文档库 最新最全的文档下载
当前位置:文档库 › 偏微分方程数值解复习题(2011硕士)

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解复习题(2011硕士)
偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士)

一、考题类型

本次试卷共六道题目,题型及其所占比例分别为:

填空题20%;计算题80%

二、按章节复习内容

第一章

知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等;

要求: 会辨认差分格式, 判断线性多步法的误差和阶;

第二章

知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等;

要求: 建立椭圆型方程边值问题的差分格式, 极值原理;

第四章

知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等;

要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差;

第五章

知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等;

要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差;

第七章

要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题

1、 已知显格式21131(

)22

n n n n u u h f f +++-=-

,试证明格式是相容的,并求它的阶。

P39+P41

2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数之间的关系 课件

3、用数值微分方法或数值积分方法建立椭圆型方程

2

2

22

(,),

(,),u u f x y x y x

y

??--

=?∈Ω?? :01,01

x y Ω≤≤≤≤ 内点差分格式。 P75+课件

4、构造椭圆型方程边值问题的差分格式. P101 (4)题

5、构建一维热传导方程2

20,(0)u u Lu a

a t x

??=

-=>??的数值差分格式(显隐格式等)。

参考P132-135相关知识点

6、设有逼近热传导方程2

2

(0)u u Lu a

f a const t

x

??≡

-==>??的带权双层格式

()()1

11111112

2(1)2k k

j

j

k k k k k k

j j j j j j u u a

u u u u u u h θθτ

++++-+-+-??=

-++--+??

其中[0,1]

θ

∈,试求其截断误差。并证明当2

1212h

a θτ=-时,截断误差的阶最

高阶为

2

4

()

O h τ+。 P135+P165+课件

7、传播因子法证明抛物型方程2

2(0)u u Lu a

f a const t x

??≡-==>??的最简显隐和六

点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题

0,0,0,0,(,0)(),0,(0,)(),0,

u

u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>????

?

=≤<∞??=≤≤?

试建立左右偏心差分格式。 P185+课件 9、设有逼近双曲型方程

0u u a

t

x

??+=??的双层加权格式

()()1

1111(1)0k k

j

j

k k k k

j j j j u u a

u u u u h

θθτ

+++---??+

-+--=??, [0,1]θ∈ 试求其截断误差, 并说明当112

2ar

θ=

-

时截断误差为最高阶22()O h τ+. P194

10、对于两点边值问题(),(,)(),()d

du p qu f x a b dx dx

u a u b αβ?-

+=∈???==?

用等距结点线性元推导有

限元方程. 参考P267+P271相关知识点+课件

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

偏微分方程数值解

偏微分方程数值解 偏微分方程地构建科学、工程学和其他领域的数学模型的主要手段。一般情况下,这些模型都需要用数值方法去求解。本书提供了标准数值技术的简明介绍。借助抛物线型、双曲线型和椭圆型方程的一些简单例子介绍了常用的有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式、对流扩散问题、多重网络、共轭梯度法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。本书全面讨论了这些方法的性质,并附有典型的图像结果,提供了不同难度的例子和练习。 本书可作为数学、工程学及计算机科学专业本科教材,也可供工程技术人员和应用工作者参考。 偏微分方程数值解---学习总结(2) 关于SobolveSobolve空间的几个重要定理 迹定理 : ΩΩ是 RdRd 的一个有界开子集,具有李普希茨连续边界?Ω?Ω, s>12s>12, 则 a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v ∣∣?Ω,?v∈Hs(Ω)∩C0(Ωˉˉˉˉ), b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω).(1)(2)(1)a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v|?Ω,?v∈

Hs(Ω)∩C0(Ωˉ),(2)b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω). 迹定理把区域内部与边界联系起来. 上面定理中边界?Ω?Ω当被它的一个子集ΣΣ代替时,结论依然成立. S=1时, γ0:H1(Ω)→H12(?Ω)?L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||?v||0).γ0:H1(Ω)→H12(?Ω)? L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||? v||0). 注意几个范数 ||?||k||?||0||?||1||??||0=||?||k,2=||?||L2=||?||1,2=(||?||20+||??||20)12=|?|1.(3)(4)(5)(6)(3)||?||k=||?||k,2(4)||? ||0=||?||L2(5)||?||1=||?||1,2=(||?||02+||??||02)12(6)||?? ||0=|?|1. 庞加莱不等式(Poincare inequality): 假设ΩΩ是 RdRd 的一个有界联通开子集,ΣΣ是边界?Ω?Ω的一个非空的李普希茨连续子集. 则存在一个常数 CΩ>0CΩ>0满足 ∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈H1Σ(Ω),其中H1Σ(Ω)={v ∈H1(Ω),γΣv=v∣∣Σ=0}.∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈HΣ1(Ω),其中HΣ1(Ω)={v∈H1(Ω),γΣv=v|Σ=0}.

偏微分方程数值解试题及答案

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分) 令?-+=-=b a dx fu qu dx du p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式

偏微分方程数值解实验报告

偏微分方程数值解实验报告

1、用有限元方法求下列边值问题的数值解:''()112x -y +y =2s i n ,0∈∈??∈(0,)?, 其中取1ν= 要求画出解曲面。迭代格式如下: 1221212111111111122142212n n n n n n j j j j j j n n n n n n j j j j j j V V V V V V h h V V V V V V h h τ++++++++++-+-??-()-()()-()??++?????? ??-+-+??=+??????

1、 %Ritz Galerkin方法求解方程 function u1=Ritz(x) %定义步长 h=1/100; x=0:h:1; n=1/h; a=zeros(n-1,1); b=zeros(n,1); c=zeros(n-1,1); d=zeros(n,1); %求解Ritz方法中内点系数矩阵 for i=1:1:n-1 b(i)=(1/h+h*pi*pi/12)*2; d(i)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2+h*pi*pi/2*sin(pi/2*x(i+1))/2; end %右侧导数条件边界点的计算 b(n)=(1/h+h*pi*pi/12); d(n)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2; for i=1:1:n-1 a(i)=-1/h+h*pi*pi/24; c(i)=-1/h+h*pi*pi/24; end %调用追赶法 u=yy(a,b,c,d) %得到数值解向量 u1=[0,u] %对分段区间做图 plot(x,u1) %得到解析解 y1=sin(pi/2*x); hold on plot(x,y1,'o') legend('数值解','解析解') function x=yy(a,b,c,d) n=length(b); q=zeros(n,1); p=zeros(n,1); q(1)=b(1); p(1)=d(1); for i=2:1:n

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程数值解试题06B答案

专业班级 姓名 学号 开课系室数学与计算科学学院 考试日期

偏微分方程数值解试卷 一(15分)、(1)简述用差分方法求解抛物型方程初边值问题的数值解的一般步骤.(2)写出近似一阶偏导数 n m x u |??的三种有限差分逼近及其误差阶,写出近似 n m x u |22 ??的差分逼近及其误差阶. 评分标准: (1) 7分,三个离散4分,其他步骤3分 (2) 8分,每个格式及误差2分。 二(15分)、(1)以抛物型方程的差分格式为例,解释差分格式的相容性,稳定性和收敛性概念,分析相容性,稳定性和收敛性与误差的关系,简述 Lax 等价性定理。(2) 简述差分格式稳定性分析的Fourier 级数法(或称为Neumann Von 方法,分离变量法)的一般步骤。 (1)8分,解释概念6分,等价关系2分 (2)7分,典型波2分,放大因子与条件3分,其他2分 三(20分)、对于边值问题 ?? ???=?=∈=??+???0 |) 1,0()1,0(),(,92 222G u G y x y u x u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截 断误差的阶。 (2)取3/1=h ,求边值问题的数值解(写出对应的方程组的矩阵形式并求解) (3)就取5/1=h 的情况写出对应方程组的系数矩阵(用分块矩阵表示)。 解:(1)7分,离过程与格式

第二页(共五页) 四(20分)、对于初边值问题??? ????≤≤==<<=≤<<

偏微分方程数值解课程设计

课程设计报告 课程:偏微分方程数值解学号: 姓名: 班级: 教师:

《偏微分方程数值解》 课程设计指导书 一.课程设计的目的 1.帮助掌握偏微分方程数值解相关知识。 2.理解偏微分方程数值解差分隐格式解决自由振动方程问题的方法。 3.锻炼编写程序代码的能力。 二.设计名称 差分法求自由振动问题的周期解。 三.设计要求 1.要求写出差分隐格式的理论方法。 2.要求编写matlab 程序,画出函数图形。 3.要求写出实验总结及心得体会。 四.设计题目 用差分法求自由振动问题的周期解: 2222000,,0|0,|sin (0,)(2,)t t u u x t t x u u x t u t u t π==???-=-∞<<∞>???? ??==??? =??? 要求用差分隐格式求解,其中14 θ= 。 五.设计细则 1.区域剖分: 构造上式的差分逼近,取空间步长h 和时间步长τ,用两族平行直线 ?? ?===±±=== ,2,1,0,, ,2,1,0,n n t t j jh x x n j τ 作矩形网格。 2.离散格式: 显格式: 于网点),(n j t x 用Taylor 展式,并整理方程得: ??? ?? ??--++=+-++==-+-++-121121102 10102100 )1(2)(),()()1()]()([2),(n j n j n j n j n j j j j j j j j u u r u u r u x x r x x r u x u τ?????

隐格式: 上述显格式并不是绝对稳定的差分格式,为了得到绝对稳定的差分格式,用第1-n 层、 n 层、1+n 层的中心差商的权平均去逼近xx u ,得到下列差分格式: ? ??? ?? ???+-++--++-=+-+-++==----+-++-+++-++-]22)21(2[2), ()()1()]()([2),(2111112112111112 211102 10102100h u u u h u u u h u u u a u u u x x r x x r u x u n j n j n j n j n j n j n j n j n j n j n j n j j j j j j j j θθθττ?????其中10≤≤θ是参数。当0=θ时就是显格式,而当4 1 =θ时可以证明该格式绝对稳定。 隐格式的矩阵形式是: ??? ???????? ???????????=??????????????????????????????????????????????? ?-+-+-+-+--+-+-+++122111121121 12222 222 2222221212121J J j n J n J n j n n z z z z z u u u u u r r r r r r r r r r r r θθθθ θθθθθ θ θθ 其中: 1 111111122]2()2)(21[(-----+-+-++-++--=n j n j n j n j n j n j n j n j j u u u u u u u u r z θθ 3.格式稳定性: 1)显格式: 显格式稳定的充分必要条件是:网格比1

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

偏微分方程数值解(试题)

偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0,], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-= ?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1) (0)(1)0 x xx u xe x u u ?-=∈? ==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 2 25, (0,1) (0)(1)0 xx u x x x u u πππ?-=∈? ==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 01(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=???? ? =∈?? =??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程数值解实验报告

精品文档 偏微分方程数值解 上 机 实 验 报 告 (一)实验一 一、上机题目: 用线性元求解下列边值问题的数值解:

精品文档 ′′22?? ?? ??,0

精品文档 (二)实验二 四、上机题目: 求解 Helmholtz 方程的边值问题: u k 2u 1 ,于(0,1)*(0,1) u0,于1{ x0,0y1} U{0x1, y 1} 1{ x0,0y1} U{0x1, y1} u 0,于2{0x1, y 0} U { x1,0y1} n 其中 k=1,5,10,15,20 五、实验程序:

偏微分方程数值解(试题)

1 / 7 偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0, ], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-=?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

2 / 7 为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程 0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1)(0)(1)0 x xx u xe x u u ?-=∈?==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 225, (0,1)(0)(1)0 xx u x x x u u πππ?-=∈?==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 1(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=?????=∈??=??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解试题参考答案

偏微分方程数值解 一(10分)、设矩阵A 对称正定,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n R x ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 因此0=λ是)(λ?的极小值点,0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的x , )(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的表示式3分, 每问3分,推理逻辑性1分 二(10分)、对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)()(),,(|{11 0==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(10 b a H v ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解例题答案

二、改进的Euler 方法 梯形方法的迭代公式(1.10)比Euler 方法精度高,但其计算较复杂,在应用公式(1.10)进行计算时,每迭代一次,都要重新计算函数),(y x f 的值,且还要判断何时可以终止或转下一步计算.为了控制计算量和简化计算法,通常只迭代一次就转入下一步计算.具体地说,我们先用Euler 公式求得一个初步的近似值1+n y ,称之为预测值,然后用公式(1.10)作一次迭代得1+n y ,即将1+n y 校正一次.这样建立的预测-校正方法称为改进的Euler 方法: 预测: ),,(1n n n n y x hf y y +=+ 校正 : )].,(),([2 111+++++=n n n n n n y x f y x f h y y (1.15) 这个计算公式也可以表示为 11(,), (,), 1(). 2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+?? ?=+??? 例1 取步长0.1h =,分别用Euler 方法及改进的Euler 方法求解初值问题 d (1),01, d (0) 1. y y xy x x y ?=-+≤≤???=? 解 这个初值问题的准确解为()1(21)x y x e x =--. 根据题设知 ).1(),(xy y y x f +-= (1) Euler 方法的计算式为 )],1([1.01n n n n n y x y y y +?-=+ 由1)0(0==y y , 得 ,9.0)]101(1[1.011=?+??-=y ,8019.0)]9.01.01(9.0[1.09.02=?+??-=y 这样继续计算下去,其结果列于表9.1. (2) 改进的Euler 方法的计算式为 110.1[(1)],0.1[(1)], 1(), 2p n n n n c n p n p n p c y y y x y y y y x y y y y ++?=-?+?=-?+??? ?=+??? 由1)0(0==y y ,得

偏微分方程数值解试题参考答案

x ∈R n 2 ( Ax, x) , J ( x + x) = ? (1) = ? (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点. (4 分) 2 二(10 分)、对于两点边值问题: ? dx dx a(u , v) = ?b ( p . + q u v)dx = ?b fvdx = f (v) , ? v ∈ H 1 (a , b ) dx dx a a 偏微分方程数值解 一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下 2 列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b 解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令 ?(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) + λ2 (3 分) 因此 λ = 0 是 ?(λ) 的极小值点 , ? ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0 别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分) 0 0 反 之 , 若 x ∈ R n 满 足 Ax = b , 则 对 于 任 意 的 x , 1 0 0 0 评分标准: ?(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分 ? d du ?Lu = - ( p ) + qu = f x ∈ (a, b ) ?? u (a) = 0, u (b ) = 0 其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = p x ∈[a,b ] min > 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ]) 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和 Galerkin 形式的变分方程。 解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取 v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到 (3 分) du dv 即变分问题的 Galerkin 形式. (3 分)

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

相关文档
相关文档 最新文档