文档库 最新最全的文档下载
当前位置:文档库 › 导数用于单调性和极值问题

导数用于单调性和极值问题

导数用于单调性和极值问题
导数用于单调性和极值问题

专题十四、导数用于单调性和极值问题 题型一 利用导数判断函数的单调性

1.证明:函数f (x )=sin x

x 在区间? ??

??π2,π上单调递减.

题型二 利用导数求函数的单调区间

2.求下列函数的单调区间.

(1)f (x )=x 3-x ;(2)y =e x -x +1.

3.求函数y =x 2-ln x 2的单调区间.

题型三 已知函数单调性求参数的取值范围

4.已知函数

f (x )=x 2+

a x

(x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a

的取值范围.

5.(1)已知函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值.

(2)设f (x )=ax 3+x 恰好有三个单调区间,求实数a 的取值范围.

题型四 用单调性与导数关系证不等式

6.当x >0时,证明不等式ln(x +1)>x -1

2x 2.

7.当0<x <π2时,求证:x -sin x <1

6

x 3.

题型五、函数的极值问题

8.下列函数存在极值的是( )

A .y =2x

B .y =1

x

C .y =3x -1

D .y =x 2

9.设函数f (x )=2

x

+ln x ,则( )

A .x =1

2为f (x )的极大值点

B .x =1

2为f (x )的极小值点

C .x =2为f (x )的极大值点

D .x =2为f (x )的极小值点

10.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 11.函数y =x ·e x 的最小值为________.

12.若函数f (x )=x

x 2+a (a >0)在[1,+∞]上的最大值为3

3

,则a 的值为________.

题型六、利用极值求参数范围

13.已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π

4

-x )是( )

A .偶函数且图象关于点(π,0)对称

B .偶函数且图象关于点(3π

2

,0)对称

C .奇函数且图象关于点(3π

2,0)对称

D .奇函数且图象关于点(π,0)对称

14.已知函数f (x )=x 3+ax 2+bx +c ,f (x )在x =0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性.

(1)求实数b 的值; (2)求实数a 的取值范围.

题型七、导数用于解决实际问题

15.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( )

A .6

B .8

C .10

D .12

16.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床________台,一年中库存费和生产准备费之和最小.

题型八、图像问题

17.二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )

A.第Ⅰ象限B.第Ⅱ象限

C.第Ⅲ象限D.第Ⅳ象限

18.设函数f(x)在定义域内可导,y=f(x)的图象如下图所示,则导函数y=f′(x)的图象可能是( )

巩固练习:

19.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>1

2,则满足2f (x )

的集合为( )

A .{x |-1

B .{x |x <1}

C .{x |x <-1或x >1}

D .{x |x >1}

20.函数f (x )=sin x +2xf ′(π3),f ′(x )为f (x )的导函数,令a =-1

2

,b =log 32,则下列关系正

确的是( )

A .f (a )>f (b )

B .f (a )

C .f (a )=f (b )

D .f (|a |)

21.若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )

A .[-2,2]

B .[0,2]

C .[-2,0]

D .(-∞,-2)∪(2,+∞)

22.已知函数f (x )=13ax 3+1

2ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.

23.已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数

m 的取值范围为________.

三、解答题

24.求证:x >0时,1+2x

25.设函数f (x )=a ln x +

x -1x +1

,其中a 为常数.

(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.

26.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求矩形的面积最大时的边长.

27.已知函数f (x )=x 4+a

x -ln x -3

2,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于

y =1

2

x .

(1)求a 的值;

(2)求函数f (x )的单调区间与极值.

28.设函数f (x )=e x -ax -2.

(1)求f (x )的单调区间;

(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.

专题十四、导数用于单调性和极值问题参考答案

1.证明 f ′(x )=

x cos x -sin x

x 2

,又x ∈? ??

??

π2,π,

则cos x <0,∴x cos x -sin x <0,

∴f ′(x )<0,∴f (x )在? ??

??

π2,π上是减函数.

2.解 (1)f ′(x )=3x 2-1=(

3x +1)(

3x -1),

令f ′(x )>0,则x ∈? ?????-∞,-33和? ??

???33,+∞,

令f ′(x )<0,则x ∈? ??

???-33,

33.

∴f (x )=x 3-x 的单调增区间为? ?????-∞,-33和? ??

???33,+∞,单调减区间为

? ??

???-33,33. (2)y ′=e x -1,令y ′>0,即e x -1>0,

则x ∈(0,+∞);令y ′<0,即e x -1<0,则x ∈(-∞,0), ∴y =e x -x +1的单调增区间(0,+∞),单调减区间为(-∞,0). 3.解 ∵函数y =f (x )=x 2-ln

x 2的定义域为(-∞,0)∪(0,+∞),又f ′(x )=2x -2

x

2x 2-1

x =

2x -1

x +1x

x (-∞,-1)

-1 (-1,0) (0,1) 1 (1,+∞)

f ′(x ) - 0 + - 0 + f (x )

1

1

22-1),(0,1)上单调递减. 4.解 f ′(x )=2x -a

x 2=2x 3-a

x

2

. 要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-a

x

2

≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,

∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .

∵x ∈[2,+∞),y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.

当a =16时,f ′(x )=2x 3-16x

2

≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].

5.解 (1)∵函数f (x )的导函数f ′(x )=3x 2+2bx +c ,由题设知-1

c <0的解集.

∴-1,2是方程3x 2+2bx +c =0的两个实根, ∴-1+2=-23b ,(-1)×2=c 3,

即b =-3

2

,c =-6.

(2)∵f ′(x )=3ax 2+1,且f (x )有三个单调区间, ∴方程f ′(x )=3ax 2+1=0有两个不等的实根, ∴Δ=02-4×1×3a >0,∴a <0.

∴a 的取值范围为(-∞,0).

6.审题指导 利用导数证明不等式,首先要构造函数f (x )=ln(x +1)-x +1

2x 2,证明f (x )在(0,

+∞)上单调增,由f (x )>f (0)=0证得.

[规范解答] 令f (x )=ln(x +1)-x +1

2x 2,(4分)

则f ′(x )=1

1+x -1+x =x 2

1+x .(6分)

当x ∈(0,+∞)时,f ′(x )>0, ∴f (x )在(0,+∞)上是增函数.(8分) 于是当x >0时,f (x )>f (0)=0,

∴当x >0时,不等式ln(x +1)>x -1

2

x 2成立.(12分)

7.证明 设g (x )=x -sin x -

1

6x 3,x ∈

? ????0,π2, g ′(x )=1-cos x -1

2x 2=2?

?????sin 2x 2-? ????x 22. ∵x ∈? ????

0,π2,∴0<sin x <x ,

∴sin 2x 2<? ????x 22,∴g ′(x )<0, ∴g (x )在? ??

??

0,π2上单调递减,

∴g (x )<g (0)=0,∴x -sin x <1

6x 3.

8.[答案] D

[解析] 画出图像即可知y =x 2存在极值f (0)=0. 9.[答案] D

[解析] 本节考查了利用导数工具来探索其极值点问题. f ′(x )=-2

x 2+1x =1x (1-2

x

)=0可得x =2.

当02时

f ′(x )>0,∴f (x )单调递增.所以x =2为极小值点.

对于含有对数形式的函数在求导时,不要忽视定义域.

10.[答案] B

[解析] 如y =x 3,y ′=3x 2,y ′|x =0=0,但x =0不是函数y =x 3的极值点. 11.[答案] -1

e

[解析] y ′=(x +1)e x =0,x =-1. 当x <-1时,y ′<0,当x >-1时y ′>0 ∴y min =f (-1)=-1

e

12.[答案]

3-1

[解析] f ′(x )=x 2+a -2x 2

x 2+a

2

a -x 2x 2+a

2

.当x >a 时f ′(x )<0,f (x )在(a ,+∞)上是递

减的,当-

a 0,f (x )在(-a ,a )上是递增的.当x =a 时,f (a )

=a

2a =3

3

,a =32

<1,不合题意.

∴f (x )max =f (1)=1

1+a =33,解得a =

3-1.

13.[答案] D

[解析] ∵f (x )的图象关于x =π

4对称,

∴f (0)=f (π

2

),∴-b =a ,

∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π

4

),

∴f (3π

4

-x )=

2a sin(3π4-x +π4

)=

2a sin(π-x )=

2a sin x .

显然f (3π

4-x )是奇函数且关于点(π,0)对称,故选D.

14.[解析] (1)由导数公式表和求导法则得,f ′(x )=3x 2+2ax +b ,

因为f (x )在x =0处取得极值,所以f ′(0)=0,即得b =0.

(2)令f ′(x )=0,即3x 2+2ax =0,解得x =0或x =-23a .依题意有-2

3a >0.

因为函数在单调区间[0,2]和[4,5]上具有相反的单调性, 所以应有2≤-2

3a ≤4,解得-6≤a ≤-3.

15.[答案] B

[解析] 设截去的小正方形的边长为x cm ,铁盒的容积为V cm 3,由题意,得V =x (48-2x )2(0

C 2N C 1

[解析] 设每批生产x 台,则一年生产N x

批.一年中库存费和生产准备费之和y =C 1x +

C 2N x

(0

y ′=C 1-

C 2N x 2

.由y ′=0及0

C 2N C 1

(台).根据问题的实际意义,y 的

最小值是存在的,且y ′=0有唯一解.故x =C 2N C 1

台是使费用最小的每批生产台数.

17.[答案] A

[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b

2a >0,4ac -b 24a =-b 2

4a >0,

故选A. 18.[答案] A

[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选

A.

19.[答案] B

[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>1

2,

∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,

∴当x <1时,g (x )<0,即2f (x )

[解析] ∵f ′(x )=cos x +2f ′( π

3),

∴f ′(π3)=cos π3+2f ′(π3),

即f ′(π3)=-12.

∴f (x )=sin x -x . 又f ′(x )=cos x -1≤0, 故f (x )在R 上递减. 又∵-1

2

∴f (-1

2)>f (log 32),

即f (a )>f (b ). 21.[答案] A

[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1

∵f (x )=0在[0,2]上有解,∴?

????

f 1<0,

f 2>0,

∴?????

m -2≤0,

2+m ≥0,

∴-2≤m ≤2. 22.[答案] (-65,-316

)

[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则

????? f -2>0,f 1<0,此时无解;若a <0,则?

????

f -2<0,

f 1>0, ∴-65

23.[答案] (-3,-2)

[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20

-3,m ′=-6x 20+6x 0,

∴当01时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3

=-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作

三条不同切线,∴m 的取值范围是(-3,-2).

24.[分析] 利用函数的单调性证明不等式是常用的方法之一,而函数的单调性,可利用其导函数的符号确定.

[解析] 设f (x )=1+2x -e 2x , 则f ′(x )=2-2e 2x =2(1-e 2x ).

当x >0时,e 2x >1,f ′(x )=2(1-e 2x )<0,

所以函数f (x )=1+2x -e 2x 在(0,+∞)上是减函数.

当x >0时,f (x )

即当x >0时,1+2x -e 2x <0,即1+2x

f ′(x )=a x

x +1-x -1

x +1

2

=a x

2

x +1

2

∵a =0,∴f ′(x )=2

x +12,根据导数的几何意义,所求切线的斜率k =f ′(1)=1

2,

而f (1)=0.

∴所求切线方程为y =1

2(x -1),

即x -2y -1=0. (2)f ′(x )=

a x +12+2x x x +1

2

=ax 2+2a +1x +a

x x +1

2

1°当a =0时,f ′(x )=

2

x +1

2

>0,

∴f (x )在(0,+∞)递增. 令g (x )=ax 2+2(a +1)x +a

Δ=4(a +1)2-4a 2=8a +4

2°当a >0时,Δ>0,此时g (x )=0的两根x 1=-a +1-

2a +1

a

,x 2=

-a +1+

2a +1

a

∵a >0,∴x 1<0,x 2<0.

∴g (x )>0,∵x ∈(0,+∞),∴f ′(x )>0 故f (x )在(0,+∞)递增.

3°当a <0时,Δ=8a +4≤0,即a ≤-1

2时,g (x )≤0,∴f ′(x )≤0.

故f (x )在(0,+∞)递减.

当Δ>0,即-1

2

x 1=

-a +1+

2a +1

a

>0, x 2=

-a +1-

2a +1

a

>0

∴令f ′(x )>0,x ∈(x 1,x 2),

f ′(x )<0,x ∈(0,x 1)∪(x 2,+∞)

∴f (x )在(x 1,x 2)递增,在(0,x 1)和(x 2,+∞)上递减. 综上所述:当a ≥0时,f (x )在(0,+∞)递增. 当-1

2

在(0,x 1)和(x 2,+∞)递减(其中x 1=

-a +1+

2a +1a ,x 2=

-a +1-

2a +1

a

).

当a ≤-1

2

时,f (x )在(0,+∞)递减.

26.[分析] 如图,设出AD 的长,进而求出|AB |表示出面积S ,然后利用导数求最值.

[解析] 设矩形边长为AD =2x ,则|AB |=y =4-x 2,则矩形面积S =2x (4-x 2)(0

令S ′=0,解得x 1=

23

,x 2=

-23

(舍去)

当0

2

3时,S ′>0;当2

3

2

3

时,S 取得最大值,此时,S 最大=3239,y =83

.

即矩形的边长分别为

4

33、8

3

时,矩形的面积最大. [点评] 本题的关键是利用抛物线方程,求出矩形的另一边长. 27.[解析] (1)函数f (x )的定义域为(0,+∞),

f ′(x )=14-a x 2-1x ,由导数的几何意义,且切线与y =1

2x 垂直.

得f ′(1)=14-a -1=-2,∴a =54.

(2)由(1)知f (x )=x 4+5

4x -ln x -3

2,

∴f ′(x )=14-54x 2-1x =x 2-4x -5

4x 2

.

令f ′(x )=0解得x =-1或5,-1不在定义域之内故舍去. ∴当x ∈(0,5),f ′(x )<0,∴f (x )在(0,5)递减. 当x ∈(5,+∞),f ′(x )>0,∴f (x )在(5,+∞)递增. ∴f (x )在x =5时取极小值f (5)=54+14-ln5-3

2=-ln5.

28.[分析] [解析] (1)f (x )的定义域为(-∞,+∞),

f ′(x )=e x -a .

若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,

所以f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(e x-1)+x+1. 故当x>0时,(x-k)f′(x)+x+1>0等价于

k

e x-1

+x(x>0).①

令g(x)=x+1

e x-1

+x,

则g′(x)=-x e x-1

e x-12

+1=

e x e x-x-2

e x-12

.

由(1)知,函数h(x)=e x-x-2在(0,+∞)单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g′(x)<0;

当x∈(α,+∞)时,g′(x)>0.

所以g(x)在(0,+∞)的最小值为g(α).

又由g′(α)=0,可得eα=α+2,

所以g(α)=α+1∈(2,3).

由于①式等价于k

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

函数单调性与导数教案

3.3.1函数的单调性与导数 【三维目标】 知识与技能:1.探索函数的单调性与导数的关系 2.会利用导数判断函数的单调性并求函数的单调区间 过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法 2.在探索过程中培养学生的观察、分析、概括的能力渗透数形 结合思想、转化思想。 情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。 【教学重点难点】 教学重点:探索并应用函数的单调性与导数的关系求单调区间。 教学难点:探索函数的单调性与导数的关系。 【教学方法】问题启发式 【教学过程】 一.复习回顾 复习 1:导数的几何意义 复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法) 问题提出:判断y=x 2 的单调性,如何进行?(分别用图像法,定义法完成) 那么如何判断();,0,sin )(π∈-=x x x x f 的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数 二.新知探究 探究任务一:函数单调性与其导数的关系: 问题1:如图(1)表示高台跳水运动员的高度h 随时间t 变化的函数105.69.4)(2 ++-=t t t h 的图像,图(2)表示高台跳水运动员的速度5.68.9)(')(+-==t t h t V h 的图像. 通过观察图像, 运动员从起跳到最高点,以及从最高点 到入水这两段时间的运动状态有什么区别?此时你能发 现)(')(t h t h 和这两个函数图像有什么联系吗? 启发: 函数)(t h 在(0,a)上位增函数, 函数)('t h 在(0,a)

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

【公开课教案】《函数的单调性与导数》教学设计

《函数的单调性与导数》教学设计 【课题】函数的单调性与导数 【教材】湘教版《高中数学》选修2-2 【课时】1课时 【教材分析】 函数的单调性与导数是湘教版选修2-2第四章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二课中已经学习了导数的概念,对导数有了一定的知识储备. 函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用. 【学生学情分析】 课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点. 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性. 【教学目标】 知识点:1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并求函数的单调区间. 能力点:1.通过本节的学习,掌握用导数研究单调性的方法. 2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想. 教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯. 自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到 一般的数学思想方法. 【教学重点】 利用导数研究函数的单调性,会求函数的单调区间. 【教学难点】 ⒈探究函数的单调性与导数的关系; ⒉如何用导数判断函数的单调性. 【教学方法】 启发式教学 【课时安排】 1 课时 【教学准备】 多媒体课件. 【教学设计说明】

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

《导数与函数的单调性》教学设计

《导数与函数的单调性》教学设计 【教学目标】 1. 知识与技能 (1)会用导数解决函数的单调性问题。 (2)能利用导数概念形成过程中的基本思想分析一些实际问题,并建立他们的导数模型。 2. 过程与方法通过利用导数研究函数单调性问题的过程,体会从特殊到一般的数形结合的研究方法。 3. 情感态度与价值观 (1)通过导数方法研究单调性的问题,体会不同数学知识间的内在联系,认识数学是一个有机整体。 (2)通过导数研究单调性的基本不骤的形成和使用,是的学生认识到导数使一些复杂问题变的有矩可循,因而认识到导数的实用价值。 【教学重难点】 重点:利用导数的方法判定函数的单调性。 难点:导数与函数单调性的关系。 【教学设计思路】通过观察发现,启发引导,探究导函数与函数单调性之间的联系,得出结论。 【教学方法】观察发现,启发引导。 【教学手段】运用多媒体和板书。 【教学过程】 1. 问题激发,新课导入教师:我们知道,对于函数y=f(x) 来说,导数y=f’(x) 刻画的是y 在x点的瞬时变化率,函数的单调性描述的是y 随x的增加而减少,两者都是刻画函数的变化,那么,导数与函数单调性之间有什么关系呢? 2. 实践感知,新知形成教师:用多媒体展示几个函数的解析式,让学生求出以上6个函数的导函数。 (1)y=f(x)=2x+5 (2)y=f(x)=-3x+4 (3)y=f(x)=2x (4)y=f(x)=(12)x (5)y=f(x)=log3x (6)y=f(x)=log12x 学生: (1)f’(x)=2 (2)f’(x)=-3 (3)f’(x)=2xln2 (4)f’(x)=(12)xln12 (5)f’(x)=1xln3 (6)f’(x)=1xln12 教师:用多媒体展示这6个函数的图像,以及导函数的图像,并让学生观察各个点导函数的值与函数单调性有什么关系?同学间可以相互交流,(因制作了flash动画,只要教师拖动切点在曲线上运动,就能看到每一点切线斜率的值) 学生:函数(1)(3)(5)上各点的斜率都是正的,函数(2)(4)(6)上各点切线的斜率都是负的。 教师:我们知道各点切线的斜率就是各点的导数值。 学生: 函数(1)(3)(5)的导数是正的,函数(1)(3)(5)就是递增的,函数(2)(4)(6)的导数都是负的,函数(2)(4)(6)就是递减的。

导数的单调性及极值

导数的单调性及极值 1.已知函数()cos x f x xe =(e 为自然对数的底数),当[],x ππ∈-时, ()y f x =的图象大致是() A. B. C. D. 2.函数x y xe -=,[0,4]x ∈的最小值为( ) A .0 B .1e C.44e D .22 e 3.已知函数()y f x =的图象是下列四个图象之一,且其导函数'()y f x =的图象如图所示, 则该函数的图象是( ) A . B . C. D . 4.函数32()f x x bx cx d =+++图象如图,则函数222log ()33 c y x bx =++的单调递减区间为( ) A.(,2]-∞- B.[3,)+∞ C.[2,3]-- D.1[,2+∞) 5.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( ) A .1个 B .2个 C. 3个 D .4个 6.对于R 上可导的任意函数()f x ,若满足10'() x f x -≤,则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥

7.已知R 上的可导函数()f x 的图象如图所示,则不等式() ()2230x x f x '-->的解集为 A .() (),21,-∞-+∞ B .()(),21,2-∞- C .()()(),11,13,-∞--+∞ D .()()(),11,02,-∞--+∞ 8.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 A .21<<-a B .63<<-a C .3-a D .1-a 9.若函数12 3)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),3 10[+∞ D.),2[+∞ 10.已知函数()321f x x ax x =-+--在(),-∞+∞上是单调函数,则实数a 的取值范围是() A .(),3,?-∞+∞? B . (() ,3,-∞+∞ C .?? D .( 11.设3 21()252 f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 A.7m > B.15727m > C.157727m << D.7m < 12.已知函数()33f x x x =-,若对于区间[]3,2-上任意的12,x x 都有()()12f x f x t -≤,则实数t 的最 小值是( ) A .0 B .10 C .18 D .20 13.已知()f x 是定义在()0+∞, 上的可导函数,其导函数为()'f x ,且当0x >时,恒有()()'l n 0f x x x f x +<,则使得()0f x >成立的x 的取值范围是( ) A .()01, B .()1+∞, C .()()011+∞,, D .? 14.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,当0>x 时,有0)()(2>-'x x f x f x 成立,则不等 式0)(>?x f x 的解集是( ) (A )),1()1,(+∞?--∞ (B ))1,0()0,1(?- (C )),1(+∞ (D )),1()0,1(+∞?- 15.已知函数

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

1.3.1函数的单调性与导数教案

§1.3.1函数的单调性与导数 【教学目标】 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 【教学重点】利用导数判断函数单调性。 【教学难点】利用导数判断函数单调性。 【内容分析】 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。 【教学过程】 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=. 2.法则1 )()()]()([' ' ' x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数求导的基本步骤是:分解——求导——相乘——回代. 5.对数函数的导数: x x )'(ln = e x x a a log 1 )'(log =. 6.指数函数的导数:x x e e =)'(; a a a x x ln )'(=. 二、讲解新课 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 342+-=x x y 的图像 可以看到: 在区间(2,∞+)内,切线的斜率为正,函数y=f(x) 的 y =f (x )=x 2-4x +3 切线的斜率 f ′(x ) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 3 2 1 f x () = x 2-4?x ()+3 x O y B A

1.3.1函数的单调性与导数教案

1.3.1函数的单调性与导数教案 谷城一中杨超 教学目标 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:探索函数的单调性与导数的关系,求单调区间. 教学难点:利用导数判断函数的单调性 教学过程 一.回顾与思考 1、函数单调性的定义是什么? 2、判断函数的单调性有哪些方法?比如判断y=x2的单调性,如何进行?(分别用定义法、图像法完成) 3、函数x =怎么判断单调性呢?还有其他方法吗? 22+ x y ln 二.新知探究函数的单调性与导数之间的关系 【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个Array基本的了解.函数的单调性与函数的导数一样都是反 映函数变化情况的,那么函数的单调性与函数的导数 是否有着某种内在的联系呢? 【思考】如图(1),它表示跳水运动中高度h随 时间t变化的函数2 =-++的图像,图 h t t t () 4.9 6.510 (2)表示高台跳水运动员的速度v随时间t变化的函 数' ==-+的图像.运动员从起跳到最 v t h t t ()()9.8 6.5 高点,以及从最高点到入水这两段时间的运动状态有什么区别? 【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小? 【探究】通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即() h t是增函数.相应地,' =>. v t h t ()()0 Array(2)从最高点到入水,运动员离水面的 高h随时间t的增加而减少,即() h t是减函 数.相应地' v t h t ()()0 =<, 【思考】导数的几何意义是函数在该点 处的切线的斜率,函数图象上每个点处的切 线的斜率都是变化的,那么函数的单调性与

函数的单调性与导数教案

函数的单调性与导数教案 一、目标 知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。 过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 二、重点难点 教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间 教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间 三、教学过程: 函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便. 四、学情分析 我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。 五、教学方法

发现式、启发式 新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备: 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排: 1课时 八、教学过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 提问 1.判断函数的单调性有哪些方法? (引导学生回答“定义法”,“图象法”。) 2.比如,要判断y=x2的单调性,如 何进行?(引导学生回顾分别用定义法、图象法完成。) 3.还有没有其它方法?如果遇到函数: y=x3-3x判断单调性呢?(让学生短时 间内尝试完成,结果发现:用“定义法”,

导数用于单调性和极值问题

专题十四、导数用于单调性和极值问题 题型一 利用导数判断函数的单调性 1.证明:函数f (x )=sin x x 在区间? ?? ??π2,π上单调递减. 题型二 利用导数求函数的单调区间 2.求下列函数的单调区间. (1)f (x )=x 3-x ;(2)y =e x -x +1. 3.求函数y =x 2-ln x 2的单调区间. 题型三 已知函数单调性求参数的取值范围 4.已知函数 f (x )=x 2+ a x (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围. 5.(1)已知函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值. (2)设f (x )=ax 3+x 恰好有三个单调区间,求实数a 的取值范围. 题型四 用单调性与导数关系证不等式 6.当x >0时,证明不等式ln(x +1)>x -1 2x 2. 7.当0<x <π2时,求证:x -sin x <1 6 x 3. 题型五、函数的极值问题

8.下列函数存在极值的是( ) A .y =2x B .y =1 x C .y =3x -1 D .y =x 2 9.设函数f (x )=2 x +ln x ,则( ) A .x =1 2为f (x )的极大值点 B .x =1 2为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 10.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 11.函数y =x ·e x 的最小值为________. 12.若函数f (x )=x x 2+a (a >0)在[1,+∞]上的最大值为3 3 ,则a 的值为________. 题型六、利用极值求参数范围 13.已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π 4 -x )是( ) A .偶函数且图象关于点(π,0)对称 B .偶函数且图象关于点(3π 2 ,0)对称

《函数的单调性与导数》-教学设计

《函数的单调性与导数》-教学设计

《函数的单调性与导数》教学设计 一、设计理念 基于新课标提出的教学要面向全体学生、提倡探究性学习,我倡导“主动参与,乐于探究,交流合作与联系实际”的教学理念,借助多媒体的简洁性、直观性和交互性,注重与现实生活的紧密性,充分调动每位学生的学习热情,建立以“学为主体、教为主导、疑为主轴、动为主线”的教学模式。 二、教学分析 (一)教学内容分析 《函数的单调性与导数》是人教版《普通高中课程标准实验教科书数学》选修2-2第一章《导数及其应用》的内容.本节课主要学习函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间.本节的教学内容属于导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础. (二)教学对象分析 学生在高一时已经掌握了函数单调性的定义,并会用定义、图像的方法解决函数单调性问题。高二的学生对高中的数学体系已经有了一定的认识,具有了较强的分析问题、解决问题的能力. (三)教学环境分析 针对学生面临的问题和本课的重难点,我决定运用文字、视频、几何画板等多媒体资源进行辅助教学,多媒体教学具有信息量大、直

观性强的特点,能提高教学效率,取得更好的教学效果,因此在多媒体教室授课. 三、教学目标 根据新课标要求和对教材的分析,并结合学生的认知特点,确定如下几个方面为本课的教学目标: (一)知识与技能 1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并会求函数的单调区间; 3.探索三次函数的单调性与系数之间的关系. (二)过程与方法 1.通过对函数单调性与导数关系的探究,让学生经历从具体到抽象,从感性到理性,从特殊到一般的认知过程; 2.培养学生观察、分析、归纳、抽象的能力和语言的表达能力,领会由特殊到一般,一般到特殊的数学方法,渗透数形结合思想和化归的思想. (三)情感态度价值观 1.通过创设情境,激发学生学习数学的情感,培养其严谨治学的态度; 2.通过在教学过程中让学生多动手、细观察、勤思考、善总结,培养学生的探究精神. 四、教学重难点 对于函数的单调性与导数的关系,学生的认知困难主要体现在:

最新5导数及其应用(单调性极值与最值)汇总

5导数及其应用(单调性极值与最值)

补讲:导数及其应用(单调性、极值与最值) 一.选择题: (1) 已知函数?Skip Record If...?在区间?Skip Record If...?内可导,且?Skip Record If...?,则?Skip Record If...? ( ) (A)?Skip Record If...? (B)?Skip Record If...? (C)?Skip Record If...? (D)?Skip Record If...? (2) 函数?Skip Record If...?在区间 ( ) (A) ?Skip Record If...?上单调递减 (B) ?Skip Record If...?上单调递减 (C) ?Skip Record If...?上单调递减 (D) ?Skip Record If...?上单调递增 (3) 函数?Skip Record If...?在?Skip Record If...?上的最大值和最小值依次是( ) (A) ?Skip Record If...? (B) ?Skip Record If...? (C) ?Skip Record If...? (D) ?Skip Record If...? (4) 已知函数?Skip Record If...?有极大值和极小值,则实数?Skip Record If...?的取值范围是 ( ) (A)?Skip Record If...? (B)?Skip Record If...? (C)?Skip Record If...?或?Skip Record If...? (D)?Skip Record If...?或?Skip Record If...? (5) 设点?Skip Record If...?是曲线?Skip Record If...?上的任意一点,?Skip Record If...?点处切线倾斜角为?Skip Record If...?,则角?Skip Record If...?的取值范围是( ) (A) ?Skip Record If...?(B)?Skip Record If...? (C) ?Skip Record If...?(D) ?Skip Record If...? (6) 方程?Skip Record If...?的实根个数是 ( ) (A) ?Skip Record If...? (B) ?Skip Record If...? (C) ?Skip Record If...? (D) ?Skip Record If...? 二.填空题: (7) 函数?Skip Record If...?在?Skip Record If...?处有极大值,则实数?Skip Record If...? (8) 已知曲线?Skip Record If...?,直线?Skip Record If...?,若?Skip Record If...?与?Skip Record If...?相切于点?Skip Record If...?,则切点坐标是 (9) 函数?Skip Record If...??Skip Record If...?在区间?Skip Record If...?上单调递增,且关于?Skip Record If...?的方程 ?Skip Record If...?的根都在区间?Skip Record If...?内,则实数?Skip Record If...?的取值范围是 (10) 已知?Skip Record If...??Skip Record If...?在?Skip Record If...?上有最小值?Skip Record If...?,则在?Skip Record If...?上, ?Skip Record If...?的最大值是

相关文档
相关文档 最新文档