文档库 最新最全的文档下载
当前位置:文档库 › 高中数学导数及其应用

高中数学导数及其应用

高中数学导数及其应用
高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用

一、知识网络

二、高考考点

1、导数定义的认知与应用;

2、求导公式与运算法则的运用;

3、导数的几何意义;

4、导数在研究函数单调性上的应用;

5、导数在寻求函数的极值或最值的应用;

6、导数在解决实际问题中的应用。

三、知识要点

(一)导数

1、导数的概念

(1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比

,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即

(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间

()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即

认知:

(Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。

(Ⅱ)求函数在点处的导数的三部曲:

①求函数的增量;

②求平均变化率;

③求极限

上述三部曲可简记为一差、二比、三极限。

(2)导数的几何意义:

函数在点处的导数,是曲线在点处的切线的斜率。

(3)函数的可导与连续的关系

函数的可导与连续既有联系又有区别:

(Ⅰ)若函数在点处可导,则在点处连续;

若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。

事实上,若函数在点处可导,则有此时,

记 ,则有即在点处连续。

(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。

反例:在点处连续,但在点处无导数。

事实上,在点处的增量

当时,,;

当时,,

由此可知,不存在,故在点处不可导。

2、求导公式与求导运算法则

(1)基本函数的导数(求导公式)

公式1 常数的导数:(c为常数),即常数的导数等于0。

公式2 幂函数的导数:。

公式3 正弦函数的导数:。

公式4 余弦函数的导数:

公式5 对数函数的导数:(Ⅰ);

(Ⅱ)

公式6 指数函数的导数:(Ⅰ);

(Ⅱ)。

(2)可导函数四则运算的求导法则设为可导函数,则有

法则1 ;

法则2 ;

法则3 。

3、复合函数的导数

(1)复合函数的求导法则

设,复合成以x为自变量的函数,则复合函数对自变量x的导数,等于已知函数对中间变量的导数,乘以中间变量u对自变量x的导数,

即。

引申:设,复合成函数,则有

(2)认知

(Ⅰ)认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结构设出

,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x的简单函数为止。于是所给函数便“分解”为若干相互联系的简单函数的链条:

(Ⅱ)运用上述法则求复合函数导数的解题思路

①分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;

②求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;

③还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。

二、导数的应用

1、函数的单调性

(1)导数的符号与函数的单调性:

一般地,设函数在某个区间内可导,则若为增函数;若为减函数;若在某个区间内恒有,则在这一区间上为常函数。

(2)利用导数求函数单调性的步骤

(Ⅰ)确定函数的定义域;

(Ⅱ)求导数;

(Ⅲ)令,解出相应的x的范围

当时,在相应区间上为增函数;当时在相应区间上为减函数。

(3)强调与认知

(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D。若由不等式确定的x的取值集合为A,由确定的x的取值范围为B,则应用;

(Ⅱ)在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。

举例:

(1)是R上的可导函数,也是R上的单调函数,但是当x=0时,。

(2)在点x=0处连续,点x=0处不可导,但在(-∞,0)内递减,在(0,+∞)内递增。

2、函数的极值

(1)函数的极值的定义

设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;

如果对附近的所有点,都有,则说是函数的一个极小

极大值与极小值统称极值

认知:由函数的极值定义可知:

(Ⅰ)函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;

(Ⅱ)极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点的极小值有可能大于另一点处的极大值;

(Ⅲ)当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。

(2)函数的极值的判定

设函数可导,且在点处连续,判定是极大(小)值的方法是

(Ⅰ)如果在点附近的左侧,右侧,则为极大值;

(Ⅱ)如果在点附近的左侧,右侧,则为极小值;

注意:导数为0的不一定是极值点,我们不难从函数的导数研究中悟出这一点。

(3)探求函数极值的步骤:

(Ⅰ)求导数;

(Ⅱ)求方程的实根及不存在的点;

考察在上述方程的根以及不存在的点左右两侧的符号:若左正右负,则

在这一点取得极大值,若左负右正,则在这一点取得极小值。

3、函数的最大值与最小值

(1)定理

若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值。

认知:

(Ⅰ)函数的最值(最大值与最小值)是函数的整体性概念:最大值是函数在整个定义区间上所有函数值中的最大值;最小值是函数在整个定义区间上所有函数值中的最小值。

(Ⅱ)函数的极大值与极小值是比较极值点附近的函数值得出的(具有相对性),极值只能在区间内点取得;函数的最大值与最小值是比较整个定义区间上的函数值得出的(具有绝对性),最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值。

(Ⅲ)若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值。

(2)探求步骤:

设函数在上连续,在内可导,则探求函数在上的最大值与最小值的步骤如下:

( I )求在内的极值;

( II )求在定义区间端点处的函数值,;

( III )将的各极值与,比较,其中最大者为所求最大值,最小者为所求最小值。

引申:若函数在上连续,则的极值或最值也可能在不可导的点处取得。对此,如果仅仅是求函数的最值,则可将上述步骤简化:

( I )求出的导数为0的点及导数不存在的点(这两种点称为可疑点);

( II )计算并比较在上述可疑点处的函数值与区间端点处的函数值,从中获得所求最大值与最小值。

(3)最值理论的应用

解决有关函数最值的实际问题,导数的理论是有力的工具,基本解题思路为:

( I )认知、立式:分析、认知实际问题中各个变量之间的联系,引入变量,建立适当的函数关系;

( II )探求最值:立足函数的定义域,探求函数的最值;

( III )检验、作答:利用实际意义检查(2)的结果,并回答所提出的问题,特殊地,如果所得函数在区间内只有一个点满足,并且在点处有极大(小)值,而所给实际问题又必有最大(小)值,那么上述极大(小)值便是最大(小)值。

四、经典例题

例1、设函数在点处可导,且,试求

(1);

(2);

(3);

(4)(为常数)。

解:注意到

当)

(1);

(2)

=A+A=2A

(3)令,则当时,∴

(4)

点评:注意的本质,在这一定义中,自变量x在

处的增量的形式是多种多样的,但是,不论选择哪一种形式,相应的也必须选择相应的形式,这种步调的一致是求值成功的保障。

若自变量x在处的增量为,则相应的,

于是有;

若令,则又有

例2、

(1)已知,求;

(2)已知,求

解:

(1)令,则,且当时,。

注意到这里

(2)∵

注意到,

∴由已知得②

∴由①、②得

例3、求下列函数的导数

(1);(2);(3);(4);

(5);(6)解:

(1)

(2),

(3),

(4),∴

(5),

(6)

∴当时,;

∴当时,

即。

点评:为避免直接运用求导法则带来的不必要的繁杂运算,首先对函数式进行化简或化整为零,而后再实施求导运算,特别是积、商的形式可以变为代数和的形式,或根式可转化为方幂的形式时,“先变后求”的手法显然更为灵巧。

例4、在曲线C:上,求斜率最小的切线所对应的切点,并证明曲线C关于该点对称。

解:

(1)

∴当时,取得最小值-13

又当时,

∴斜率最小的切线对应的切点为A(2,-12);

(2)证明:设为曲线C上任意一点,则点P关于点A的对称点Q的坐标为

且有①

∴将代入的解析式得

∴点坐标为方程的解

注意到P,Q的任意性,由此断定曲线C关于点A成中心对称。

例5、已知曲线,其中,且均为可导函数,求证:两曲线在公共点处相切。

证明:注意到两曲线在公共点处相切当且仅当它们在公共点处的切线重合,设上述两曲线的公共点为,则有

,,

∴,

∴,

∴,

于是,对于有;①

对于,有②∴由①得,

由②得

∴,即两曲线在公共点处的切线斜率相等,

∴两曲线在公共点处的切线重合

∴两曲线在公共点处相切。

高中数学导数知识点归纳

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x 0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x 0x 二 .导数的计算 1)基本初等函数的导数公式: 2若 f ( x)x ,则 f (x)x 1 ; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x)e x,则 f ( x) e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x)1 x 2)导数的运算法则 2.[ f (x)g( x)] f ( x)g( x) f ( x) g (x)

高中数学导数概念的引入

一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即 0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即 000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

高中数学导数知识点归纳总结

核心出品 必属精品 免费下载 导 数 考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做

)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-=?? ? ??v v u v vu v u 注:①v u ,必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

高中数学学案-导数的概念及计算

高中数学学案 导数及其应用 第1讲导数的概念及计算 考点导数的概念及其几何意义 知识点 1 导数的有关概念 (1)导数:如果当Δx→0时,Δy Δx有极限,就说函数 y=f(x)在x=x0处可导,并把这个极限叫 做f(x)在x=x0处的导数(或瞬时变化率).记作f′(x0)或y′|x=x ,即f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f x0+Δx-f x0 Δx. (2)导函数:如果函数f(x)在开区间(a,b)内每一点都可导,那么其导数值在(a,b)内构成一个新的函数,我们把这个函数叫做f(x)在开区间(a,b)内的导函数.记作f′(x)或y′. 注意点 如果函数f(x)在x=x0处可导,那么函数y=f(x)在x=x0处连续. 2 导数的几何意义 函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0). 3 几种常见函数的导数 原函数导数 y=C(C为常数)y′=0 y=x n(n∈Q*)y′=nx n-1 y=sin x y′=cos x y=cos x y′=-sin x y=e x y′=e x y=ln x y′=1 x y=a x(a>0,且a≠1)y′=a x ln_a

y =log a x (a >0,且a ≠1) y ′= 1 x ln a 4 导数的四则运算法则 若y =f (x ),y =g (x )的导数存在,则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③?? ?? ??f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0). 注意点 “过某点”和“在某点”的区别 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0, y 0)为切点,而后者P (x 0,y 0)不一定为切点. 入门测 1.思维辨析 (1)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (2)曲线的切线不一定与曲线只有一个公共点.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1 x .( ) 答案 (1)× (2)√ (3)× (4)√ 2.(1)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2 B .e C.ln 2 2 D .ln 2 (2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0 答案 (1)B (2)B 解析 (1)由f (x )=x ln x 得f ′(x )=ln x +1. 根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.

高中数学导数知识点归纳.

高中数学选修 2----2知识点第一章导数及其应用 一.导数概念的引入1.导数的物理意义:瞬时速率。一般的,函数()y f x 在0x x 处的瞬时变化率是000()() lim x f x x f x x ,我们称它为函数()y f x 在0x x 处的导数,记作0()f x 或0|x x y ,即0()f x =000()() lim x f x x f x x 2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点 n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x ,当点n P 趋近于P 时,函数()y f x 在0x x 处的导数就是切线PT 的斜率k ,即0000()()lim () n x n f x f x k f x x x 3.导函数:当x 变化时,()f x 便是x 的一个函数,我们称它为()f x 的导函数. ()y f x 的导函数有时也记作y ,即0()() ()lim x f x x f x f x x 二.导数的计算 1)基本初等函数的导数公式 : 2 若() f x x ,则1()f x x ; 3 若() sin f x x ,则()cos f x x 4 若() cos f x x ,则()sin f x x ; 5 若() x f x a ,则()ln x f x a a 6 若() x f x e ,则()x f x e 7 若() log x a f x ,则1()ln f x x a 8 若()ln f x x ,则1 ()f x x 2)导数的运算法则2. [()()]()()()()f x g x f x g x f x g x

高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用 一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间 ()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时,

高中数学选修2-2导数的概念

导数的概念 教学目标与要求:理解导数的概念并会运用概念求导数。 教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课: 上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。 二、新授课: 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数)(x f Y =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即 x x f x x f x f x ?-?+=→?)()(lim )(0000/ 注:1.函数应在点0x 的附近有定义,否则导数不存在。 2.在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可能为0。 3.x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ?+?+)的割线斜率。 4.导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。 5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ?无关。 6.在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写成0 0000/)()(lim )()(lim )(0x x x f x f x x f x x f x f x x o x --=?-?+=→→?。

高中数学导数知识点

导数知识点 考试要求: (1)了解导数概念的某些实际背景 (2)理解导数的几何意义 (3)掌握函数的导数公式 (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、 极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. 知识要点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2. 导数的四则运算法则: ' ' ' )(v u v u ±=±) (...)()()(...)()(' '2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ' '''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) ) 0(2 ' ' ' ≠-= ?? ? ??v v u v vu v u 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

3.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导, 如果)('x f >0,则)(x f y =为增函数; 如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0① . 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使) (' x f =0,但0 =x 不是极值点. ②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0 =x 是函数的极小值点. 5. 极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 6. 几种常见的函数导数: I.0'=C (C 为常数) x x c o s )(s i n ' = 1 ' )(-=n n nx x (R n ∈) x x s i n )(c o s ' -= II. x x 1)(ln ' = e x x a a l o g 1)(l o g ' = x x e e =' )( a a a x x ln )(' =

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

高中数学-导数的概念几何性质及应用

高中数学 导数及其应用学案 类型一:利用导数研究函数的图像 例2、若函数的导函数... 在区间上是增函数,则函数在区间上的图象 可能是( ) (A) (B) (C) (D) 练习1.如右图:是f (x )的导函数, 的图象如右图所示,则f (x )的图象只可能是( ) (A ) (B ) (C ) (D ) ()y f x =[,]a b ()y f x =[,]a b )(/x f 例1、设a <b,函数y=(x-a)2(x-b)的图象可能是( ) a b a b a o o y o y o y

2.设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有 可能的是 ( ) A . B . C . D . 类型二:导数几何意义的应用 例3、(1)求曲线在点处的切线方程。(2)求抛物线y=2x 过点5,62?? ??? 的切线方程 32151,09425217257.1..76444644y x y ax x a B C D ==+ ----练习:若存在过点()的直线和都相切,则等于()A.-1或-或或-或 7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________. 类型三:利用导数研究函数的单调性 例4、已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f(e)=2(e=2.71828…是自然对数的底数). (I )求实数b 的值; (II )求函数f (x )的单调区间; 21x y x =-()1,1

例5、已知函数f(x)= ax 1x 2 ++在(-2,+∞)内单调递减,求实数a 的取值范围. 练习:若函数y =3 1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围 类型四:导数与极值 ()ln 6x f x x = 例、求函数的极值。 ()3227310,f x x ax bx a x a b =+++=-例、已知在有极值,求常数的值。 练习1、已知f(x)=x 3+ax 2 +(a+6)x+1有极大值和极小值,则a 的取值范围是( ) (A )-1<a <2 (B )-3<a <6 (C )a <-1或a >2 (D )a <-3或a >6 2、直线y =a 与函数f(x)=x 3-3x 的图象有相异的三个公共点,则求a 的取值范围。 类型五:导数与最值 例8、已知函数f(x)=(x-k)e x . (1)求f(x)的单调区间;

相关文档
相关文档 最新文档