效应。 (二)血小板因素血小板来源于骨髓巨核细胞,受血小板生成素调节,在循环血流中未活化的血小板约2~3μm大小,为碟形无核细胞。正常人血小板计数为15万~40万/mm3,在电镜下血小板具有一般细胞器,如内质网,高尔基体,线粒体等。但它也有其他细胞所没有的特异性结构,如α颗粒和致密体,前者含有纤维蛋白原、VWF、PF4、血小板衍生生长因子、β-血小板球蛋白等;后者含有大量钙离子及ADP、ATP、5-羟色胺等生物活性物质。血小板第3因子(PF3)位于细胞膜中,是一种磷脂蛋白复合物,在血液凝固中起催化作用,血小板表面有许多受体,当受体和相应配体结合后,血小板即被激活,产生聚集及释放功能。 血小板的止血功能包括血小板粘附、聚集、释放及促凝活性等。 1.血小板粘附血小板粘附于内皮下暴露的胶原纤维上与血小板糖蛋白(GP)I有关,而VWF因子是它们中间的桥梁。 2.血小板聚集指血小板之间相互的粘附作用,血小板的聚集主要通过:①ADP途径;②前列腺素环过氧化物及TXA2途径;③PAF途径。血小板膜糖蛋白(GP)Ⅱb/Ⅲa对聚集起重要作用。GPⅡb/Ⅲa能形成钙离子复合物,在血小板膜上组成纤维蛋白受体。

生理学名词解释

绪论 1.【生理学】:是研究正常人体生命活动规律及其原理的科学 2.【反射】:在中枢神经系统的参与下,机体对内外环境变化所做出的有规律的具有适应 意义的反应 3.【神经调节】:有神经元直接参与的调节,是机体最主要的调节方式 4.【体液调节】:当机体环境发生改变时,引起某些内分泌腺或内分泌细胞的分泌活动, 释放激素并通过组织液或血液循环来调节机体的新陈代谢、生长、发育、生殖及某些器官的功能活动 5.【自身调节】:是指某些组织或器官不依赖神经、体液调节,而自身对环境的改变也可 作出一些适应性的反应 6.【正反馈】:受控部分发出的反馈信息,促进或加强控制部分的活动 7.【负反馈】:受控部分发出的反馈信息抑制或减弱了控制部分的活动 8.【反馈】:由受控部分将信息传回到控制部分的过程 9.【兴奋性】:机体、组织或细胞对刺激发生反应的能力 10.【刺激】:能被机体、组织、细胞所感受的生存环境条件的改变 11.【反应】:由刺激引起机体内部代谢过程及外部活动的改变 12.【内环境】:细胞外液 13.【稳态】:是一种相对的、动态的稳定状态 第一章 1、【流体镶嵌模型】:细胞膜以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质 2、【单纯扩散】:在生物体中,细胞外液和细胞内液中的脂质性溶质分子顺浓度差跨膜转运。 3、【易化扩散】:体内有些不溶于或难溶于脂质的小分子物质,不能直接跨膜运输,但在细胞膜中的某些特殊蛋白的协助下,也能顺浓度梯度跨膜转运。 4、【被动转运】:顺浓度差扩散,不需要消耗能量的转运方式 5、【主动转运】:细胞膜通过本身的某种耗能过程将某些物质分子或离子逆浓度差或逆电位差进行的转运过程。 6、【协同转运】:(继发性转运)在主动转运中,由于钠泵的作用形式的势能贮备也为某些非离子物质进行跨膜主动转运提供能量来源。 7、【胞吐】:物质由细胞排除的过程。 8、【胞纳】:细胞外的大分子物质或某些物质团块进入细胞的过程。 9、【膜电位】:生物细胞以膜为界,膜内外的电位差 10、【静息电位】:细胞安静时,存在于细胞膜内外两侧的电位差 11、【动作电位】:神经细胞、肌肉细胞在受到刺激发生兴奋时,细胞膜在原有静息电位的基础上发生一次迅速而短暂的电位波动,细胞兴奋时发生的这种短暂的电位波动称为动作电位。 12、【极化】:安静时细胞膜两侧存在的内负外正状态 13、【去极化】:静息电位数值向膜内负值减小方向变化 14、【复极化】:发生去极化或反极化后,膜电位又恢复到原来静息时极化状态的过程 15、【超极化】:静息电位数值向膜内负值增大方向变化 16、【超射】:即反极化,电位去极化后,膜两侧电位倒转,成膜外负电位,膜内正电位,称为超射 17、【可兴奋细胞】:接受刺激后能产生动作电位的细胞称为可兴奋细胞 18、【兴奋】:由安静转变为活动,或由活动弱转变为活动加强

医学基础知识之生理性止血过程

医学基础知识之生理性止血过程 生理性止血是指小血管损伤后,血液从血管内流出数分钟后出血自行停止的现象。用出血时间表示,反映生理止血功能的状态。其方法是用一个采血针刺破耳垂或指尖使血液流出,然后测定出血延续时间。生理性止血是由血管、血小板、血液凝固系统、抗凝系统及纤维蛋白溶解系统共同完成的。 生理性止血过程主要包括:血管收缩、血小板血栓形成和血液凝固三个过程。 一、血管收缩 小血管受损后,损伤性刺激立即引起局部血管收缩,若破损不大即可使小血管封闭。这是由损伤刺激引起的局部缩小血管反应。引起血管收缩的原因有以下三点:1.损伤性刺激反射性使血管收缩;2.血管壁的损伤引起局部血管肌源性收缩;3.黏附于损伤处的血小板释放5-HT、TXA2等缩血管物质,引起血管收缩。 二、血小板止血栓的形成 血管内膜下损伤暴露了内膜下组织可以激活血小板和血浆中的凝血系统,以及血管收缩使血流暂停或减慢,利于血小板粘附与聚集,形成一个松软的止血栓填塞伤口;血管壁损伤后,血管收缩,少量血小板附着于内皮下胶原上,同时受损红细胞释放ADP及局部凝血过程中生成的凝血酶,促使血小板活化而释放内源性ADP及TXA2,进而促进血小板不可逆的聚集在损伤处粘集成堆,最终形成血小板止血栓。 三、血液凝固

血凝系统被激活后,血浆中可溶的纤维蛋白原转变成不溶的纤维蛋白多聚体,形成了由纤维蛋白与血小板共同构成的牢固止血栓,有效地制止出血。同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活动,以防止血凝块不断增大和凝血过程蔓延到这一局部以外。 生理性止血虽然分为三个过程,但是这三个过程相继发生并相互重叠,彼此密切关系。只有在血管收缩使血流减慢时,血小板黏附于易于实现;血小板激活后释放5-HT、TXA2又可促进血管收缩。活化的血小板可为血液凝固过程中凝血因子的激活提供磷脂表面。血小板表面结合有多种凝血因子,血小板还可释放纤维蛋白原等凝血因子,从而大大加速凝血过程。而血液凝固过程中产生的凝血酶又可加强血小板的活化。此外,血凝块中血小板的收缩,可引起血凝块回缩,挤出其中的血清,而使凝块变得更为坚实,牢固封住血管的破口。因此,生理性止血的三个过程相互促进,使生理性止血能及时而快速地进行。 以上是对生理性止血的一个总结,希望对各位考生有帮助

止血机制

血管壁受损后所发生的血管壁、血小板和血浆凝血因子三者的相互作用称止血机制。血管受损破裂后的快速止血是机体重要的保护功能。止血功能异常可导致病理性出血或血栓形成。止血过程在血管受损后几秒钟内即启动,需历时几分钟甚至一小时才能完成(图1止血栓的形成)。 初期止血过程涉及受损血管的收缩、内皮下胶原组织的暴露以及血小板在受损血管表面的粘附、聚集和形成初期止血栓(图2止血栓过程:血小板、凝血因子在血管受损后的相互作用过程),历时3~7分钟。初期止血需血管性假血友病因子(F□:VWF)的参与。F□:VWF介导血小板粘附并促使血小板释出血管活性物质(如PF4),后者又加强血小板的聚集反应。临床应用出血时间来判断初期止血功能,它是反映血小板功能的敏感指标。 二期止血是指在形成初期止血栓的部位进一步形成纤维蛋白凝块的过程。活化的血小板表面在血小板活化时释出膜磷脂和钙,有效地集合参与在凝血酶原激活物中的凝血因子,从而催化凝血酶的形成。损伤局部产生的凝血酶催化纤维蛋白原转化为纤维蛋白,后者进一步加固血小板血栓并网罗红细胞使持久性血凝块增大;促使更多的血小板活化、释放出活性物质以及活化的血小板合成并释出血栓素(TxA□);促使凝血因子□(F□,纤维蛋白稳定因子)的活化,使纤维蛋白交联而形成稳定的纤维蛋白凝块。临床采用全血凝固时间来恒量二期止血过程,正常值为8~10分钟。 止血的第三阶段是血块收缩过程。由血小板聚合物,纤维蛋白丝,和陷入的红细胞所组成的疏松的网状物,通过此过程形成了牢固的凝血块。此期需要血小板内肌凝蛋白和血栓收缩蛋白的收缩,使血小板发生收缩而压缩凝血块。体外测定此期需要经历1小时。 止血过程一旦发生,即在局部迅速而局限的进行,不致扩展到全身;血液循环系统部分仍保持液态。这是因为正常机体除止血机制外还存在有一系列的抗凝血机制。即血浆中存在着有抑制凝血的因子和纤维蛋白溶解系统(使凝血块溶解)来参与维持止血机制的平衡。一种或一种以上的止血环节发生异常时可导致出血症状。生理性抗凝物质过多极少见,病理性抗凝物质过多或某些疾病情况下纤维蛋白溶解系统被过度激活也可产生止血障碍发生异常出血现象。 血管壁在止血过程中的作用①血管收缩,血管壁受损时,立即发生局部小动脉和细小动脉收缩,管腔变狭,使经过损伤部位的血流减慢。同时,由于血管内皮下弹性蛋白、胶原的暴露,血小板粘附在血管损伤的部位并被激活,发生血小板聚集反应,血小板聚集成团而形成血小板止血栓。②损伤的血管壁释放出组织因子、直接激活血液凝固系统,形成凝血块,使血小板组成的初期止血栓得以加固。③正常的内皮细胞能合成一种抗血栓和抗血小板聚集的因子前列环素(PGI□,见血小板疾病)及纤维蛋白溶解激活因子(纤溶酶原激活物,又称血浆素原激活物),具有抗凝性,使血栓形成减慢或阻止血栓形成。 血小板在止血过程中的作用血小板是唯一由骨髓巨核细胞所产生的凝血因子,直径1~3□m,在血液中寿命10天。血小板必须有足够的数量(10~40×10□/L,即100000~400000/mm□),而且必须功能正常,才能在止血过程中发挥作用。年轻的血小板体积较大,功能更活跃。若血小板数少于10×10□/L(血小板减少症),虽然其功能正常,但仍不能供应正常止血的需要,导致出血倾向。 血小板在止血过程中有以下功能:①支持内皮细胞的作用。血小板或血小板成分可以结合在血管内皮,使其脆性减低而起支持作用。②通过血小板在内皮下胶原上的粘附作用和继发血小板聚集而形成初期的白色血小板止血栓。③变形,血小板通过伪足形成并释放出血小板颗粒内容物质如血小板因子3、血小板因子4、二磷酸腺苷、血清素(5-羟色胺)、血栓收缩蛋白等,进一步参与血液凝固及血管收缩过程。④合成并释放血栓素A□(TxA□)参与止血机制的调节。 血浆凝血因子的作用凝血因子所参与的血液凝固过程可划分成三个阶段:①凝血酶原转变

生理性止血

综述《生理性止血》姓名: 专业: 年级: 班级: 学号:

【摘要】:众所周知,正常止血机制是维持机体血液循环稳态的重要机制之一。止血机制障碍就会引起出血,亢进则可导致血栓形成。因此研究出血与血栓性疾病的防治,首先应当了解正常止血机制的过程及其调控。 【关键词】:止血机制血管内皮细胞血小板黏附凝血酶血小板活化抗血栓形成 引言:生理性止血主要包括血管收缩、血小板血栓形成、血液凝固三个过程。而血液凝固就是指血液从流动的液体变成不能流动的凝胶状态的过程,其实质是血浆中可溶性的纤维蛋白原变成可溶性的纤维蛋白的过程,纤维蛋白交织成网,把血细胞和血液中的其它成分网罗在内,从而形成血凝块。血液凝固是一系列的酶促反应的过程,需要多种凝血因子的参与。 1、生理性止血过程的组成 正常情况下,小血管破损后引起的出血在几分钟内便自行停止,这种现象称为生理性止血。生理性止血过程主要包括血管挛缩,血小板血栓和纤维蛋白凝块的形成与维持三个时相。 首先是受损伤局部及附近的血管挛缩,若破损不大,可使血管破口封闭,收缩机制有两种;一为神经性,二是肌源性。 其次是血管内膜损伤,内膜下组织暴露,激活血小板,使血小板粘附、聚集于内膜组织,形成一个松软的止血栓填塞伤口实现初步止血。血小板与非血小板表面的粘着,称为血小板粘附。参与血小板粘附的主要成分包括血小板膜糖蛋白,内膜下组织和血浆成分。粘附的血小板相互之间进一步附着的过程称为血小板聚集。另外血管收缩使血流速度减小,局部的血小板和凝血因子浓度有所升高,易于发挥作用。生理性致聚剂主要有:ADP、肾上腺素、5-羟色胺、组胺、胶原、凝血酶、前列腺素类物质等;病理性致聚剂如细菌、病毒、免疫复合物,药物等。 血小板受到刺激聚集后,将贮存在致密体、α-颗粒或溶酶体内的活性物质排出的现象,称血小板释放。由于血小板有粘附、聚集和释放的特性,因此,血小板参与生理性止血的全过程。血小板的促凝活性主要包括以下几方面:(1)激活的血小板为凝血因子提供磷脂表面,能够参与内源性凝血途径无修改因子X和凝血酶原的激活。 (2)血小板质膜表面能够结合许多凝血因子。 (3)血小板激活后,释放颗粒的内容物,加固凝块,如ADP,5-HT等。 血液凝固或血凝是指血液由流动的液体状态转变成不能流动的胶冻状的过程。血液凝固后1~2小时,血凝块会发生回缩,并释出淡黄色的液体,称为血清。血清与血浆的区别,在于前者缺乏参与凝血过程被消耗掉的一些凝血因子和纤维蛋白,但增添了少量血液凝固时由血管内皮细胞和血小板释放出来的化学物质,血清不可以再凝。 血浆与组织中直接参与血液凝固的物质,统称为凝血因子。FⅣ是Ca2+,除Ca2+与磷脂外,其余的凝血因子均为蛋白质,FⅡ、FⅦ、FⅨ、FⅩ的合成必须有维生素K参与,故它们又称依赖维生素K的凝血因子。血中具有酶特性的凝血因子都以无活性的酶原形式存在,必须通过有限水解作用后,暴露或形成活性中心才能被激活,这一过程称为凝血因子的激活。在凝血中起酶促作用的因子有FⅡ、FⅦ、FⅨ、FⅩ、FⅪ、FⅫ以及F ;除Ca2+以外,起辅因子作用的是FⅤ、F Ⅶ、F 和高分子量激肽原;最后起底物作用的是纤维蛋白原(FⅠ)。在凝血中被消耗的因子是FⅡ、FⅤ、FⅦ和FⅧ,最不稳定的凝血因子是FⅤ和FⅧ。 凝血过程的瀑布学说认为凝血是一系列凝血因子相继酶解激活的过程,最终结果是凝血酶和纤维蛋白凝块的形成,而且每步酶解反应均有放大效应,是一种正反馈反应。这一过程包括内源性凝血和外源性凝血两条途径。这两条途径的主

生理学名词解释

第一章绪论 1.反射:在中枢神经系统参与下,机体对刺激产生的规律性应答称为反射。 2.内环境稳态:机体内的各种组织细胞直接生存或依赖的环境称为内环境,即细胞外液。细 胞外液中的理化因素包括渗透压.温度.酸碱度.气体分压.电解质及营养成分等都保持在一个 相对恒定的水平称为内环境稳态。 3.反馈(feedback):来自受控部分的信息返回作用于控制部分的过程。 4.正反馈(negative feedback):在自动控制系统中,受控部分发出的反馈信息加强控制部 分的活动,即反馈作用和原来的效应一致,起到加强或促进作用。 5.负反馈(positive feedback):在自动控制系统中,受控部分发出的反馈信息对控制部分 的活动产生抑制作用,使控制部分的活动减弱。 6.人体生理学:研究人体的功能活动及其活动规律的一门学科,属于实验科学的范畴。 7.远距分泌:体内一些内分泌细胞分泌的激素可循血液途径作用于全身各处的靶细胞,产生 一定的调节作用,这种方式称为远距分泌。 8.旁分泌:体内一些细胞产生的生物活性物质可不经血液运输,而是在组织液中扩散,作用 于邻旁细胞,这种方式称为旁分泌。 9.自分泌:体内有些细胞分泌的激素或化学物质分泌后再局部扩散,又反馈作用于产生该激素或化学物质的细胞本身,这种方式称为自分泌。 10.内环境:机体内的各种组织细胞直接生存或依赖的环境称为内环境,即细胞外液。 11.生物节律:是指生物机体内的某些功能活动按一定时间顺序,规律性的出现节律变化。 第二章细胞的基本功能 1.单纯扩散:物质从质膜的高浓度一侧通过脂质分子间隙向低浓度一侧进行的跨膜扩散。 2.易化扩散:脂溶性的的小分子物质或带电离子在膜蛋白介导下顺浓度梯度和(或)电位梯 度的跨膜转运。 3.主动转运:细胞代谢供能并在膜蛋白帮助下逆浓度梯度和(或)电位梯度的跨膜转运。 4.兴奋性:机体的组织或细胞接受刺激后发生反应的能力或特性。 5.前负荷:肌肉在收缩前所承受的负荷。 6.后负荷:肌肉在收缩过程中所遇到的负荷。 7.阈电位:当刺激引起细胞膜上的钠通道大量开放触发动作电位产生的临界膜电位。 8.静息电位:安静状态下细胞膜两侧存在的外正内负且相对平稳的电位差。 9.动作电位:细胞在静息电位基础上接受有效刺激后产生一个迅速可向远处传播的膜电位波动。 10.兴奋-收缩耦联:横纹肌细胞产生动作电位的电兴奋过程与肌丝滑行的机械收缩耦联联系 起来的中介机制活过程。 11.运动单位:一个α运动神经元及其支配的全部肌纤维所组成的功能单位,称为运动单位。 12.终板电位:神经-肌接头处兴奋传递过程中,接头前膜释放递质与后膜受体结合引起后膜 钠离子内流使终板膜发生去极化的电位变化。 13.阈值:是指刚刚能引起组织细胞发生反应的最小刺激强度。 局部电位:当细胞受到阈下刺激时,在受刺激的局部于距阈电位近,因而再接受刺激时容易产生兴奋,其兴奋性升高。 14.最适初长度:维持最适肌节长度的肌肉初长度,就是肌肉的最适初长度,应为2.0—2.2um。 15.初长度:前负荷使肌肉在收缩前就处于某种被拉长状态。 单收缩:骨骼肌受到一次刺激,先是产生一次动作电位,随后会出现一次机械收缩。 16.不完全强直收缩:每次新的收缩都出现在前次收缩的舒张期过程中,为锯齿形的收缩曲线。 17.完全强直收缩:刺激频率更高时,每次新的收缩都出现在前次收缩的收缩期过程为机械反

【实验报告】血液凝固及其影响因素

实验五:血液凝固及其影响因素 实验人: 同组人: 【实验目的】 1.学习血液凝固的基本过程 2.了解加速或延缓血液凝固的一些因素 【实验原理】 血液凝固是一个酶的有限水解激活过程,在此过程中有多种凝血因子参与。根据凝血过程起动时激活因子来源不同,可将血液凝固分为内源性激活途径和外源性激活途径。内源性激活途径是指参与血液凝固的所有凝血因子在血浆中,外源性激活途径是指受损的组织中的组织因子进入血管后,与血管内的凝血因子共同作用而启动的激活过程。 【实验材料和用具】 家兔 清洁小试管7个、小烧杯2个、竹签、秒表、试管架、哺乳动物手术器械一套、兔手术台、动脉夹、塑料动脉插管、线、棉花、水浴槽、冰盒 液状石蜡、肝素、草酸钾1~2mg、脑匀浆液0.1ml、生理盐水 【实验过程】 1、动物麻醉及颈部手术(此部由助教老师操作) 取一只动物,称重。按1g/kg体重的剂量将乌拉坦(氨基甲酸乙酯)由耳缘静脉缓慢注入,观察动物肌张力、呼吸与角膜反射的变化。动物麻醉后背位固定于兔手术台上。 剪去颈部手术野的毛,沿颈正中线在喉头上一指至锁骨上一指的地方作一5~7cm的皮肤切口。分离皮下组织及肌肉。 2、颈总动脉插管(此部由助教老师操作) 在气管两侧辨别并分离颈总动脉,颈总动脉下方穿两条线备用。在左侧颈总动脉的近心端夹一动脉夹,在动脉夹远心端距动脉夹约3cm处结扎。用小剪刀在结扎线的近侧(结扎线与动脉夹之间)沿向心方向剪一小斜口(约占管径的一半),向心脏方向插入动脉插管,由备用的线结扎固定。取血时将动脉夹松开即可。 3、血液凝固的加速和延缓观察 1.打开兔颈总动脉夹,血液从动脉插管流出,弃去第一份1mL动脉血后,向每个试管中注入1mL兔动 脉血,并摇匀。 2.自血液流出动脉插管开始计时。除第1管外,其他各管每隔15秒钟将试管倾斜一次,观察液面是否 倾斜即血液是否流动,直到试管内血液不再流动为止,记录凝血时间。 3.当第2管已经凝固时,再倾斜第1管看血液是否凝固,若尚未凝固则按上述方法每隔15秒钟倾斜一 次,直到血液凝固为止,记录凝血时间,即为该兔血的凝固时间。 4.以第2管为对照,各管观察其他各管中血液凝固时间。 5.向第9管中滴加2%氯化钙2滴,观察血液是否凝固。 6.取出第5管中的玻棒,用水洗净,观察附着在玻棒上的纤维蛋白。 注意事项:

生理

一 1. 何谓内环境?内环境为什么要保持相对稳定? 2.生理功能调节的方式有哪些?并比较其异同。 3.何谓反馈、正反馈、负反馈、前馈? 5.反应、反射和反馈有何区别? 6.生理学的研究方法有哪些?可从哪些水平研究? 二 1.细胞膜的物质转运方式有哪些?简述钠-钾泵的作用及意义。 2.简述静息电位的产生机制及影响静息电位大小的因素。 3.何谓动作电位?简述动作电位的产生原理及特点。 4.神经纤维动作电位的传导形式有哪些?其传导的特征是什么? 5.试述骨骼肌神经-肌接头的兴奋传递过程及其特点。 6.何谓兴奋-收缩偶联?其结构基础是什么?钙起何作用? 三 1. 血液在内环境稳态中的重要性体现在哪些方面? 2. 血沉的概念、正常值和影响因素有哪些?将正常人的红细胞放置于血沉快的病人血浆中,而将血沉快的病人红细胞放置于正常人血浆中,血沉会发生什么变化? 3. 血浆渗透压的概念、正常值、分类及作用有哪些?区别并举例说明临床常用的等渗溶液和等张溶液。 4. 红细胞生成的部位、原料、成熟因子和调节因子有哪些?用你所学的知识解释贫血的类型及原因。 5. 生理性止血的概念及机制?血小板在其中的重要性有哪些? 6. 血液凝固的基本过程及内、外源性血液凝固的主要异同点有哪些? 7. 生理情况下,机体内血管中为何不发生血液凝固、血流不畅或出血不止的现象,而将血液抽出放置于试管中则会很快凝固?8. ABO血型的分型原则和输血原则是什么? 9. 什么是交叉配血试验?在临床上给患者重复输血时,对于不同供血者,与受血者有相同血型要做交叉配血试验;即便是同一供血者的血液,也要做交叉配血试验,为什么? 10. 简述白细胞和血小板的功能、特性。 11.将红细胞置于0.9%NaCl和5%葡萄糖的混合液中,其形态与功能有无改变?为什么? 12.一次失误将500mL的蒸馏水输给了病人,会引起何后果?为什么? 13.肝功能严重受损时,为何易导致出血倾向 14.为什么月经血是不凝固的? 15.为什么用温热生理盐水浸泡纱布按压伤口可促进止血? 16.熟记下列正常值: 红细胞比容、血沉、红细胞数、白细胞数及分类、血小板数。 17.区别下列概念: 血浆和血清、血浆晶体渗透压与血浆胶体渗透压、等渗溶液与等张溶液、血清与血浆、红细胞叠连与红细胞凝集、凝集原与凝集素、内源性血液凝固与外源性血液凝固、止血时间与凝血时间、血量与血型 四 1.试述心室肌细胞动作电位和骨骼肌细胞动作电位的异同点。 2.试述窦房结P细胞跨膜电位的分期及其产生机制。 3.心肌细胞兴奋后,其兴奋性将发生哪些变化?有何生理意义? 4.试述左心室的射血和充盈过程(心泵功能)。

相关文档
相关文档 最新文档