文档库 最新最全的文档下载
当前位置:文档库 › 控制系统的根轨迹分析

控制系统的根轨迹分析

控制系统的根轨迹分析
控制系统的根轨迹分析

实验报告

课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________

实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__

一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理

六、实验结果与分析(必填)

七、讨论、心得

实验十一 控制系统的根轨迹分析

一、实验目的

1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。

2、熟练掌握 Simulink 仿真环境。

二、实验原理

1、根轨迹分析方法

所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特

征方程的根就是闭环传递函数的极点。

根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析:

(1) 稳定性

当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K

值就是临界稳定开环增益。 (2) 稳态性能

开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。

(3) 动态性能

当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。

同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。

2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。

专业:_____________________

姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

(2) rlocus:求系统根轨迹。例如rlocus(a,b,c,d)、rlocus(num,den)或rlocus(a,b,c,d,k)、rlocus(num,den,k),为根据开环系统的状态空间模型或传递函数模型,直接在屏幕上绘制出系统的根轨迹图,其中开环增益的值从零到无穷大变化或指定其变化范围。

(3) rlocfind:计算给定一组根的根轨迹增益。例如[k,p]=rlocfind(num,den),其要求在屏

幕上先已经绘制好有关的根轨迹图。然后,此命令将产生一个光标以用来选择希望的闭环极点。命令执行结果:k 为对应选择点处根轨迹开环增益;p 为此点处的系统闭环特征根。

三、实验内容

一开环系统的传递函数为

绘制出此闭环系统的根轨迹,并分析系统的稳定性。

四、实验要求

1、编制MA TLAB 程序,画出实验所要求的根轨迹,求出系统的临界开环增益,并用

闭环系统的冲激响应证明之。

2、在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统的单位阶

跃响应曲线并记录之。

五、实验记录

1、MATLAB 的文件编程和仿真

(1) 实验程序

num=[1,2];

den=[conv([1,4,3],[1,4,3])];

rlocus(num,den) % 使用传递函数模型表征开环系统

[k,p]=rlocfind(num,den) % 在根轨迹图中使用光标获得相应的极点p与增益k

z=[-2];

p=[-1,-1,-3,-3];

k=32*sqrt(3); % k=55.4256为临界开环增益

[num,den]=zp2tf(z,p,k); % 使用零极点模型表征开环系统, 并转换为传递函数

[num1,den1]=cloop(num,den); % 闭环传递函数

subplot(211);

step(num1,den1);

xlim([0,20]);

grid; % 单位阶跃响应

subplot(212);

impulse(num1,den1);

xlim([0,20]);

grid; % 单位冲激响应

(2) 运行结果selected_point =

-0.8341 + 1.3665i

k =

6.9178

p =

-4.2173

-2.1390

-0.8218 + 1.3624i -0.8218 - 1.3624i

(根轨迹曲线)

(响应曲线)

2、MATLAB 的Simulink 仿真

(1) 系统框图

分析使用的系统为传递函数(Transfer Function)模型,在输入框赋予指定的一维向量。

(2) 仿真结果

七、结果分析

1、理论分析

对于开环传递函数为的控制系统,其特征方程为

(1) 根轨迹的起讫点与条数

系统具有二阶开环极点p i= -1, -3,开环零点z i = -2,即P = 4,Z = 1。因此系统共有四条根轨迹分支,始于四个开环极点,其一终于开环零点,其余三条将沿渐近线趋向于s 平面的无穷远处。

(2) 实轴上的根轨迹

由判定规则易知,实轴上-2 至-3 和-3 至无穷小间的线段均为根轨迹(但其走向不同)。(3) 根轨迹的渐近线

渐近线与实轴的夹角与交点由下面二式确定

即渐近线过零点-2,且与实轴的夹角为60°。

(4) 分离点

由系统特征方程可得

因而分离点为-1,其出射角为90°。

(5)根轨迹与虚轴的交点

令特征方程中s=jw,可得

解之可得

由以上分析可绘制出完整的根轨迹图。对比仿真所得的根轨迹图线可知,各特征量与实

际数值完全吻合,从理论上证明了由编程绘制得根轨迹的正确性。

2、开环临界增益

由时域仿真曲线可以看出,当系统取临界开环增益时,其输出响应是一个等幅振荡,表

明此时系统是稳定的。因而验证了此临界开环增益值的正确性。

八、心得思考

1、本次试验中,我熟悉使用了matlab自带的Simulink 仿真工具,将理论知识和问题很直观的在计算机上演示了出来,十分方便。matlab语言及其工具箱为根轨迹的绘制(图形绘制)与求解(数值计算)提供了很大的方便,在实际运用中可大大提高工作效率。

2、根轨迹是图解给定特定参数时闭环特征根,从而分析系统性能的一种方法,特别是对于高阶复杂系统,可以有效避免求解高阶特征方程的困难。

3、本实验通过对一个具体实例的运用和分析,从定性到定量地求解了根轨迹的性质和

系统的性能,以及根轨迹分析法在系统稳定性判别方面的应用,从而加深了对相关知识点的理解和巩固。

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

根轨迹方法控制系统校正

根轨迹方法控制系统校正 1.根轨迹方法控制系统 调节时间:t s ≤5S (2%) 最大超调量:M p ≤10% 开环比例系数:K 0≥20 2. ζ=0.6 cos β=53°,取β=45° 4.4/ζWn ≤5s , 取ζW n =1 经计算,C (s )=1.079s/s+2 3.流程图

4.程序 clear; K=2; h=0.05; A=0; B=30; f=@(m,y)(K*m-2*y)/1; fc=@(s,m)(1*s-0.002*m)/1; n=floor(B/h); s(1)=0; m(1)=0; d(1)=0; y(1)=0; t=0:h:B; for i=1:n e(i)=1-s(i); k1=f(e(i),y(i)); k2=f(e(i),y(i)+h*k1/2); k3=f(e(i),y(i)+h*k2/2); k4=f(e(i),y(i)+h*k3); y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6; m(i+1)=(y(i+1)-y(i))/h+0.01*y(i+1); k1=fc(m(i),d(i)); k2=fc(m(i),d(i)+h*k1/2); k3=fc(m(i),d(i)+h*k2/2); k4=fc(m(i),d(i)+h*k3); d(i+1)=d(i)+h*(k1+2*k2+2*k3+k4)/6; s(i+1)=s(i)+h*(d(i+1)+d(i))*0.5; end plot(t,s,'-m') title(sprintf('2(s+0.01)/s(s+0.002)(s+2)')) set(legend,'Location','NorthWest') hold on 5.结果 调节时间4.6S 超调量7.6% K0=50

第4章根轨迹分析法知识题解答

第四章根轨迹分析法 4.1 学习要点 1根轨迹的概念; 2 根轨迹方程及幅值条件与相角条件的应用; 3根轨迹绘制法则与步骤; 4 应用根轨迹分析参数变化对系统性能的影响。 4.2 思考与习题祥解 题4.1 思考与总结下述问题。 (1)根轨迹的概念、根轨迹分析的意义与作用。 (2)在绘制根轨迹时,如何运用幅值条件与相角条件? (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 (4)总结增加开环零、极点对系统根轨迹的影响,归纳系统需要增加开环零、极点的情况。 答:(1)当系统某一参数发生变化时,闭环特征方程式的特征根在S复平面移动形成的轨线称为根轨迹。根轨迹反映系统闭环特征根随参数变化的走向与分布。 根轨迹法研究当系统的某一参数发生变化时,如何根据系统已知的开环传递函数的零极点,来确定系统的闭环特征根的移动轨迹。因此,对于高阶系统,不必求解微分方程,通过根轨迹便可以直观地分析系统参数对系统动态性能的影响。 应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。 (2)根轨迹上的点是闭环特征方程式的根。根轨迹方程可由闭环特征方程式得到,且为复数方程。可以分解为幅值条件与相角条件。运用相角条件可以确定S复平面上的点是否在根轨迹上;运用幅值条件可以确定根轨迹上的点对应的参数值。 (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外的根轨迹称为广义根轨迹,如系统的参数根轨迹、正反馈系统根轨迹和滞后系统根轨迹等。

线性系统的根轨迹法

第四章线性系统的根轨迹法 一、教学目的与要求: 本章讲述用闭环系统的特征根随系统参数变化的轨迹,来分析控制系统的特性,因此要求学生要掌握根轨迹作图方法的规则,并熟练运用这些规则绘制控制系统的根轨迹图。要让学生会利用根轨迹图分析系统的稳定性、动态特性、稳态特性。掌握怎样改善系统性能的方法。着重讨论根轨迹图的绘制,明确闭环传递函数极点与瞬态响应的关系,了解改变开环增益,增加开环传递函数零、极点对系统质量的影响。 二、授课主要内容: 1.根轨迹法的基本概念 1)闭环零、极点与开环零、极点之间的关系 2)根轨迹方程 2.根轨迹绘制的基本法则 3.广义根轨迹 1)参数根轨迹 2)零度根轨迹 4.系统性能的分析 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学)(1)重点掌握的内容 1)熟练运用常规根轨迹的绘制法则。 2)熟练运用零度根轨迹的绘制法则。 3)正确理解单输入-单输出系统闭环零、极点和开环零极点与常规根轨迹的关系。 (2)一般掌握的内容 1)根轨迹上估计控制系统的性能。 2)广义根轨迹的概念。 3)偶极子、可略零极点的概念,主导极点的概念。

(3)一般了解的内容:根轨迹法则的证明推导过程。 四、主要外语词汇 根轨迹 root-locus 特征方程 characteristic equation 分离点 breakaway point 闭环极点 closed-loop poles 幅角条件 angle condition 模值条件 magnitude condition 实轴 real axis 虚轴 imaginary axis 五、辅助教学情况(见课件) 六、复习思考题 1.什么是根轨迹? 它有什么主要性质?如何把握根轨迹作图? 2.利用图解法绘制根轨迹的8个规则是什么? 3.在根轨迹作图中,确定渐近线和分离点附近的根轨迹很关键,如何理解 有关它们的计算公式? 4.如何绘制零度根轨迹? 5.如何绘制参数根轨迹? 6.控制系统的质量指标在根平面上该怎样表示? 7.什么是闭环主导极点?为什么可以用主导极点来估算闭环系统的质量? 8.闭环极点为实根时响应曲线的形状如何?有共轭复根时响应曲线的形状 如何? 9.开环零、极点的变化对控制系统的质量有什么影响? 10.增加系统的开环零点(开环极点)对系统的性能有何影响? 七、参考教材(资料) 1.《现代控制工程》绪方胜彦著(卢伯英佟明安罗维铭译)科学出版社参考该书第四章有关内容。 2.《自动控制原理》天津大学李光泉主编机械工业出版社

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析 一. 实验目的: 1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。 2. 学习利用根轨迹分析系统的稳定性及动态特性。 二. 实验内容: 1. 应用MATLAB 语句画出控制系统的根轨迹。 2. 求出系统稳定时,增益K 的范围。 3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。 4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。(实验方法参考实验二) 5. 分析系统开环零点和极点对系统稳定性的影响。 三. 实验原理: 根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。假定某闭环系统的开环传递函数为 ) 164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。 b=[1 1]; %确定开环传递函数的分子系数向量 a1=[l 0]; %确定开环传递函数的分母第一项的系数 a2=[l -1]; %确定开环传递函数的分母第二项的系数 a3=[l 4 16]; %确定开环传递函数的分母第三项的系数 a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。 p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。 [k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应

自动控制基本知识-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验内容 1. 请绘制下面系统的根轨迹曲线。 )136)(22()(2 2++++= s s s s s K s G )10)(10012)(1() 12()(2+++++= s s s s s K s G ) 11.0012.0)(10714.0() 105.0()(2 ++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观 察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(2 2++++= s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:

num=[1]; den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425

r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i -0.0145 - 0.9873i 结论: 根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。由根轨迹图和运行结果知,当0

线性系统的根轨迹分析

实验二 线性系统的根轨迹分析 一、实验目的 1、掌握使用MATLAB 绘制控制系统根轨迹图的方法; 2、掌握根据根轨迹法对控制系统进行性能分析方法。 二、实验仪器设备 Pc 机一台,MATLAB 软件。 三、实验内容 1、已知一负反馈系统的开环传递函数为: ()()(0.11)(0.51) K G s H s s s s = ++求: (1)绘制根轨迹。 (2)选取根轨迹与徐州的交点,并确定系统稳定的根轨迹增益K 的范围。 (3)确定分离点的超调量p M 及开环增益K 。 (4)用时域响应曲线验证系统稳定的根轨迹增益K 的范围。 (5)分析根轨迹的一般规律。 2、已知系统的开环传递函数为: 22(431) ()(351) K s s G s s s s ++= ++ 求: (1)绘制系统的根轨迹。 (2)选择系统当阻尼比ξ=0.7时系统闭环极点的坐标值及增益K 值。 (3)分析系统性能。 四、实验结果 负反馈系统的开环传递函数为: ()()(0.11)(0.51)K G s H s s s s = ++ 1、根轨迹

2、理论计算: 根轨迹的基本性质和绘制规则如下: 规则一 系统根轨迹的各条分支是连续的,而且对称于实轴。 规则二 当K=0时,根轨迹的各条分支从开环极点出发;当K→∞,有m 条分支趋向于开环零点,另外有n-m 条分支趋向无穷远处。 可知,K=0时,3条根轨迹分别从开环极点(0, j0)、(-10,j0)和(-2,j0)出发,由于无开环零点,3条根轨迹趋向于无穷远处。 规则三 在s 平面实轴的线段上存在根轨迹的条件是,在这些线段右边的开环零点和开环极点的数目之和为奇数。 可知,根轨迹在实轴上存在的部分为[-∞,-10]和[-2,0]。 规则四 根轨迹中趋向于无穷远处的n-m 条分支的渐近线的相角为: (21)180a q n m φ+?=± - 0,1,2,,q n m =-- 可知,两条根轨迹无穷远时趋向的渐近线斜率相角为±60°。 规则五 伸向无穷远处的根轨迹的渐近线与实轴交于一点,交点的坐标为: 11 ( ,0)n m i j i j p z j n m ==--∑∑。 可知,渐近线与实轴交点为1020 ( ,0)(6,0)2 j j ---=-

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验内容和原理 1. 实验内容 一开环系统传递函数为 22)34() 2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征方程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 3. 实验要求 (1)编制MA TLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure >> pzmap(G)

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

《自动控制原理》实验报告(线性系统的根轨迹)

实验四 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 基础知识及MATLAB 函数 根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。这个参数一般选为开环系统的增益K 。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。 假设系统的对象模型可以表示为 n n n n m m m m a s b s a s b s b s b s b K s KG s G ++++++++==--+-11111210)()( 系统的闭环特征方程可以写成: 0)(10=+s KG 对每一个K 的取值,我们可以得到一组系统的闭环极点。如果我们改变K 的数值,则可以得到一系列这样的极点集合。若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。 1)绘制系统的根轨迹rlocus () MATLAB 中绘制根轨迹的函数调用格式为: rlocus(num,den) 开环增益k 的范围自动设定。 rlocus(num,den,k) 开环增益k 的范围人工设定。 rlocus(p,z) 依据开环零极点绘制根轨迹。 r=rlocus(num,den) 不作图,返回闭环根矩阵。 [r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增 益向量k 。 其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。K 为根轨迹增益,可设定增益范围。

实验三-控制系统的根轨迹研究分析

实验三-控制系统的根轨迹分析

————————————————————————————————作者:————————————————————————————————日期:

实验三 控制系统的根轨迹分析 一、实验目的 1.利用MATLAB 完成控制系统的根轨迹作图; 2.了解控制系统根轨迹图的一般规律; 3.利用根轨迹进行系统分析。 二、实验原理 与根轨迹相关的MATLAB 函数: 1.绘制根轨迹的函数为rlocus ,常用格式为: rlocus(sys) sys 为系统开环传递函数名称; rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹; r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ; [r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。 2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根 轨迹增益下闭环系统的稳定性。 [k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。 例1 ) 4)(1()(++=s s s k s G r k 在命令窗口输入: k=1; z=[]; p=[0,-1,-4]; [num,den]=zp2tf(z,p,k); rlocus(num,den); title(’G k 根轨迹’) [k,r]=rlocfind(num,den) 3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系 统的零极点图。 pzmap(num,den) 在s 平面上作零极点图; pzmap(num,den) 返回变量格式,不作图,计算零极点。 三、实验内容 给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. ) 2)(1()(1++=s s s k s G r k 要求:

实验三-控制系统的根轨迹分析

实验三 控制系统的根轨迹分析 一、实验目的 1.利用MATLAB 完成控制系统的根轨迹作图; 2.了解控制系统根轨迹图的一般规律; 3.利用根轨迹进行系统分析。 二、实验原理 与根轨迹相关的MATLAB 函数: 1.绘制根轨迹的函数为rlocus ,常用格式为: rlocus(sys) sys 为系统开环传递函数名称; rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹; r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ; [r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。 2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根轨迹增益下闭环系统的稳定性。 [k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。 例1 ) 4)(1()(++=s s s k s G r k 在命令窗口输入: k=1; z=[]; p=[0,-1,-4]; [num,den]=zp2tf(z,p,k); rlocus(num,den); title(’G k 根轨迹’) [k,r]=rlocfind(num,den) 3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系统的零极点图。 pzmap(num,den) 在s 平面上作零极点图; pzmap(num,den) 返回变量格式,不作图,计算零极点。 三、实验内容 给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. ) 2)(1()(1++=s s s k s G r k 要求:

控制系统的根轨迹分析实验报告

1 课程名称: 控制理论乙 指导老师: 成绩:__________________ 实验名称: 控制系统的根轨迹分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境。 二、实验内容和原理 (一)实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征方程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 (二)实验内容 一开环系统传递函数为 2 2)34()2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 (三)实验要求 1.编制MATLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 2.在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、操作方法与实验步骤 1、程序解决方案:

说明:在解出来的方程中k有五个值,这里只取符合题意的根,记为k1. 其输出的曲线如下 放大根轨迹图可知,临界稳定状态k=55,这 与计算出来的结果是一致的,因此当 0

控制系统的根轨迹法设计

大学 课程设计 学院专业 班 题目控制系统的根轨迹法设计 学生 指导老师 二○一〇年十二月 目录

一、任务书(1) 二、设计思想(2) 三、编制的程序(2) 四、设计结论(6) 五、设计总结(6) 六、参考文献(6) 《自动控制理论》

课程设计任务书 当系统的性能指标给定为时域指标(如超调量、阻尼系数、自然频率等)时,用根轨迹法对系统进行校正比较方便。这是因为系统的动态性能取决于它的闭环零、极点在S平

面上的分布。 因此,根轨迹法校正的特点就是:如何选择控制器的零、极点,去促使系统的根轨迹朝有利于提高系统性能的方向变化,从而满足设计要求。 二阶系统的性能指标和参数之间具有明确的解析式,而高阶系统没有这一特点,只能通过寻找对系统动态性能起决定作用的主导极点,从而近似成二阶系统,在留有余量的情况下,作为设计依据。因此,可以把讨论对系统性能指标的要求转化为对系统期望主导极点在S 平面上分布的要求。所以,根轨迹法校正就是迫使被校正系统的根轨迹通过期望主导极点而达到校正的目的。 根据题目要求,然后根据公式σ%=0.16+0.4(Mr-1)=20% 和公式Ko=2+1.5(1/sin γ-1)+2.5(1/sin γ-1)2 ,以及M r =1/sin γ,即可得到Ko.然后利用函数sisotool 即可得到矫正传递函数:。最后观察单位阶跃响应验证校正后系统是否满足要求。 三、编制的程序 (1)因为σ%=0.16+0.4(Mr-1)=20%,则有 Syms Mr sigma ; Mr=solve('0.16+0.4*(Mr-1)=0.2'); %利用超调量求Mr Mr=vpa(Mr,3) 语句执行结果:Mr=1.1. (2)又因Mr=1/sin γ 又Ko=2+1.5(1/sin γ-1)+2.5(1/sin γ-1)2 ,故将Mr 代替1/sin γ来求取Ko; Syms Ko Mr ; Mr=1.1; Ko=2+1.5*(Mr-1)+2.5*(Mr-1) ^2 %根据Mr=1/sin γ=1.1求取Ko 语句执行结果: Ko=2.175,可以取整数K 0=2 . 3)那么开环传递函数为 )2(2 )(0+= s s s G 程序如下 k=2 %原系统的增益; n1=1; %分子; d1=conv([1 0],[1 2]); %分母用conv 表示卷积; sys=tf(k*n1,d1) %原系统表达式; sisotool(sys); %得出原系统的阶跃响应曲线; 语句执行结果可得未校正系统的bode 图和单位阶跃响应如下

实验6线性系统的根轨迹分析

自动控制理论实验 实验六线性系统的根轨迹分析 班号: 学号: 姓名:

) 153()134(22++++=S S S S S K S G )( 实验六 线性系统的根轨迹分析 一、实验目的 1、掌握使用 MATLAB 绘制控制系统根轨迹图的方法; 2、掌握根据根轨迹法对控制系统进行性能分析方法。 二、 实验设备 Pc 机一台,MATLAB 软件。 三、实验内容 1、已知一负反馈系统的开环传递函数为 )15.0)(11.0()(++=S S S K S H S G )( 求:1)绘制根轨迹。 2)选取根轨迹与虚轴的交点,并确定系统稳定的根轨迹增益 K 的范 围 。 3)确定分离点的超调量Mp 及开环增益 K. 4)用时域相应曲线验证系统稳定的根轨迹增益 K 的范围 5)分析根轨迹的一般规律。 2、已知系统的开环传递函数为: 求:1)绘制系统的根轨迹, 2)选择系统当阻尼比 ξ =0.7 时系统闭环极点的坐标值及增益 K 值。 3)分析系统性能。 3、已知开环系统传递函数 ) 2)(1(++=S S S K S G )( 求:1)根轨迹及其闭环单位阶跃响应曲线; 2)比较增加一个开环极点S=-3后,观察根轨迹及其闭环单位阶跃响 应的变化。 4、已知开环系统传递函数 ) 1(+=S S K S G )( 求:1)根轨迹及其闭环单位阶跃响应曲线; 2)比较增加一个开环零点s=-2后,观察根轨迹及其闭环单位阶 跃响应的变化。 四、实验报告

1.1 根轨迹 图1 1.2 根轨迹虚轴交点 图2 由根轨迹图知,与虚轴交点 i=4.47,增益 K=12,故 0

控制系统的根轨迹实验报告

控制系统的根轨迹作图 实验报告 班级:****** 姓名:***** 学号:****** 指导老师:**** 学年:2012至2013第二学期

一、实验目的 1.用matlab完成控制系统的建立。 2.了解系统根轨迹作图的一般规律,能熟练完成控制系统的根轨迹绘图。 3.利用根轨迹图进行系统分析。 二、实验内容 1.系统模型建立 sys = tf(num,den) sys = zpk(z,p,k) sys = ss(a,b,c,d) sys = frd(response,frequencies) 该主题相关matlab帮助资料:Matlab help——contents——control system toolbox ——building models 2.根轨迹绘图 rlocus(num,den) rlocus(num,den,k) r=rlocus(num,den) [z,p,k]=zpkdata(sys,’v’) 该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——building models 3.根轨迹分析 Sisotool() 该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——root locus design 例1:传递函数为: 1.5 ------------------ s^2 + 14 s + 40.02 sys_tf = tf(1.5,[1 14 40.02]) 或num=1.5,den=[1 14 40.02],sys_tf(num,den); 例2:传递函数 1.5 -------------------- s^2 + 14 s + 40.02 matlab表示:s = tf('s'); sys_tf = 1.5/(s^2+14*s+40.02) 根轨迹如下图:

线性系统的根轨迹分析

自动控制原理课程实验报告实验题目:线性系统的根轨迹分析 1.实验目的 1.根据对象的开环传函,做出根轨迹图。 2.掌握用根轨迹法分析系统的稳定性。 3.通过实际实验,来验证根轨迹方法。 2.实验设备 PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。 3.1实验原理及内容 1 .实验对象的结构框图:如图2.1-1 所示。 2 .模拟电路构成:如图2.1-2 所示。

3 .绘制根轨迹 (1) 由开环传递函数分母多项式S(S+1)(0.5S+1) 中最高阶次n=3 ,故根轨迹分支数为3 。开环有三 个极点:p1=0 ,p2=-1 ,p3=-2 (2) 实轴上的根轨迹: ①起始于0 、-1 、-2 ,其中-2 终止于无穷远处。 ②起始于0 和-1 的两条根轨迹在实轴上相遇后分离,分离点为 显然S2不在根轨迹上,所以S1为系统的分离点,将S1=-0.422 代入特征方程 S(S+1)(0.5S+1)+K 中,得K=0.193 (3) 根轨迹与虚轴的交点 将S = j W 代入特征方程可得:

4 .根据根轨迹图分析系统的稳定性 根据图2.1-3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K (1) 当K=3 ;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡, 临界稳定。 (2) 当K > 3 ;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。 (3) 当0 < K < 3 ;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。 上述分析表明,根轨迹与系统性能之间有密切的联系。利用根轨迹不仅能够分析闭环系统的动态性能以及参数变化对系统动态性能的影响,而且还可以根据对系统暂态特性的要求确定可变参数和调整开环零、极点位臵以及改变它们的个数。这就是说,根轨迹法可用来解决线性系统的分析和综合问题。由于它是一种图解求根的方法,比较直观,避免了求解高阶系统特征根的麻烦,所以,根轨迹在工程实践中获得了广泛的应用。

根轨迹分析实验报告

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验内容和原理 1. 实验内容 一开环系统传递函数为 22)34() 2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理

根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k)从零变到无穷大时,死循环系统特征方程的根在s平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB中,绘制根轨迹有关的函数有:rlocus,rlocfind,pzmap等。 3.实验要求 (1)编制MATLAB程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab软件,simulink仿真环境四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G =

相关文档
相关文档 最新文档