文档库 最新最全的文档下载
当前位置:文档库 › 第五章 离散时间傅里叶变换2012

第五章 离散时间傅里叶变换2012

第五章 离散时间傅里叶变换2012
第五章 离散时间傅里叶变换2012

X

|e

(

|)

()()

j LP H e ωπ?()j LP H e ω[]()

F

j LP if h n H e ω←?→()[]()

F

j n j LP then e h n H e πωπ?←?→

))

sin(5)sin()

ωω

理想滤波器(理想数字滤波器)

h n ()

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散傅里叶变换及其快速算法

第五章 离散傅里叶变换及其快速算法 1 离散傅里叶变换(DFT)的推导 (1) 时域抽样: 目的:解决信号的离散化问题。 效果:连续信号离散化使得信号的频谱被周期延拓。 (2) 时域截断: 原因:工程上无法处理时间无限信号。 方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。 结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。 (3) 时域周期延拓: 目的:要使频率离散,就要使时域变成周期信号。 方法:周期延拓中的搬移通过与)(s nT t -δ的卷积来实现。 表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。 结果:周期延拓后的周期函数具有离散谱。 (4) 1。 图1 DFT 推导过程示意图 (5) 处理后信号的连续时间傅里叶变换:∑∑ ∞ -∞=-=π--δ???? ? ????= k N n N kn j s kf f e nT h f H )()()(~ 010/2

(i) )(~f H 是离散函数,仅在离散频率点S NT k T k kf f = ==00处存在冲激,强度为k a ,其余各点为0。 (ii) )(~ f H 是周期函数,周期为s s T NT N T N Nf 1 00= == ,每个周期内有N 个不同的幅值。 (iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。 2 DFT 及IDFT 的定义 (1) DFT 定义:设()s nT h 是连续函数)(t h 的N 个抽样值1,,1,0-=N n ,这N 个点的宽度为 N 的DFT 为:[])1,...,1,0(,)()(1 0/2-=??? ? ? ?==? -=π-∑N k NT k H e nT h nT h DFT s N n N nk j s s N (2) IDFT 定义:设??? ? ??s NT k H 是连续频率函数)(f H 的N 个抽样值1,,1,0-=N k , 这N 个点的宽度为N 的IDFT 为: ())1,...,1,0(,11 0/21 -==??? ? ? ?=???????????? ???-=π--∑ N k nT h e NT k H N NT k H DFT s N k N nk j s s N (3) N nk j e /2π-称为N 点DFT 的变换核函数,N nk j e /2π称为N 点IDFT 的变换核函数。它们 互为共轭。 (4) 同样的信号,宽度不同的DFT 会有不同的结果。DFT 正逆变换的对应关系是唯一的, 或者说它们是互逆的。 (5) 引入N j N e W /2π-= (i) 用途: (a) 正逆变换的核函数分别可以表示为nk N W 和nk N W -。 (b) 核函数的正交性可以表示为:() )(* 1 0r n N W W kr N N k kn N -δ=∑-= (c) DFT 可以表示为:)1,,1,0(,)(10 -==? ??? ??∑ -=N k W nT h NT k H N n nk N s s (d) IDFT 可以表示为:)1,,1,0(,1 )(1 0-=??? ? ? ?= ∑ -=-N n W NT k H N nT h N k nk N s s (ii) 性质:周期性和对称性: (a) 12==π-j N N e W (b) 12 /-==π-j N N e W (c) r N r N N N r N N W W W W ==+ (d) r N r N N N r N N W W W W -=-=+2/2/ (e) )(1Z m W m N ∈?= (f) ),(/2/2Z n m W e e W n N N n j m N m n j m n m N ∈?===π-π- 3 离散谱的性质 (1) 离散谱定义:称)(Z k NT k H H S k ∈???? ? ?=? 为离散序列)0)((N n nTs h <≤的DFT 离散谱,简称离散谱。 (2) 性质: (i) 周期性:序列的N 点的DFT 离散谱是周期为N 的序列。 (ii) 共扼对称性:如果)0)((N n nTs x <≤为实序列,则其N 点的DFT 关于原点和N /2都

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 /***************************************************************************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /**************************************************************************************************/ 前言: ―关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解‖---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科)

实验离散时间傅里叶变换和离散傅里叶变换

实验二离散时间傅里叶变换和离散傅里叶变换 一.实验目的 1.深刻理解离散时间信号傅里叶变换的定义,与连续傅里叶变换之间的关系; 2.深刻理解序列频谱的性质(连续的、周期的等); 3.能用MATLAB编程实现序列的DTFT,并能显示频谱幅频、相频曲线; 4.深刻理解DFT的定义、DFT谱的物理意义、DFT与DTFT之间的关系; 5.能用MATLAB编程实现有限长序列的DFT; 6.熟悉循环卷积的过程,能用MA TLAB编程实现循环卷积运算。 二.实验原理 1.离散时间信号的频谱和图示化 2.离散傅里叶变换的定义和图示化 三.实验结果 w=[0:2:500]*pi*2/500; h=(1+0.9*exp(-j*w))./(1-0.9*exp(-j*w)); magh=abs(h); plot(w/pi,magh);grid;xlabel('f');ylabel('|H(w)|'); n=[0:127]; m=[0:127]; x=exp(j*2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

n=[0:127]; m=[0:127]; x=cos(2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127]; m=[0:127]; [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127];m=[0,127]; x=sin(n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

离散时间傅里叶变换

1、DTFT是离散时间傅里叶变换,DFT是离散傅里叶变换。 2、DTFT变换后的图形中的频率是一般连续的(cos(wn)等这样的特殊函数除外,其变换后是冲击串),而DFT是DTFT的等间隔抽样,是离散的点。从表示中可以看出,其函数表示为X(k),而DTFT的函数表示为X(exp(jw))。(这里主要突出DFT是DTFT的等间隔抽样,DTFT变化后的频率响应一般是连续的,DFT变换后的频率响应是离散的) 3、DTFT是以2pi为周期的。而DFT的序列X(k)是有限长的。 4、DTFT是以复指数序列{exp(-jwn)}的加权和来表示的,而DFT是等间隔抽样,既然是等间隔,那么间隔是多少呢?DFT里面有个重要的参数就是N,我们一般都会说,多少点DFT运算,这个点就是N(离散序列的长度),抽样间隔就是将单位元分成N个间隔来抽样,绕圆一周,(2*pi)/N是间隔(这个应该很明显吧,一个圆周是2*pi,分成N个等分,就像我们生日的时候切蛋糕一样)。 5、DTFT和DFT都能表征原序列的信息。因为现在计算主要使用计算机,必需要是离散的值才能参与运算,因此在工程中DFT应用比较广泛,DFT还有一个快速算法,那就是FFT。 基本上你答了上面的5点,面试官至少会对你刮目相看的。因为很多人对概念是很模糊的。 快速傅立叶变换(The Fast Fourier Transform,FFT)是离散傅立叶变换(Discrete Fourier Transform,DFT)的一种快速算法,它是库利(Cooley)和图基(Tukey)于1965年提出的。FFT使DFT的次数由N^2减少到Nlog2(N)次,使DFT应用于实际变为现实,使DFT进一步得到完善。1976年,S.Winograd等人提出一种新算法:Winograd快速变换(Winograd Fast Fourier Transform Algorithm),该算法是基于中国剩余定理提出的,比FFT的运算速度更快。 因我也知之深浅,只作下面三点说明: 1.FFT是通过DFT运算中存在对称性和周期性而做的化简。 2.FFT可以通过对时间参量或者频率参量不断分解为奇偶表达式,再做进一步改进,分别称为时间抽取法和频率抽取法。 3.matlab给出的FFT介绍实际是DFT的表达式,未作DFT向FFT的简化过程说明,但计算过程内核是FFT。(N=1024时FFT比DFT快一百多倍) 对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的5hz叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。而且,对于周期信号有一个特点,信号的周期越长,信号的基频越小。 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就编程了连续的了。求这个连续频率的谱线的过程就是傅立叶变换。包括这样几种: DTFT(时间离散,频率连续)

离散傅里叶变换应用与计算

离散傅里叶变换应用与计算 1 离散傅里叶变换基本原理与计算 1822年,法国工程师傅里叶(Fourier)指出,任意一个函数X(t)均可分解为无穷多个不同频率正弦信号的和,这即是谐波分析的基本概念。在数字计算机时代,模拟信号所携带的信息均被处理为基于0和1的二值离散数据。模拟信号通过A/D变换为离散的数字信号。连续函数X(t)因此被抽样为离散的有限长序列X(nT s) (n=0,1,2,…,N-1,T s为采样周期)。离散傅里叶变换(DFT)将离散的时域信号X(nT s)与离散的频率点结合,使谱分析得以在数字计算机上实现。根据DFT理论,X(t)的N个抽样点的频谱为: 其中:,n=0,1,2,…,N-1;k=0,1,2,…,N-1。通常,为应用DFT的快速算法(快速傅里叶变换,FFT),N取值为2的整数次幂。式(1)的处理结果为复数,在绘制信号频谱时需进行相应的取模运算;另外,为使频谱图直观,通常还会采用半对数图。 2 离散傅里叶级数(DFS)的应用 离散傅里叶变换是信号系统中频谱分析最常用的方法,基于离散傅里叶变换插值的方法测量信号频率,在采样率较低的情况下仍然有较好的精度,在提高采样率或增加采样点数的情况下,频率分辨精度能进一步提高,采用滤波和加窗的方法能更好地避免插值方向错误,该方法具有计算简单、速度快、精度高等特点[1]。 在电力系统发展中,一般的感应式电能表准确度只能达到2.0级或1.0级,而且功能单一,已经不能适应现代电能管理的要求。在现阶段的电量测量仪表中,越来越多的采用交流采样技术。交流采样技术是将被测电流、电压直接送入数据采集装置,在装置中使用精密电流、电压互感器将其变成小电流(或低电压),通过A/D转换和CPU计算得到电流、电压的有效值、有功功率、无功功率、有功电度和无功电度等参数。其中傅立叶变换法可以计算出各次谐波的参数值,总的电参数由各次谐波分量求出,具有很强的滤波功能[2]。 近年来,多速率滤波器组广泛应用于子带编码、语音信号处理、图像压缩和通信系统等

第3章离散傅里叶变换及其快速算法.

第3章离散傅里叶变换及其快速算法 3. 1离散傅里叶变换(DFT) 3. 2利用DFT做连续信号的频谱分析 3.3快速傅里叶变换(FFT) 3.4 FFT应用中的几个问题 散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理.但是,直至上个世纪六十年代?由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 3. 1散傅里叶变换(DFT) 第一章中,我们学习离散时间信号的傅里叶变换 (DTFT),我们知道DTFT在频域是连续的周期函数,不便于计算机计算和存储;对于有限长序列我们还可以用离散傅里叶变换(DFT)反映其特点,且DFT便于计算机处理。为了便于更好地理解DFT及离散傅里叶级数(DFS)的槪念,我们首先 来回顾并讨论傅里叶变换的几种可能形式。 2

4 傅里叶变换的几种形式: 1.非周期连续时间信号的傅里叶变换 6 XMG)= (必"心 2. 周期连续时间信号的傅里叶变换 周期为Ti 的连续时间信号在满足狄里赫利条件时可展 开为指数形式的傅里叶级数! 丘⑴=£/叫昭=¥ &?-8 1 I 图3?1 (b)周期连续时间信号的傅里叶变换

6 t t J f b \ 4 * 4 h / W / IlfK 1 I 'N . ,1 丨 ■ % h / t t ? 9 ■ .? % 1 * f t .A -TT ° ?—n a 3. 非周期离散时间信号的傅里叶变换 X(J")=工兀x(n) = ——J X o=G7\X("Q)是以2”周期的周期艱 4. 周期离散时间信号的傅里叶变换 根据前面三种傅里叶变换可发现如下规律:如果信号 时域离散,则频域表现为周期性频率函数;相反如频域离 散,则时域表现为周期性时间函数.同样可见: 连续对应另一个域的非周期- 因此,我们可以猜想到一个周期离散序列的频谱必定是 离散的、周期的,(如图3. 1 (d))所示。 1:1 个域的 图3.1 (c) 非周期离》时间信号的傅里叶变換 i(?) n 图3.1 (d) 周期离散时间信号的傅里叶变换 L ——°NT A ZT —N 点 ----- *

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三 离散时间傅里叶变换DTFT及IDTFT 一、实验目的: (1)通过本实验,加深对DTFT和IDFT的理解。 (2)熟悉应用DTFT对典型信号进行频谱分析的方法. (3)掌握用MATLAB进行离散时间傅里叶变换及其逆变换的方法。 二、实验内容: (1)自己生成正弦序列(如矩形序列,正弦序列,指数序列等),对其进行频谱分析,观察其时域波形和频域的幅频特性。记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 矩形序列: 程序: M=10;N=2*M+1;T=0.5;n=—4*M:4*M; x=[zeros(1,3*M),ones(1,N),zeros(1,3*M)]; w=[-15:0。1:15]+1e—10; X=sin(0.5*N*w*T)./sin(0。5*w*T); subplot(1,3,1);stem(n,x,'.'); axis([-20,20,-0。1,1.1]),grid on xlabel('n’),title('(a)序列幅度') subplot(1,3,2),plot(w,X),gridon xlabel('\Omega’),title('(b)幅频特性')

subplot(1,3,3),plot(w,X),gridon v=axis;axis([-pi/T,pi/T,v(3),v(4)]); xlabel(’\Omega’),title('(c)横轴放大后幅频特性')set(gcf,'color','w') 正弦序列: 程序: n=-10:10; x=sin(n*pi);k=-200:200;w=(pi/100)*k; X=x*(exp(—j*pi/100)).^(n'*k);

相关文档
相关文档 最新文档