文档库 最新最全的文档下载
当前位置:文档库 › 角动量守恒例题

角动量守恒例题

角动量守恒例题
角动量守恒例题

长为L 的均匀直棒,质量为M ,上端用光滑水平轴吊起静止下垂。今有一质量为m 的子弹,以水平速度v 0 射入杆的悬点下距离为a 处而不复出。

(1)子弹刚停在杆中时杆的角速度多大

(2)子弹冲入杆的过程中(经历时间为Δt ),杆上端受轴的水平和竖直分力各多大

(3)要想使杆上端不受水平力,则子弹应在何处击中杆

解:把子弹和杆看作一个系统。系统所受的力有重力和轴对杆的约束力。在子弹射入杆的极短时间内,重力和约束力均通过轴,因而它们对轴的力矩均为零,系统的角

动量守恒,于是有

ω)31

(2

20ma Ml a mv += 22033ma

ML a mv +=∴ω (2)解法1:对子弹与杆系统,根据动量定理,在水平方向有

0p p t F x -=?

ωωmd l M

mv Mv p mv p c +=+==2,00 t

v m t ma l M F x ?-?+=∴0)2(ω 此即为轴在水平方对杆上端的作用力,与v 0的方向相反。

在竖直方向上有

222

)(ωωmd l M g m M F y +=+- )(2

22g d m Mg l M F y +++=∴ωω 如略去m ,则 Mg l M F y +=22

ω (2)解法2:子弹冲入杆的过程中,子弹受杆的阻力的大小为:

t

mv ma t mv mv f ?-=?-=

00'ω

杆受子弹的水平冲力为 t

ma mv f f ?-=

-=ω0' 对杆用质心运动定律 t l

M Ma f F C x ?==+2ω )2(l

t r a t t ?==?=∴?=ωαωααω

t

v m t ma l M

Ma f F C x ?-?+=+-=∴0)2(ω 此即为轴在水平方对杆上端的作用力,与v 0的方向相反。 在竖直方向上有

222

)(ωωmd l M g m M F y +=+- )(2

22g d m Mg l M F y +++=∴ωω 如略去m ,则 Mg l M F y +=22

ω

(3)由0=∴x F 可得:

m

ML v a 20-=ω 将22033md ML a mv +=

ω代入得 m Ml md Ml ma a 23322-+=解得l a 3

2=

角动量守恒及其应用

角动量守恒及其应用 李泽林,过程装备与控制工程,10110902。 摘要:掌握角动量守恒定律,并通过习题深入分析其应用和注意事项。 关键词:刚体,角动量,转动惯量,惯性系。 在研究“质点或质点系绕某一定点或轴线运动”这类问题时,常常利用“角动量守恒定律”来处理此类问题。但是如何正确应用角动量定律解题尤为重要。本文通过对角动量守恒定律详细的推导,加深对定律的理解,以及通过习题来深入分析角动量守恒的正确应用。 1角动量守恒定律 1.1质点对参考点的角动量守恒定律 如图1所示,质点m 的动量为P ,相对于参考 点O 的角动量为L ,其值αsin p r L ?=,其中α是质 点的动量与质点相对参考点0的位置矢量r 的夹角。其角动量的变化量L ?等于外力的冲量矩t M ??(M 为外力对参考点O 的力矩),即dt M dL ?=。若M=0,得L ?=0,即质点对参考点O 的角动量守恒。 1.2质点系对参考点的角动量守恒定律 由n 个质点组成的质点系,且处于惯性系中,可以推导出作用于各质点诸力对参考点的外力矩的冲量t M i ??∑ ,仍等于质点系对该参考点的角动量的变化量,即 t M L i ??=?∑。同样当

∑i M时(即质点系的和外力矩为零),质点系对该参考点的角= 动量守恒。 1.3角动量守恒的判断 当外力对参考点的力矩为零, ∑i M时,质点或质点系对该参 即0= 考点的角动量守恒。有四种情况可 判断角动量守恒:①质点或质点系不受外力。②所有外力通过参考点。③每个外力的力矩不为零,但外力矩的矢量和为零。④内力对参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内各质点运动的影响远超过外力矩的影响,角动量近似守恒。 2角动量守恒定律的应用 2.1开普勒第二定律,即行星对太阳的矢径在相等的时间间隔内扫过相等大小的面积 如图,设行星的质量为m,它相对太阳的位矢为r,速度为v,走过的路程为s。行星受到太阳对它的万有引力,方向沿着它和太

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

角动量及其守恒-浏阳一中

M O S d r m F α 图1.2.1 第七讲 角动量及其守恒 1、力矩 表述 由点到力的作用点的矢径r 与力F 的矢量积称为力F 对点O 的力矩,即 F r M ?= 注释: ⑴ 力矩是描述物体间相互作用的物理量.力矩不仅与力的大小有关,而且与力的方向及作用点的相对位置有关,相同的力,若作用点不同,产生的力矩也不同,所以,提到力矩时,必须指明是相对哪个点而言的. ⑵力矩是矢量,其大小为Fd Fr M ==αsin ,式中,α为r 与力F 方向间(小于o 180 )的夹角,d 到点O 力矢量的延长线 的距离,称作力臂,显然,若力的作用线通过参考点,力臂为零,则力矩为零. ⑶力矩的方向由右手旋法则确定,即将右手的四个手指由矢量r 沿小于o 180 转至力F 的方向,此时伸出的指向,即是力矩的方向,如图 1.2.1所示,力矩M 垂直于r 和F 构成的平面。 2、冲量矩和角动量(动量矩) 冲量矩 力对某定点的力矩M 与力矩作用的微小时间间隔dt 的乘积,称为力矩M 在时间dt 内的冲量矩,而在21t t 到的一段时间内的冲量矩是? 2 1 t t Mdt . 角动量 质点对某点的位矢r 与质点在相应位置的动量m v 的矢量积,称作质点对该 定点的动量矩,即: p r L ?= 注释 ⑴ 冲量矩是矢量,反映的是力对绕定点转动的时间积累作用,是一个和过程有关的量. ⑵ 角动量是矢量,其大小为θ sin rmv l =,式中θ为r 和 m v 方向间(小于o 180 )的夹角,其方向垂直于由r 和m v 构成的 平面,由右手法则确定,如图所示。 ⑶ 角动量是描述质点绕定点的运动,是状态量.提到动量矩,应指出是相对哪个定点而言的. ⑷ 动量和角动量概念的对比.动量和角动量都是矢量,又都 是质点运动状态的函数,但二者又有区别:从定义看,前者只是速度的函数,而后者除了与运动速度有关以外,还与质点对给定点的矢径有关.以匀速圆周运动为例,运动过程中动量不守恒,而对圆心的角动量却是守恒的. O S r m v θz

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

刚体角动量及守恒定律工科

刚体的角动量及守恒定律 一、选择题 1、一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃。在该人把此二哑 铃水平收缩到胸前的过程中,对于人、哑铃与转动平台组成的系统来说,正确的 是: 。 A.机械能守恒,角动量守恒; B.机械能守恒,角动量不守恒; C.机械能不守恒,角动量守恒; D.机械能不守恒,角动量不守恒; 2、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 3、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今 有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力, 在碰撞中守恒的量是 。 (A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量. 4、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同 速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与 杆粘在一起转动,则这一系统碰撞后的转动角速度应为 。 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 。 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 6、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直 光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地 面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向 分别为 。 (A) ??? ??=R J mR v 2ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人. 把人和圆盘取作 O v 俯视图

物理动量守恒定律练习题20篇.docx

物理动量守恒定律练习题20 篇 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板恢复原长时,甲的速度大小为 2m/s ,此时乙尚未与 P.现将两滑块由静止释放,当弹簧 P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】 v 乙=6m/s.I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 左的方向为正方向,由动量守恒定律可得: 和,对两滑块及弹簧组成的系统,设向 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、 C,三球的质量分别为m A=1kg、 m B=2kg、 m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止, B、C 连线与杆垂直并且弹簧刚好处于原长状态, A 球以 v0=9m/s 的速度向左运动,与同 一杆上的 B 球发生完全非弹性碰撞(碰撞时间极短),求: (1) A 球与 B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中 B 球的最小速度. 【答案】( 1);(2);(3)零. 【解析】 试题分析:( 1) A、 B 发生完全非弹性碰撞,根据动量守恒定律有:

碰后 A、 B 的共同速度 损失的机械能 (2) A、 B、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,速,A、 B 的加速度沿杆向右,直到弹簧恢复原长,故A、 B 在前, C 在后.此后C 向左加A、 B 继续向左减速,若能减速到零 则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时 A、 B 的速度,C的速度 可知碰后A、B 已由向左的共同速度减小到零后反向加速到向右的,故 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】 A、 B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定 律和机械能守恒定律求出 A 球与 B 球碰撞中损耗的机械能.当B、C 速度相等时,弹簧伸 长量最大,弹性势能最大,结合B、 C 在水平方向上动量守恒、能量守恒求出最大的弹性 势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 B 3.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和m B=3.0kg .用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

论述角动量守恒定律及应用

论述角动量守恒定律及应用 李曜男,郝三强 (中国地质大学(武汉)工程学院武汉442000) 摘要:简要介绍角动量守恒定律以及其在生活,工程,科学方面的运用。 关键词:角动量守恒定律,应用。 引言:角动量守恒是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。在现实生活之中,也有许多方面运用到了角动量守恒定律。本文会较少角动量守恒定律在生活,工程,科学研究之中的应用。 正文:1.角动量:角动量也称为动量矩,它常用于描述转动运动。对于指点在有心力场中的运动,例如,天体的运动,原子中电子的运动等,角动量是非常重要的物理量。角动量反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律[1]之一,开普勒第二定律。一个不受 角动量原理图 外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。 2.角动量定理:(angular momentum)也称动量矩定理。 表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间

物理论文角动量守恒及其应用

物理论文角动量守恒及 其应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

物理小论文 ———角动量守恒及其应用 班级:自动化一班姓名:xxxx 学号:xxxxxxxxx 摘要:角动量及其规律是从牛顿定律基础上派生出来的又一重要结果.角动量定理对质点及质点系都成立。在一些体育运动及猫的下落问题、与气象有关的自然现象中都会用到角动量守恒。角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量守恒物理学应用 一、理论基础 二、相关定律公式:M=Jdw/dt=dL/dt L=Jw 若M=0 则L=Lo 对于绕定轴转动刚体的合外力矩M=d/dt(Jw) 上式表明,刚体绕定轴转动时,作用于刚体的合外力矩等于刚体绕此定轴的角动量随时间的变化率。当作用于在质点上的合力矩等于零时,由质点的角动量定理可以导出质点的角动量守恒定律。同样,当作用在绕定轴转动的刚体上的合外力矩等于零时看,由角动量定理可以导出角动量守恒定律。当合外力矩为零时,可得:Jw=恒量

这就是说,如果物体所受的合外力矩等于零,或者不受和外力矩的作用,物体的角动量保持不变,这个结论叫做角动量守恒定律。 三、角动量守恒的判断 当外力对参考点的力矩为零,即∑Mi=0时,质点或质点系对该参考点的角动量守恒。有四种情况可判断角动量守恒: ①质点或质点系不受外力。 ②所有外力通过参考点。 ③每个外力的力矩不为零,但外力矩的矢量和为零。甚至某一方向上的外力矩为零,则在这一方向上满足角动量守恒。 ④内力对参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内各质点运动的影响远超过外力矩的影响,角动量近似守恒。 四、联系实际 (1)人体作为一个一个质点系,在运动过程中也应遵循角动量定理。人体脱离地面和运动器械后。仅受重力作用,故人体相对质心角动量守恒。利用人体形状可变的性质,应用角动量守恒定律就可做出千姿百态的动作出来。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量的改变而变,但两者之乘积却保持不变。在花样滑冰中,运动员利用身体的伸缩改变自身的转动惯量,以改变绕自身竖直轴的角速度。 (3)猫在自由下落中的翻身与角动量守恒 让一只猫四脚朝天的下落,它总能在落地前翻身180度,变成四脚着地的安全姿势着陆。猫在自由下落过程中唯一受到的外力便是重力,而重力对猫的质心没有力矩,故

动量守恒定律的典型例题

动量守恒定律的典型例题 【例1】 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? [] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】 一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s 2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】 质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二

个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何? 【例5】 甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】 两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少? 【分析】 由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系

相关文档