文档库 最新最全的文档下载
当前位置:文档库 › 控制系统的根轨迹实验报告

控制系统的根轨迹实验报告

控制系统的根轨迹实验报告
控制系统的根轨迹实验报告

控制系统的根轨迹作图

实验报告

班级:******

姓名:*****

学号:******

指导老师:****

学年:2012至2013第二学期

一、实验目的

1.用matlab完成控制系统的建立。

2.了解系统根轨迹作图的一般规律,能熟练完成控制系统的根轨迹绘图。

3.利用根轨迹图进行系统分析。

二、实验内容

1.系统模型建立

sys = tf(num,den)

sys = zpk(z,p,k)

sys = ss(a,b,c,d)

sys = frd(response,frequencies)

该主题相关matlab帮助资料:Matlab help——contents——control system toolbox ——building models

2.根轨迹绘图

rlocus(num,den)

rlocus(num,den,k)

r=rlocus(num,den)

[z,p,k]=zpkdata(sys,’v’)

该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——building models

3.根轨迹分析

Sisotool()

该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——root locus design

例1:传递函数为:

1.5

------------------

s^2 + 14 s + 40.02

sys_tf = tf(1.5,[1 14 40.02]) 或num=1.5,den=[1 14 40.02],sys_tf(num,den); 例2:传递函数

1.5

--------------------

s^2 + 14 s + 40.02

matlab表示:s = tf('s');

sys_tf = 1.5/(s^2+14*s+40.02) 根轨迹如下图:

例3:零极点增益:

1.5

-------------------

(s+9.996) (s+4.004)

matlab表示:sys_zpk = zpk([],[-9.996 -4.004], 1.5) 根轨迹如图:

例4:系统开环传递函数

)2)(1()(++=

s s s k s Go g

根轨迹作图程序为:

k=1;z=[];p=[0,-1,-2];[den,num]=zp2tf(z,p,k); rlocus(num,den) 根轨迹如图:

例5:给定系统开环传递函数Go(s)的多项式模型,作系统的根轨迹图。其计算公式为

1

)()

()(-=?=

s den s num k s Go

式中,k 为根轨迹增益,num 为开环传递函数Go(s)的分子多项式系数向量,den

为分母多项式系数向量。

函数格式1:开环增益k 的范围自动设定。

函数格式2:开环增益k 的范围可以由用户设定。

函数格式3:返回变量格式。计算所得的闭环根r (矩阵)返回至matlab 命令窗口,不作图。

函数格式4:返回变量格式。计算所得的闭环根r (矩阵)和对应的开环增益k (向量)返回至matlab 命令窗口,不作图。 函数格式5:从系统中提取零极点模型的参数。

更详细的命令说明,可以键入“help rlocus ”等帮助命令查询。 例如,系统开环传递函数

)2)(1()(++=

s s s k s Go g

根轨迹作图程序为:

k=1;z=[];p=[0,-1,-2];[den,num]=zp2tf(z,p,k); rlocus(num,den)

根轨迹如图1所示:

图1 根轨迹图 pzmap(num,den)

[p,z]=pzmap(num,den)

例6:给定单输入-单输出系统(SISO )的传递函数

)()()(s den s num s G =

分子多项式系数向量num 和分母多项式系数向量den ,在s 平面作零极点图。 函数格式1:计算零极点并作图。

函数格式2:返回变量格式。计算所得的零极点向量p ,z 返回至matlab 命令窗口,不作图。 例7:传递函数

20144)

1(2)(23

+++-=s s s s s G

程序为:num=[2,-2],den=[1,4,14,20],pzmap(num,den) 零极点图如图2所示

图2 零极点图

[k,r]=rlocfind(num,den)

此函数的功能是在作好的根轨迹图上,确定闭环位置的增益k和闭环根r(向量)的值。该函数执行前,先执行命令rlocus(num,den),作出根轨迹图,然后再执行该命令,出现提示语句“select a point in the graphics window”,要求在根轨迹图上选定闭环根的位置。将鼠标移至根轨迹图选定位置,单击左键确定,图上出现“+”标记,在matlab平台上即得到了该点的增益k和闭环根r的返回变量值。

三、思考题

1)下面是一伺服电机的传递函数,如何在matlab中表示该模型?

40000000

----------------------------------

s (s+250) (s^2 + 40s + 9e004)

2)给定如下技术指标:前2%启动时间不超过0.05秒;最大超调量不超过5%。运用根轨迹法完成该系统的设计。

sys1=tf(4e7,[1 250 0])

sys2=tf(1,[1 40 9e4])

sys=series(sys1,sys2)

答:

1)传递函数在matlab中表示代码:

s=tf('s');sys=40000000/(s*(s+250)*(s^2+40*s+90000));

绘制根轨迹如下图:

输入代码:

num=40000000;den=[1,290,100000,22500000,0];G=tf(num,den);G_close=feedback( G,1);step(G_close)

得原系统阶跃响应:

通过在靠近虚轴的两个复数极点附近加入零点,抵消这两个极点作用,增加零点,就要相应增加极点找到一对零极点:零点:-70±270i,极点:-110±140i,增

益:23.3,如下设置:

有根轨迹图:

阶跃响应:

系统满足指标要求。

自动控制根轨迹实验报告

实验三 根轨迹分析 一、实验目的: 1.熟悉零、极点对根轨迹的影响 2.组合典型环节按照题目完成相应曲线 二、实验内容 鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。在直升机模式下,飞机的高度控制系统如图所示。要求: (1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的 超调量和调节时间(Δ=2%); (3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)= 5 .05.15 .02 ++s s Matlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0]; G1=tf(fenzi,fenmu) fenzi=[1]; fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1) sys2=feedback(280*sys1,1) step(sys2) sys3=feedback(G2,280*G1) step(sys3) G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)

自控实验报告实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、实验报告 1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。 3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。 4.写出实验的心得与体会。 三、实验内容 请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 一、 ) 136)(22()(2 2 ++++=s s s s s K s G 1、程序代码: G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G) G_c=feedback(G,1); step(G_c) 2、实验结果:

-8-6 -4 -2 24 6 8 Root Locus Real Axis I m a g i n a r y A x i s selected_point = -8.8815 + 9.4658i k = 1.8560e+04 r = -10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i 6.2089 - 8.2888i Time (seconds) A m p l i t u d e selected_point = -9.5640 - 7.6273i k = 1.3262e+04 r = -9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i 5.5400 - 7.6258i Time (seconds) A m p l i t u d e

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

根轨迹分析实验报告

. 课程名称:控制理论乙指导老师:成绩: 实验名称:控制系统的根轨迹分析实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用计算机辅助分析法分析控制系统的根轨迹 2.熟练掌握Simulink仿真环境 二、实验内容和原理 1.实验内容 一开环系统传递函数为 k(s?2)?s)G(22(s?4s?3)绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2.实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k)从零变到无穷大时,死循环系统特征方程的根在s平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设等。pzmap,rlocus,rlocfind计也具有指导意义。在MATLAB中,绘制根轨迹有关的函数有:3.实验要求 (1)编制MATLAB程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。三、主要仪器设备 仿真环境simulink计算机一台以及matlab软件,四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure

00实验三 基于MATLAB的根轨迹绘制与性能分析

实验四基于MATLAB的根轨迹绘制与性能分析 [实验目的] 1.掌握MATLAB下的根轨迹绘制方法; 2.学会利用根轨迹进行系统分析。 [实验指导] 1.根轨迹作图函数(命令):rlocus( ) 调用格式: ①rlocus(sys) 或rlocus(num,den) ②rlocus(sys,k) ①②画根轨迹图,①变化参量(一般是根轨迹增益)范围系统自动给出; ②变化参量(一般是根轨迹增益)范围在程序中给出; ③r=rlocus(sys) ④ [r,k]=rlocus(sys) ③④不画根轨迹图,③返回闭环根向量;④返回闭环根向量(r)和变化参量(k)。 2.根与根轨迹增益的求取 ⑴在根轨迹上点击,可得到该点的根值和对应的根轨迹增益值。 ⑵使用计算给定根的根轨迹增益的函数(命令):rlocfind( ) 调用格式: ①[k,poles]=rlocfind(sys) ②[k,poles]= rlocfind(sys,p) 使用方法:

①首先,当前根轨迹已绘出。运行该命令时,在根轨迹图中显示出十字光标,当用户选择其中一点时,其相应的增益由k 记录,与增益相关的所有极点记录poles 中;同时,在命令行窗口显示出来。 ②事先事先给出极点p ,运行该命令时,除了显示出该根对应的增益以外,还显示出该增益对应的其它根。 3.开环零点极点位置绘图函数(命令): pzmap( ) 调用格式: ① pzmap(sys) ② [p,z]=pzmap(sys) 函数功能: 给定系统数学模型,作出开环零点极点位置图。 ① 零点极点绘图命令。零点标记为“+”,极点标记为“o”。 ② 返回零点极点值,不作图。 4.根轨迹渐进线的绘制 当根轨迹渐进线与实轴的交点σa 已求出后,可得到方程11()n m a K s σ-=--, 这是根轨迹渐进线的轨迹方程。 将1()() n m a K G s s σ-= -作为一个开环传递函数,录入到MATLAB 中,再使用根 轨迹作图函数(命令)rlocus( ),生成的轨迹就是原根轨迹的渐进线。 5.举例 例1:开环传递函数1 ()(1)(2) K G s s s s =++绘制其闭环根轨迹。 程序: >> z=[];p=[0,-1,-2];k=1;sys=zpk(z,p,k);rlocus(sys) 运行结果:

MATLAB的根轨迹分析

基于MA TLAB 的根轨迹分析 一.实验目的: 1.学习利用MATLAB 的语言绘制控制系统根轨迹的方法。 2.学习利用根轨迹分析系统的稳定性及动态特性。 二.实验内容: 1.应用MATLAB 语句画出控制系统的根轨迹。 2.求出系统稳定时,增益k 的范围。 3.分析系统开环零点和极点对系统稳定性的影响。 三.实验步骤 1.给定某系统的开环传递函数G(s)H(s)=k/s(s*s+4s+16),用MATLAB 与语言绘出该系统的根轨迹。 程序如下: num=[1]; den=[1,4,16,0]; G=tf(num,den) G1=zpk(G) Z=tzero(G) P=pole(G) pzmap(num,den); title('pole-zero Map') rlocus(num,den) 根轨迹如图 -12-10-8-6-4 -2024-10-8 -6 -4 -2 024 6 8 10 Root Locus Real Axis I m a g i n a r y A x i s

结论:由上图可知增益k 的取值范围:0

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验容和原理 1. 实验容 一开环系统传递函数为 22) 34()2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 3. 实验要求 (1)编制MATLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure >> pzmap(G)

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析 一. 实验目的: 1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。 2. 学习利用根轨迹分析系统的稳定性及动态特性。 二. 实验内容: 1. 应用MATLAB 语句画出控制系统的根轨迹。 2. 求出系统稳定时,增益K 的范围。 3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。 4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。(实验方法参考实验二) 5. 分析系统开环零点和极点对系统稳定性的影响。 三. 实验原理: 根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。假定某闭环系统的开环传递函数为 ) 164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。 b=[1 1]; %确定开环传递函数的分子系数向量 a1=[l 0]; %确定开环传递函数的分母第一项的系数 a2=[l -1]; %确定开环传递函数的分母第二项的系数 a3=[l 4 16]; %确定开环传递函数的分母第三项的系数 a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。 p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。 [k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应

MATLAB的根轨迹分析法及重点习题

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少? 解:(1)由系统结构图可知系统闭环传递函数为: 100 ()100()1001()()1001*G s s s G s H s s a a s Φ=== +++ 在单位阶跃函数作用下系统输出为: 12100 ()()()(100)100k k C s R s s s s a s s a =Φ= =+++ 为求系统单位阶跃响应,对C(s)进行拉斯反变换: 10 21001001001001 lim ()lim 1001001 lim (100)()lim 11 ()(100)1 ()(1) s s s a s a at k sC s s a a k s a C s s a C s as a s a c t e a →→→-→--=== +=+==- =- +=- 根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为 1 a ,因此: 10010011()(1)0.950.051 ln 20 1001 =0.1ln 20=0.3s 10 s s at s at s s c t e a a e t a a t --= -=?=?== 因为题中,所以 (2)若要求t s =0.1秒,则有: 1 ln 20=0.1 100=0.3s t a a = ? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。 解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1 %= 100%30%1 σ?=; 根据课本中对典型二阶系统222 ()2n n n s s s ωζωωΦ=++暂态性能指标的推导计算可知: %p t e σ-= =结合本题已知阶跃响应曲线可知: 0.1(1)%30% (2) p t e σ-= === 由式(2)可知: 0.3ln 0.30.3832 cot =0.3832 =arccot 0.3832=69.0332=cos =0.3578 e ζ?ζ?ζ?-=?-=?= =即: 将ζ带入式(1)中可得: 0.1 p n t ω= = 回顾题意对于典型二阶系统其闭环传递函数为222 ()2n n n s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系: 2222 2 22 2 2211 ()()121211211131.8851 ===224.0753n n n n n n n n n G s s s s G s s G s s G G s s s s ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

2021年倒立摆实验报告(根轨迹)

*欧阳光明*创编 2021.03.07

I 摆杆惯量0.0034 kg*m*m g 重力加速度9.8 kg.m/s (2)直线一级倒立摆根轨迹校正控制原理 基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。 常见的校正器有超前校正、滞后校正以及超前滞后校正等。 2. 实验方法 (1)直线倒立摆建模、仿真与分析 利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MA TLAB Simulink中的工具进行仿真分析。 (3)直线一级倒立摆根轨迹校正控制 利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。 3. 实验装置 直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。 图1 一级倒立摆实验硬件结构图 对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。计算机从I/O设备中实时读取数据,确定控制策略(实际上是电

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

第4章-根轨迹分析法-参考答案

习题 4.1 已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A) A *(2)(1)K s s s -+ B *(1)(5)K s s s -+ C *2(31)K s s s -+ D *(1)(2) K s s s -- 4.2 若两个系统的根轨迹相同,则有相同的:(A) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 4.3 己知单位负反馈控制系统的开环传递函数为 * ()()(6)(3)K G s H s s s s = ++ (1) 绘制系统的根轨迹图(*0K <<∞); (2) 求系统临界稳定时的*K 值与系统的闭环极点。 解:系统有三个开环极点分别为10p =、23p =-、36p =-。 系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。 实轴上的根轨迹区段为(],6-∞-、[]3,0-。 根轨迹的渐近线与实轴交点和夹角分别为 ()()36 33a σ-+-==-,() (0) 321 (1)3 (2)3 a k k k k π ?ππ ?=?+?===???-=? 求分离点方程为 111036 d d d ++=++ 经整理得2660d d ++=,解方程得到1 4.732d =-、2 1.268d =-。显然分离点位于实轴上 []3,0-间,故取2 1.268d =-。 求根轨迹与虚轴交点,系统闭环特征方程为 32*()9180D s s s s K =+++= 令j s ω=,然后代入特征方程中,令实部与虚部方程为零,则有 [][]2* 3 Re (j )(j )190 Im (j )(j )1180 G H K G H ωωωωωωω?+=-+=??+=-+=?? 解之得 *00K ω=??=? 、*162 K ω?=±??=?? 显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为s =±,对应的根轨迹增益*162K =为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第 三个闭环极点可由根之和法则求得 1233036λλλλ--=++=+ 解之得39λ=-。即当*162K =时,闭环系统的3 个特征根分别为1λ= 、 2λ=-39λ=-。系统根轨迹如图4.1所示。

实验二 控制系统的根轨迹分析与频域分析

实验二 控制系统的根轨迹分析与频域分析 一、实验目的 1、掌握如何运用计算机的MA TLAB 软件进行根轨迹分析 1、 掌握如何用计算机MA TLAB 软件工具进行系统或环节的频率特性的测试。 二、实验类型 综合性 三、实验设备 计算机 四、实验原理 频率特性函数是静态下正弦输出信号与正弦输入信号的复数符号之比。从频率特性图象上可以很方便的得到关于系统稳定性和动态特性的一些信息。因此,它是研究控制系统的一个重要工具。 五、实验内容和要求 (一)内容 1、 已知开环传递函数为s s s s k s H 803616)(234+++=绘出闭环系统的根轨迹,并找出根轨迹与虚轴交点处的增益k 值。 2、 已知开环传递函数为)45)(23() 3()(22+++++= s s s s s k s H 绘出闭环系统的根轨迹。并分析系统 的稳定性。 3、 编程实现惯性环节005.0,11 )(=+=T Ts s G 的频率特性,编程实现幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图。 4、 编程实现振荡环节的频率特性。 8.0,4.0,2.0,002.0,121 )(22==++=ζζT Ts s T s G ,用MA TLAB 软件编程仿真出振荡环节的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和波德图,增益相位裕度的伯德图。并在同一极坐标图和伯德图中绘制不同ζ下的响应曲线。(要获得谐振峰值、谐振频率等关键点的值。) (二)要求 1、预习根轨迹的绘制的方法,编制相应实现的MA TLAB 程序。 2、在理论上画出实验中惯性环节、振荡环节相应的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图;并预先编制实现的MA TLAB 程序。 3、写出实验报告,对于内容(一)写出实现的MA TLAB 程序;给出给定系统)(s H 的根轨迹图,并分析系统的稳定性;进行实验总结;对于内容(二)给出出惯性环节、振荡环节的实现程序及各实验曲线;将实验结果同理论估计的结果相比较,若不同分析其原因;根据实验曲线能得到哪些结论(稳定性、增益方面的)。 六、注意事项 命令调用的格式不能随意改写 七、思考题 如何利用Bode 图来分析系统的增益裕度、相位裕度、及其稳定性?

根轨迹分析

|实验四 用MA TLAB 绘制根轨迹图 (The Root Locus Using MATLAB ) 一、绘制系统的根轨迹 在绘制根轨迹之前,先把系统的特征方程整理成标准根轨迹方程 r num (s)1+G (s)H (s)=1+K =0den(s) ? 其中: r K 为根轨迹增益; num(s)为系统开环传递函数的分子多项式; den(s)为系统开环传递函数的分母多项式。 绘制根轨迹的调用格式有以下三: rlocus(num,den) 开环增益k 的范围自动设定; rlocus(num,den,k) 开环增益k 的范围人工设定; [r ,k]=rlocus(num,den) 返回r 矩阵和k 向量,不作图。 例4.1 已知某系统的开环传递函数为 s s s s K s r 424)(2 3 +++? =G 试绘制该系统的根轨迹。 解: 在Matlab 命令窗口键入 num=[1 4];den=[1 2 4 0]; rlocus(num,den) 可得如图4-1的结果。

-5 -4 -3 -2 -1 1 -10 -8-6-4-20246 810Real Axis I m a g i n a r y A x i s Root Locus 图4-1 由于采用rlocus()函数绘制根轨迹时,不同的根轨迹分支之间只区分颜色而不区分线形,所以打印时是不容易分辨各个分支的,需要在运行Matlab 程序时注意观察曲线的颜色。 ■ 例4-2 若要求例4-1中的r K 在1到10之间变化,绘制相应的根轨迹。 解 在MATLAB 命令窗口键入 num=[1 4]; den=[1 2 4 0];k=[1:0.5:10]; rlocus(num,den,k) 可得如图4-2.的结果。

倒立摆实验报告根轨迹

专业实验报告

(2)直线一级倒立摆根轨迹校正控制原理 基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。 常见的校正器有超前校正、滞后校正以及超前滞后校正等。 2. 实验方法 (1)直线倒立摆建模、仿真与分析 利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MATLAB Simulink中的工具进行仿真分析。 (3)直线一级倒立摆根轨迹校正控制 利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。 3. 实验装置 直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。 图1 一级倒立摆实验硬件结构图 对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。

线性系统的根轨迹分析-自控实验报告

装 订 线 信息科学与工程学院本科生实验报告 实验名称 线性系统的根轨迹分 析 预定时间 实验时间 姓名学号 授课教师 实验台号19 专业班级

装订线 一、目的要求 1.根据对象的开环传函,做出根轨迹图。 2.掌握用根轨迹法分析系统的稳定性。 3.通过实际实验,来验证根轨迹方法。 二、原理简述 绘制根轨迹 (1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。开环有三个极点:p1=0,p2=-1,p3=-2。 (2)实轴上的根轨迹: ①起始于0、-1、-2,其中-2 终止于无穷远处。 ②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为 显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193 (3)根轨迹与虚轴的交点 将S = j W 代入特征方程可得:

订 线 根据以上计算,将这些数值标注在S 平面上,并连成光滑的粗实线,如下图所示。 图上的粗实线就称为该系统的根轨迹。其箭头表示随着K 值的增加,根轨迹的变化趋 势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。 根据根轨迹图分析系统的稳定性 根据图 2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K (1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振 荡,临界稳定。 (2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。 (3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。 三、仪器设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

自动控制原理实验报告(专业电子版)

自动控制原理实验报告 课程编号: ME3121023 专业 班级 姓名 学号 实验时间:

实验目的和要求: 通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。 一、实验仪器、设备(软、硬件)及仪器使用说明 自动控制实验系统一套 计算机(已安装虚拟测量软件---LABACT)一台 椎体连接线18根 实验一线性典型环节实验 (一)、实验目的: 1、了解相似性原理的基本概念。 2、掌握用运算放大器构成各种常用的典型环节的方法。 3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环 节的参数(K、T)。 4、学会时域法测量典型环节参数的方法。 (二)、实验内容: 1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和 比例积分微分环节。 2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。 3、在运算放大器上实现各环节的参数变化。 (三)、实验要求: 1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。 2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算 各典型环节的时域输出响应和相应参数(K、T)。 3、分别画出各典型环节的理论波形。 5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。 (四)、实验原理: 实验原理及实验设计: 1.比例环节:Ui-Uo的时域响应理论波形: 传递函数: 比例系数: 时域输出响应:

相关文档
相关文档 最新文档