文档库 最新最全的文档下载
当前位置:文档库 › ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法
ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

名称:D 412—98a(2002年重新批准)

硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法

希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出

建议并准确进行实验。因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围

1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。这些方法不适用硬橡胶和相似硬度、低延伸率材料。方法如下:

方法A——哑铃状和直片状试样

方法B——剪切环形状试样(不适用)

注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料

2.1 ASTM 标准:

D 1349 橡胶标准实验温度准则

D 1566 与橡胶相关的术语

D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则

D 3183 实验用产品片准备准则

D 3767 橡胶尺寸测量准则

D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则

E 4 实验机器力检查准则

2.2 ASTM 附件:

剪切环形试样,方法B (D 412)

2.3 ISO 标准:

ISO 37 硫化橡胶,热缩性橡胶张应力性能

3.1 术语

3.1 定义

3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。(D 1566)

3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。(D 1566)

3.1.4 张应力——伸展试样的力。(D 1566)

3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。(D 1566)3.1.6 热塑性弹性体——不同于传统硫化橡胶,与热塑性材料一样可以加工和循环使

用。

3.1.7 最终延伸率——在持续张应力下试样发生破裂时的延伸。

3.1.8 屈服点——在应变曲线上的点。(D 1566)

3.1.9 屈服应变——在屈服点的张力水平。(D 1566)

3.1.10 屈服应力——在屈服点的应力水平。(D 1566)

4. 实验方法概要

4.1 对抗拉性能的测量开始于从试样材料上取来实验橡胶片,包括试样的准备和试样的实验。试样均匀横截面区域可以成哑铃体,环形或直片形状。

4.2 在试样对张应力,在给定延伸时的张应力,抗拉强度,屈服点和最后延伸进行测量。张应力,屈服点和抗拉强度基于原始试样的均匀横截面。

4.3 在先前没有应力的试样被延伸和缩进后,进行张力设置测量。破裂后的设置同样也描述了。

5. 重要性和应用

5.1 采用本实验方法的所有材料和产品在一定性能应用下必须能够耐张力。也可以使用这些方法对一些像这样张力性能的测量。然而,因为在实际使用中潜在性能要求非常广泛,因此单独的张力性能不能直接地与最终产品使用性能挂钩。

5.2 张力性能取决于材料和实验条件(延长率,温度,湿度,样品几何形状,实验前的预备等等);因此在相同实验条件下材料必须进行比较。

5.3 温度和延长率对张力性能有实质性的影响,因此必须控制好。试样类型的不同这些影响也是多样的。

5.4 张力设置表示部分永久性的和延长和收缩后部分恢复的残留变形。因此,必须控制延长和恢复周期(还有其他实验条件)以获得可对比性结果。

6. 设备和仪器

6.1 实验机器——张力实验必须在可以产生500±50 mm/min(20±2in./min)匀速速率的电力驱动机器上进行。(两爪距离至少为750mm)(30in.)。(参考注释1)。实验机器必须有匹配的测力计和测量或记录测量外加力(范围在±2%之内)的系统,。如果对一个测量能力范围(摆动式测力计)不能改变,破裂时的外加力必须在满刻度±2%内进行测量,最小张力测量必须精确在10%以内。

注释2——采用1000±100 mm/min(40±4in./min)的延伸率,在报道中标记速度。如果有问题,则重复实验,采用500±50 mm/min(20±2in./min)的延伸率。

6.2 用来升温和降温的实验箱——实验箱必须符合以下的要求:

6.2.1 空气可以以1—2m/s(3.3 to 6.6 ft/s)的速率在实验箱中流通,试样可以保持在2°C(3.6°F)。6.2.2 在夹具或轴附近安装一个校准过的传感器来测量实际温度。

6.2.3 实验箱必须接有一个排气系统,向外界排放高温产生的烟。

6.2.4 实验之前必须制作用于在夹具或轴附近悬挂试样的装置。除由于流通空气煽动导致的瞬间接触外,试样不允许接触实验箱任何一面。

6.2.5 在高温或低温下使用方便操作的快速工作夹具,可以在很短的时间内放置试样而不影响实验箱中的温度。

6.2.6在此实验温度下使用适宜的测力计或与实验箱隔热。

6.2.7 准备测量实验箱中试样延伸的装置。如果比例尺测量水准基点之间的延长,则比例尺必须平

行安装在夹具的附近,并且可以在实验箱外面进行控制。

6.3 千分尺——千分尺必须符合D 3767(方法A)准则的要求。对于环形试样,参考14.10部分。

6.4 张力设置实验的仪器——在6.1中描述的实验机器或者与图1中所示类似的仪器。一只秒表或其它可以计时的装置,可以测量分钟之间的间隙,测量时间至少为30分钟。用于测量张力设置的比例尺或其它装置,精确度在1%以内。

图1拉力设置实验设备

7. 试样的选择

7.1 选择时考虑下列信息:

7.1.1 由于在加工和准备过程中流动所形成的各向异性和纹理方向,可能对张力性能有一定的影响,所以哑铃体或直状的试样必须剪切,这样试样的纵向就与已知纹理方向平行了。环形试样通常纹理性能均匀。

7.1.2 除非有其它规定,否则热塑性橡胶或热塑性弹性体试样或两者必须从注塑成型片或板上剪切厚度为3.0±0.3 mm。其它厚度的试样不能够提供可对比性的结果。进行实验的试样方向必须和在铸模中流动方向平行或垂直。样片的尺寸必须满足此要求。

7.1.3 通过分离夹具来测量环形试样的延伸,但是环形试样(沿)半径的宽度的延伸是不均匀的,为

了减少这种影响,试样的宽度必须小于其直径。

7.1.4 如果在进行的延长至断裂实验中,直状试样趋向断裂,当准备另一类型试样不可行时采用直状试样。直状试样对于获得非断裂应力或材料系数性能是非常有用的。

7.1.5 使用的试样类型取决于材料,实验设备和所能够获得的试样。对于低极限伸长率的橡胶材料,为改善延伸测量的准确性,需要采用较长的试样。

8. 实验设备的校准

8.1 按照E 4准则程序A对实验机器进行校准。如果测力计是应变仪类型,则除E 4准则中7和18部分中是要求外,用一次或多次力来校准实验装置。摆式测力计校准如下:

8.1.1 把哑铃状试样的一终端放在实验机器上面的夹具上。

8.1.2 把较低的夹具从机器上移走,通过夹钳装置把哑铃状试样固定在上面的夹具上。

8.1.3 在试样卡紧装置较低的一端缚上一个吊钩。

8.1.4 在试样夹装置的吊钩上悬挂一个已知质量的块,方法是允许安装块临时放置在较低测试机夹具构架或支架上(注释2)

8.1.5按照标准启动夹具分离电动机或机械装置,使其运行直到已知质量块在较高夹具上的试样附近自由悬挂。

8.1.6 如果刻度盘或数值范围不能显示在指定公差内的施加力,彻底检查有故障的测试机(如,在轴承可其它移动部位磨擦力过大)。确保较底夹具装置和吊钩的质量包括在内。

8.1.7 如果已解决了机器磨擦或其它故障,使用已知质量的块来产生大约测试机能力的10,20和50%的力至少在三点重新校准测试机,如在日常测试中使用棘爪或棘齿,则使用它们校准测试机,用上面的棘爪校准顶部的摩擦力。

注释3——提供一种防止已知质量块在哑铃状物破裂时落下地上的方法。

8.2 使用一个弹性校准装置可以快速地校准测试机。

9.试验温度

9.1 除非特别说明,否则试验的标准温度应为23 ±2°C (73.4 ±3.6°F)。当试验温度是23°C(73.4°F)时试样处在此条件下至少3个小时,如果材料受潮湿影响,试样维持在50±5%的相对湿度,并且在

试验前放置于此条件下至少24小时,当在其它温度下试验时要求使用准则D1349中所列的温度。

9.2 对于23°C (73.4°F)以上的温度,测试前根据方法A试样预先加热10±2分钟,方法B则为6±2分钟(见注释3)。试样隔离放在实验箱中,其目的为了让一系列试样预热时间相同,在高温下预热时必须避免额外的硫化或热老化(警告——其它预防方法,除了在23°C (73.4°F)下测试为保护胳膊和手要戴耐热或冷的手套,高温下试验,室内门开着时,为防止吸入有毒气体,戴上面具是有必要的。)

9.3 在23°C (73.4°F)以下试验时,测试前放置至少10分钟。

试验方法A——哑铃状和直状试样

10. 仪器

10.1 模具——准备哑铃试样的模具形状和尺寸应符合图2所示要求。面向横断面减缩的内部应垂直于切边组成的平面,并且磨光,它们之间的距离至少为5 mm (0.2 in.)的长度,模具在任一时间内都应锋利和无刻痕(见9.2)

注释4——模具的条件取决于对断裂实验试样破裂点的研究。去掉测试机夹具上的样件,把试样放在一起,记录每个试样在相同位置下是否有拉伸断裂的趋向,在同一地方持续存在破裂表明在此位置模具可能迟钝,有刻痕或弯曲。

10.2 基准点标记器——用于测量延伸或拉力而在实验样品上放置的两个标记叫“基准点”(见注释4)。基准点标记器应由一个底盘包含两个凸起的平行物,两个凸起部分的表面(平行于底盘的平面)在同一平面并且光滑。凸起平行物做标记的平面宽应在0.05和0.08 mm (0.002and 0.003 in.)之间,长至少15 mm (0.6 in.),平行标记表面与凸起平行物侧面部分之间的角度至少75°,两个平行凸起部分的中心或标记表面之间的距离应在所要求的1%之内或基准点之间的距离。附在基准点标记器底盘的后面或顶端的把柄通常是基准点标记器的一部分。

注释5——如果接触伸长计用于测量延伸,则就不需要基准点。

10.3 墨水敷抹器——一个平坦的坚硬表面(硬木,金属或塑料)可以墨水或粉末弄到基准点。墨水或粉末应粘附在试样,对试样没有影响并且与试样的颜色反差明显。

10.4 夹具——测试机应有两个夹具,一个连接测力计。

10.4.1 用于测试哑铃试样的夹具能够自动拉紧并在夹具表面施加均衡的压力,随压力的增加而增

D412硫化橡胶和热塑性弹性体拉伸试验方法

D 412 硫化橡胶和热塑性弹性体拉伸试验方法 1简述 1.1本试验方法包括了硫化热固性橡胶和热塑性弹性体拉伸性能的评定方法。本试验方法不 能用来试验硬质胶和高硬度、低伸长的材料。试验方法如下: 方法A——直条和哑铃试样 方法B——环形试样 注1——这两种试验的结果不可比。 1.2 基于SI或非SI的单位制均视为本标准的标准单位。由于使用不同单位制的结果数值可能不同,因此不同单位应单独使用,不能混用。 1.3 安全性 2 引用文献 D 1349 橡胶规范——试验标准温度 D 1566 橡胶相关术语 D 3182 橡胶规范——制取标准混炼胶和标准硫化试片的的材料、设备和操作步骤 D 3183 橡胶规范——从成品上制备试片 D 4483 橡胶与碳黑工业种标准试验方法的测量精度规范 2.2 ASTM 附件 环形试样的制取,方法B 2.3 ISO 标准 ISO 37 硫化或热塑性橡胶拉伸应力—应变性能的测定方法 3 术语 3.1 定义 3.1.1 拉伸永久变形——试样在因一定作用下伸长后,在作用力解除的情况下其残余的变形,以原始长度的百分数表示。 3.1.2 扯断永久变形——将拉断后的哑铃试样以断面紧贴,测得的永久变形。 3.1.3 拉伸力——试样拉断过程中产生的最大力。 3.1.4 拉伸强度——拉伸试样时使用的应力 3.1.5 定伸应力——规则截面的试样,拉伸到特定长度时产生的应力。 3.1.6 热塑性弹性体——一种类似与橡胶的材料,但与普通的硫化胶不同,他可象塑料一样的被加工和回收。 3.1.7 断裂伸长——在连续的拉伸过程中,试样发生断裂时的伸长率。 3.1.8 屈服点——在应力-应变曲线上,在试样最终的破坏前,关于应变的应力变化的速度变为0并且相反的点。 3.1.9 屈服应变——屈服点的应变的水平 屈服应力——屈服点的应力的水平 4 方法描述 4.1 测定拉伸性能的试验,首先从样品材料上裁取试样,包括制样和试验两部分。试样的外形可以是哑铃形、环形或直条形,截面形状规则。 4.2 在试样未经预伸的情况下测定拉伸强度、定神应力、屈服点、扯断伸长率。对规正截面试样的拉伸强度、定神应力、屈服点和扯断伸长率测定是基于试样的原始截面积。 4.3 拉伸永久变形和扯断永久变形,测量试样拉伸后经按规定方法回缩后的形变。 5 重点与应用 5.1 本试验涉及的材料或产品在实际应用过程中必须受拉伸力作用。本试验即为测定此种

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

简述:热塑性弹性体SEBS与EPDM橡胶的比较

热塑性弹性体SEBS与EPDM橡胶的比较 ----青岛科标分析实验室 SEBS为基础的热塑性弹性体与EPDM橡胶之比较 一、加工工艺比较 SEBS类弹性体具有良好的加工性能,可进行挤出、注塑、吹塑加工成各种制品,但EPDM 的加工方法相对要单一很多。以挤出为例,SEBS和EPDM的加工工艺有较大不同: 1.SEBS类弹性体: 塑料挤出机升至设定温度→投料挤出→冷却水槽冷却定型→牵引机牵引裁断→成品全部操作1~2人完成,周期短,能耗低。 2.EPDM: 切胶机切胶→配料称量→密炼机粗混→开炼机细料混炼(加入硫化剂、硫助剂)→出片停放(一般24小时)→回炼裁条→冷却→投入挤出机挤出→进入微波硫化段及热空气恒温箱硫化→牵引面牵出载断→成品 整个操作需5~6人配合,周期长,能耗高。 加工设备投入方面讲,SEBS类弹性设备投入低,可用普通塑料加工设备进行加工,加工费用低。 二、性能比较 SEBS为基础的热塑性弹性体与EPDM橡胶一样具有良好的弹性和质感,两者之间具有许多共同特征: ·优良的橡胶特性 ·优良的耐候性、耐溴氧、抗紫外线 ·优良的密封防水性

由于SEBS优良的加工性能,其与EPDM间又有许多不同: SEBS类热塑性弹性体EPDM橡胶 加工工艺简单、加工成本低加工工艺复杂、加工成本高 不需硫化必须硫化 工艺稳定,废品少,可100%回用工艺不稳、废品高、废品不可回用 着色性好,能制成彩色制品不能制作彩色制品 加工设备简单、投入小加工设备投入大、复杂 从使用性能上讲,SEBS也与EPDM有所不同: SEBS类热塑性弹性体EPDM橡胶 产品硬度范围宽(邵A0°~邵D40°)不能生产邵A40°以下产品 耐热性较好(90℃)耐热性优异(160℃) 耐酸碱性好耐酸碱性优异 手感好手感一般 耐海水性优异耐海水性好 耐磨性一般耐磨性好 三、成本比较 SEBS的原料成本高于EPDM,但由于其加工成本较低,因此制品成本基本与EPDM制品相当.

橡胶制品十五种常见试验测试项目和标准

橡胶制品十五种常见试验测试项目和标准 1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性。 2.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法。 3.未硫化橡胶门尼粘度 GB/T1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTMD1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JISK6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法。 4.压缩永久变形性能 GB/T 7759-1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ASTM D395-2003橡胶性能的试验方法压缩永久变形 JIS K6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法。

包装用热塑性聚氨酯弹性体TPU

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB 福建省地方标准 DB XX/ XXXXX—XXXX 包装用热塑性聚氨酯弹性体(TPU) 通用技术条件点击此处添加标准名称Versatile technical for wrapping thermoplastic polyurethane elastomer (TPU) (征求意见稿) 2017-3-21发布2017-3-25实施

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 分类、规格和标记 (1) 3.1 分类 (1) 3.2 规格 (1) 3.3 标记 (1) 4 技术要求 (2) 4.1 尺寸偏差 (2) 4.2 每卷接头数和最短段长 (2) 4.3 外观 (2) 4.4 理化性能 (2) 5 试验方法 (3) 5.1 试验条件 (3) 5.2 长度和宽度的测定 (3) 5.3 每卷接头数和最短段长 (3) 5.4 厚度 (3) 5.5 外观 (3) 5.6 理化性能 (4) 5.6.1 拉伸强度 (4) 5.6.2 撕裂强力 (4) 5.6.3 层间粘合强度 (4) 5.6.4 抗穿刺力 (4) 5.6.5 防霉等级 (4) 5.6.6 耐折性 (4) 5.6.7 低温弯曲性 (4) 5.6.8 热老化性 (4) 5.6.9 耐水性 (4) 6 检验规则 (4) 6.1 检验方式 (4) 6.1.1 出厂检验 (4) 6.1.2 型式检验 (4) 6.2 抽样 (5) 6.2.1 合格项的判定 (5) 6.2.2 合格批的判定 (5)

硫化橡胶或热塑性橡胶 压缩永久变形的测定 第2部分:在低温条

I C S83.060 G40 中华人民共和国国家标准 G B/T7759.2 2014/I S O815-2:2008 硫化橡胶或热塑性橡胶压缩永久变形的测定第2部分:在低温条件下 R u b b e r,v u l c a n i z e do r t h e r m o p l a s t i c D e t e r m i n a t i o no f c o m p r e s s i o n s e t P a r t2:A t l o wt e m p e r a t u r e s (I S O815-2:2008,I D T) 2014-12-22发布2015-06-01实施中华人民共和国国家质量监督检验检疫总局

前言 G B/T7759‘硫化橡胶或热塑性橡胶压缩永久变形的测定“分为两部分: 第1部分:在常温及高温条件下; 第2部分:在低温条件下三 本部分为G B/T7759的第2部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分使用翻译法等同采用I S O815-2:2008‘硫化橡胶或热塑性橡胶压缩永久变形的测定第2部分:在低温条件下“三 与本部分中规范性引用的国际文件有一致性对应关系的我国文件如下: G B/T3505 2009产品几何技术规范(G P S)表面结构轮廓法术语二定义及表面结构 参数(I S O4287:1997,I D T)三 本部分由中国石油和化学工业联合会提出三 本部分由全国橡胶与橡胶制品标准化技术委员会通用试验方法分技术委员会(S A C/T C35/S C2)归口三 本部分起草单位:江苏明珠试验机械有限公司二广州合成材料研究院有限公司二北京橡胶工业研究设计院二青岛双星集团技术开发中心三 本部分主要起草人:朱明二马济凯二谢宇芳二易军二谢君芳二李静二耿丽红三

橡胶制品常用测试方法及标准

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 2 3. GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法JIS K6251:1993硫化橡胶的拉伸试验方法

DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)ISO 34-1:2004硫化或热塑性橡胶—撕裂强度的测定-第一部分:裤形、直角形和新月形试片 5. (10— 6.压缩永久变形性能 GB/T 7759—1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO 815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定

ASTM D395-2003橡胶性能的试验方法压缩永久变形 JIS K6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法 7.橡胶的回弹性 GB/T 1681—1991硫化橡胶回弹性的测定 8. ASTM D 746-2004用冲击法测定塑料及弹性材料的脆化温度的试验方法ASTM D 2137-2005弹性材料脆化温度的试验方法 JIS K 6261-1997硫化橡胶及热塑性橡胶的低温试验方法 9.橡胶热空气老化性能

热塑性聚氨酯材料概述

热塑性聚氨酯材料概况 1、热塑性聚氨酯的概述 热塑性聚氨酯(Thermoplastic Polyurethane,简称TPU),又称聚氨基甲酸酯橡胶,简称聚氨酯橡胶,它是一种可以热塑加工、又可以溶解于某些溶剂的特种合成橡胶线性聚合物,而MPU和CPU等热固性聚氨酯,它们的特点分子中的化学交联导致的三维空间网状结构,使其具备极大的刚性,不能塑化成型。但三种聚氨酯的性能—样,强度和模量都比较高,断裂伸长率和弹性也相对比较好;耐低温、耐磨耗、耐老化、耐撕裂、耐油等特性更是极为优异。TPU作为一类高分子合成材料,具有优良的综合性能。 TPU的耐磨、耐油性,对福射以及臭氧和氧等的抵抗能力以及在化学溶剂中的稳定性都非常好,并且这种材料在很大的拉伸强度下才能使之断裂,断裂时材料达到的伸长率也较大,此外,该材料所能承受的最大压力也非常可观,且弹性模量高。近年来随着TPU研究技术的发展,适用于众多领域的TPU制品被成功研发出来,TPU产品已经在大量领域占据着不可撼动的地位,但是TPU也同时具不容忽视的缺点,如抗滑能力低。并且在TPU的加工过程中,在较小的温度变动下,TPU熔体的粘度可以在很大的范围内发生变化,这使得它的加工过程只能在一小段特定的温度范围内进行,并且它的生产成本高,TPU进一步的推广应用就是由于这些因素而被限制了。 近几年,随着两相材料的发展提升到新的高度,国内外众多学者开始将目光转向了TPU与其他物质的共混制备出性能优异的两相复合材料上。将有机粘土等能够与TPU达到良好的相容效果的特殊填料加入其中,可以使其达到某些特殊性能得以提高的目的。 2、热塑性聚氨酯制备的原料 2.1 低聚合度多元醇

橡胶制品常用测试方法及标准

橡胶制品常用测试方法 及标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T —2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定

ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

影响硫化橡胶回弹性的因素及解决方案

关于几点混炼胶质量问题及解决方案 针对我公司胶料一直以来存在以下几个方面的质量问题,我个人谈一下自己的浅见,供参考。 1、影响硫化橡胶回弹性和硫化速度的因素及解决方案: 我个人觉得影响胶料回弹性和硫化速度的因素和解决方案可以从以下几个方面进行: ①胶料内乙烯基含量不够或生胶本身乙烯基含量分布不均匀,使胶料在硫化时没有达到正硫点,硫化速度偏长,硫化不充分,导致胶料弹性不好。可以通过提高胶料内整体的乙烯基含量,并在配方当中加入适量的含氢硅油,减少填料的用量提高含胶料量来解决回弹性差和硫化速度偏慢的情况;也可以采用不同型号乙烯基含量的生胶,配合少量的高乙烯基生胶进行使用,控制胶料的扯断永久变形,配方当中要找到一个最佳平衡点,在避免出现胶料发脆的情况,来达到改善胶料弹性的目的。 ②胶料本身偏酸性,也是导致胶料回弹性不好和硫化速度偏慢的重要因素。由于白炭黑本身偏酸性,加上加入的结构控制剂多是偏酸性,使其胶料偏酸性,偏酸性的胶料对硫化有延迟作用,同时耐高温性能也会下降。可以通过加入适当的弱碱性物质来改善胶料的酸性含量,一般胶料的PH值在中性或偏弱碱性范围对改善弹性和硫化速度有好处。 ③其他方面:胶料内增塑剂或结构控制剂加入过多,导致的胶料回弹性不好和硫化速度偏慢;胶料内增塑剂或结构控制剂加入过多,对胶料有延迟硫化作用,从而导致胶料回弹性变差和硫化速度偏慢,可以选用分子量分布较窄和带有一定挥发分的生胶,改善胶料的脱模,从而减少增塑剂的用量;用烷氧基硅烷对白炭黑表面进行处理的,配合羟基硅油进行使用,采用两步法让白炭黑分子和生胶分子有一定的结合反应时间,工艺上可以采取养生,来减少结构控制剂的用量,达到改善胶料回弹性和硫化速度的目的。 同时每种型号的胶料建立一个标准的硫化曲线,也是控制好混炼胶生产品质稳定的一种手段。 2、挤出胶产生气泡的原因和解决方案: 产生的原因:由于硅橡胶的透水性较大,特别是沉淀法白炭黑所做的混炼胶,随着空气中的相对湿度增大,混炼胶中水分含量也线性增大。当水分太多时,硅橡胶由透明变为不透明,特别到了冬季由于环境温度较低,胶料表面的水分释放时间很慢或根本释放不掉,导致挤出制品表面易气泡。一般沉淀法白炭黑,由于自身的含水量过高不适宜做挤出成型

本文以聚醚聚氨酯材料中的热塑性聚氨酯弹性体

无卤阻燃聚氨酯研究 本文以聚醚聚氨酯材料中的热塑性聚氨酯弹性体(TPU)和水性聚氨酯(WPU)涂料作为研究对象,采用无卤阻燃技术对其进行改性,对于所设计的阻燃体系,主要考察了阻燃材料的阻燃性能及阻燃机理,并对材料的力学性能等其它相关性能进行了简单研究,具体可以分为以下三个方面: 1、采用二乙基次膦酸铝(ADP)和三聚氰胺氰尿酸盐(MCA)为主阻燃剂,复配二氧化钛(TiO2)和氧化铝(Al2O3)阻燃聚醚型TPU,得到阻燃性能、力学性能、加工性能均较好的阻燃材料。当TPU/ADP/MCA/TiO2/Al2O3质量比为70/15/12/2/1时,制备的阻燃聚醚型TPU极限氧指数可达31%,垂直燃烧仅持续5s,且无滴落,阻燃级别达到V-0;拉伸强度可达24.6MPa,断裂伸长率为566%,熔融指数为 4.7g/10min。热失重分析、扫描电镜和锥形量热仪分析测试可知,TiO2和Al2O3的加入能有效提高燃烧过程的成炭量,且使得炭层更致密,同时也降低了最大热释放速率,显示出良好的阻燃协效作用。 2、采用硅溶胶对WPU涂料进行改性,当硅溶胶的添加量占总阻燃涂料质量的10%~30%时,制得的改性WPU涂料,相比纯WPU涂料,具有更好的力学性能、耐水性、阻燃性能等性能。当硅溶胶添加量为30%,此时涂料的耐燃时间可达389s,表干时间2.5h,实干时间7h,硬度可达HB,耐水性符合要求。 3、在硅溶胶(添加量30%)对WPU改性的基础上,通过添加阻燃剂三聚氰胺氰尿酸盐(MCA),其共混物经过球磨分散,获得了具有较好的阻燃性能、力学性能、耐水性等性能的阻燃涂料。研究发现当WPU/硅溶胶/MCA质量比为

橡胶物理性能测试标准

1.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法2.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001) 橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

(完整)汽车零部件检测标准大全.(DOC),推荐文档.docx

汽车零部件检测标准大全 汽车发动机 压燃式发动机排气 污染物 ?ESC 稳态循环GB17691-2001车用压燃式发动机排气污染物试验排放限值及测试方法 ?ELR 负荷烟度0324**GB17691-2005 车用压燃式、气体燃料点燃1试验0512式发动机与汽车排气污染物排放限值及测试 ?ETC 瞬态循环方法 试验ECE R49压燃式发动机排气污染物 ?OBD ?耐久性 压燃式发动机排气0324GB3847-2005车用压燃式发动机和压燃式发2可见污染物0512动机汽车排气烟度排放限值及测量方法 ECE R24可见污染物 3 柴油机全负荷烟度 0324DB11/046-1994 汽车柴油机全负荷烟度测量 0512方法 车用点燃式发动机GB14762-2002车用点燃式发动机及装用点燃4及装用点燃式发动 0324 0512式发动机汽车排气污染物排放限值及测量方机汽车排气污染物法 GB/T17692-1999 汽车用发动机净功率测试方5发动机净功率0324 法 ECE R85发动机净功率 80/1269/EEC 发动机净功率 6发动机性能0324GB/T18297-2001 汽车发动机性能试验方法7发动机可靠性0324 GB/T19055-2003 汽车发动机可靠性试验方 法 8 发动机产品质量检 0324 QC/T901-1998 汽车发动机产品质量检验评定验评定试验方法 9冷却系0324 Q/QJX 004-2003 汽车发动机冷却系冷却能力 试验方法 QC/T630-1999 汽车排气消声器性能试验方法10排气消声器性能0324 QC/T631-1999 汽车排气消声器技术条件 GB/T 4759-1995 内燃机排气消声器测量方法 离合器1技术要求0324QC/T 25-2004 汽车干磨擦式离合器总成技术条件 QCT27-2004 汽车干磨擦式离合器台架试验方法

热塑性硫化橡胶性能简介及用用领域

热塑性硫化橡胶性能及用用领域简介 热塑性三元乙丙动态硫化弹性体或热塑性三元乙丙动态硫化橡胶(英文Thermoplastic Vulcanizate)又称聚烯烃合金热塑性弹性体,简称为TPV,是高度硫化的三元乙丙橡胶EPDM微粒分散在连续聚丙烯PP相中组成的高分子弹性体材料。TPV常温下的物理性能和功能类似于热固性橡胶,在高温下表现为热塑性塑料的特性,可以快速经济和方便地加工成型。TPV热塑性三元乙丙动态硫化弹性体/橡胶将硫化橡胶材料通过动态硫化使三元乙丙橡胶EPDM以低于2微米尺寸的微粒分散在聚丙烯PP塑料基体中,把橡胶与塑料的特性很好的结合在一起,得到综合性能优异的高性能弹性体材料。 一性能简介 1、良好的弹性和耐压缩变形性,耐环境、耐老化性相当于三元乙丙橡胶,同时其耐油耐溶剂性能与通用型氯丁橡胶不相上下。 2、应用温度范围广(– 60—150℃),软硬度应用范围广 (25A—54D),易染色的优点大大提高了制品设计的自由度。 3、优良的加工性能:可用注射、挤出等热塑性塑料的加工方法加工,高效、简单易行,无需增添设备,流动性高、收缩率小。 4、绿色环保,可回收使用,且反复使用六次性能无明显下降,符合欧盟环保要求。

TPV塑胶粒子 5、比重轻(0.90—0.97),外观质量均匀,表面档次高,手感好。 基于以上性能特点,TPV在广泛的应用领域与传统橡胶材料、其他TPE弹性体(包括TPR\SBS、SEBS、TPU等)材料或PVC 等塑料材料相比,在综合性能和综合成本方面都具备一定的替代优势,从而为制品企业在产品创新、提升产品附加值、提高竞争力方面提供了新的选择。 TPV易于焊接、可重复使用、环保无毒。TPV热塑性三元乙丙动态硫化弹性体/橡胶的主要特点: 1、优异的抗老化性能和良好的耐候、耐热性能; 2、优异的抗永久变形性能; 3、优异的抗张强度、高韧性和高回弹性; 4、优异的环保性能和可重复使用; 5、优异的电绝缘性能; 6、硬度范围广泛; 7、使用温度范围广泛;

橡胶性能标准试验规范

橡胶性能标准试验规范 (ASTM D395-2003) 1范围 1.1本测试方法测试应用中会在气体或液体媒介中承受压力的橡胶。本测试 方法特别适用于在机械固定器件,减震器,封条中使用的橡胶。本测试方法包含以下两种方法: 1.2测试方法可以选择,但是应考虑用于与测试结果关联的实际情况下使用 的橡胶的性质。除非在具体的规范中有其他规定,应使用测试方法B。 1.3测试方法B不适用于硬度大于90IRHD的硫化橡胶。 1.4以国际单位(SI)为单位的数值应被认为是标准。在括号内的数值起参照作用。 1.5此项标准不包括与其应用有关的所有的安全隐患。此项标准的使用者有责任在使用前建立合适的安全健康规范以及决定法规限制是否适用 2 参考文件 2.1 ASTM标准: D1349 橡胶规范---测试的标准温度 D 3182 混合标准化合物及制备标准硫化橡胶薄片用橡胶材料、设备及工序的标准实施规程

D 3183 橡胶实施规范---从橡胶制品中制备试验目的用试片 D 3767 橡胶的标准规程----尺寸测量 D 4483 评定橡胶和炭黑制造工业试验方法标准的精度的实施规程 E 145 重力对流式和强制通风式烘炉的规范 此测试方法属于ASTM D 11橡胶委员会的工作范围,是其下属D11.10物理测试子委员会的直接责任。 目前的版本在2008.3.1批准,2008.07出版。原始的版本在1934年批准。上一个版本在2003年批准. 3 测试方法概要 3.1 用挠力或规定的力压缩试样,并在规定的温度下保持规定的时间。 3.2 在试样在合适的装置内,在规定的条件下经过特定时间的压缩变形后,取出试样,等待30分钟,测量试样的残留变形。 3.3 在测量残留变形后,根据Eq1和Eq2计算压缩永久变形。 4. 意义和用途 4.1 压缩永久变形测试用于测量在长时间受压后,橡胶化合物保持弹性的能力。实际情况下的压力可能包括持续的挠力,持续的已知力,时短时续的压力产生的交替变形和恢复。虽然后者也产生压力永久变形,它的效果更接近于压缩挠曲和滞后测试。因此,压力永久变形测试主要适用于静态力的使用环境。测试经常在高温下进行。 5 试样 5.1 可以使用来自相同样品的2个(选项1)或3个(选项2)相同的试样。选项1的压力永久变形应为两个试样的平均值,表示为百分比;选项2的压力永久变形应为三个试样的中间值,表示为百分比。

热塑性弹性体

热塑性弹性体(Thermoplastic elastomer,TPE) 热塑性弹性体(Thermoplastic elastomer,TPE)是物理性能介于橡胶和塑料之间的一类高分子材料,它既具有橡胶的弹性,又具有塑料的易加工性。这些特性早在1926年Waldo Semon研究PVC时就发现了。随着共混技术以及嵌段、接枝等共聚技术的进展,世界各地的研究者和公司又相继开发成功了多类具有这种特性的高分子材料,如热塑性聚氨酯(TPU)、苯乙烯类TPE(SBC)、热塑性动态硫化胶(TPV)、聚酯型TPE(TPEE)、聚酰胺型TPE(TPAE)、离聚体型TPE等等。 各类TPE几乎都有一个共同的特点,那就是在分子的凝聚态结构中都存在微观相分离和热可逆的约束形式。分离的两相称作弹性相和硬相,弹性相提供类似橡胶的弹性和柔软性,而硬相既提供刚性和强度,又提供热可逆的约束形式,这些约束形式在非动态硫化胶类TPE中还起到物理交联点的作用,使弹性相象硫化橡胶一样具有优良的弹性和强度。至今人们在进行TPE的分子设计时所依赖的热可逆约束形式主要有三种,包括结晶相、冻结相和离子簇。氢键也是热可逆的约束形式,但一般仅在上述三种形式中起辅助作用。 从各种商品化TPE的对比情况看来,它们在结构、特性与合成方法上都有许多差异(见表1-1)。其中TPU、TPV、TPEE、TPAE相对于SBC、TPO、CPE来讲,综合性能更优异,可以认为是TPE中档次较高的品种。 TPE的应用领域涉及汽车、电子、电气、建筑、工程及日常生活用品等多方面,其使用的最终形态包括各种护套、管材、电线电缆、垫片、零配件、鞋件、密封条、输送带、涂料、油漆、粘合剂、热熔胶、纤维等。可以说,TPE工业发展到现在,已经具有相当成熟的水平,其商业地位也日显重要了。

热塑性聚氨酯弹性体(TPU)及生产设备

浅谈热塑性聚氨酯弹性体(TPU)母料的生产技术及设备 温州飞龙机电设备工程有限公司陈鑫实 Http://https://www.wendangku.net/doc/6010284587.html, 摘要:本文简介了热塑性聚氨酯弹性体(TPU)母料的生产工艺有主要设备。 关键词:TPU、双螺栓连续法、传送床连续法。 热塑性聚氨酯弹性体(TPU),是由低聚物多元醇软段与二异氰酸酯—扩链剂硬段构成的线性嵌段共聚物。它和其他热塑性塑料相似,室温下具有橡胶弹性和塑料特性,高温下会熔成粘流体,可由注塑机加工(如挤出、注射、压延、吹塑、模压等),无需混炼与硫化等后处理工艺,可节约能量,且制品可回收再利用。TPU是加热可塑化,溶剂可溶解的聚氨酯弹性体。与MPU(混炼型聚氨酯弹性体)和CPU(浇注型聚氨酯弹性体)比较,化学结构上没有或少有化学交联,分子基本上是线性的,而存在一定的物理交联。它具有高模量、高强度、高伸长和高弹性。优良的耐磨、耐油、耐低温、耐老化性能。可用一般塑料加工方法生产各种制品,废料可回收利用,可广泛使用助剂与填料,以改善某些物理性能、加工性能或降低成本。 1、分类: 1.1按结构特点分:(1)全热塑型:分子之间不存在化学交联链,仅有以氢键为主的物理交联键,可溶于DMF等溶剂,其异氰酸酯指数(NCO/OH)r0≤1。 (2)半热塑型:分子之间含有少量脲基甲酸酯化学交联剂键,是热塑性和热固性的聚合物,由于其颗粒中存有少量异氰酸酯基,故贮存中必须避免接触水分。为使制品成型后的交联反应趋于完全,须进行加热熟化,其再生利用较难(其化学键在150℃以上时会断裂,才能复用)但少量的化学交联键的存在对改善制品的压缩永久变形和耐化学品性能有所改进。 1.2按制备的原料分:(1)聚酯型:其耐热与机械性能比聚醚型优越。 (2)聚醚型:指以PPG或PTMG为原料制成的TPU,PPG型物性较差,较少实用,而PTMG 型价格较高,仅用于一些特需之处。 2、原料和配方: 2.1原料 2.1.1聚醇 1)聚酯多元醇(PES) 聚己二酸乙二醇酯,Mn 2000,羟值55±3 mgKOH/g(PEA-2000) 聚己二酸乙二醇丁二醇酯Mn 2000,羟值56±3 mgKOH/g(PEB-2000) 2)聚醚多元醇(PET) ①聚氧化丙烯二醇二醇(PPG)Mn 2000,羟值56±3 mgKOH/g ②聚四氧呋喃二醇(PTMG)Mn 2000,羟值56±3 mgKOH/g。 2.1.2二异氰酸酯,常用MDI(价格较低,来源方便,全面的经济技术效果好),它具有环状、紧 密、对称的核能加强TPU物性。二苯基甲烷二异氰酸酯(MDI)(芳香族)纯MDI在常温下为白色或微黄色固体,加热时有刺激性臭味,熔点≥38℃,沸点194~199℃/5mmHg,密度: 1.19。分子式及分子量:C15H10N2O2;250 2.1.3扩链剂(低分子二醇): 1,4丁二醇(BDO)(脂肪开链二醇) 为无色油状液体,极易吸水,相对分子量M=90.1、密度1.02,沸点:229.5℃,熔点20.1℃ 2.2配方: PES(M W2000,二官能度)1摩尔 MDI 3摩尔 BDO 2摩尔 异氰酸酯指数R=(NCO/OH)=0.97~1.03 性能:密度 1.2 硬度(邵A)70-95

硫化橡胶回弹性试验机校准测量结果不确定度的评定示例

附录C 摆锤下落高度测量结果不确定度的评定示例 C.1 测量原理和方法 以斯科伯摆为例,摆杆用保持钩钩住,用数显卡尺测量摆杆长度,重复测量3次取算术平均值作为测量结果。 C.2 测量模型 l L =(C.1) 式中: L —摆锤下落高度,mm ; l —数显卡尺3次测量的算术平均值,mm . C.3 灵敏系数 依方程: )()( )(2 12i n i i c x u x f y u ∑=??=(C.2) 根据测量模型可得合成标准不确定度u c (L )为: )()(22l u c L u c =(C.3) 式中: )(l u —数显卡尺测量引入的标准不确定度分量,mm ; 由灵敏系数计算公式:l L c i ??= ,可得1=c C.4 标准不确定度的来源和评定 C.4.1 摆锤下落高度的测量重复性引入的标准不确定度分量)(1l u 摆锤下落高度重复测量10次,测量数据见表C.1。 用贝塞尔公式计算单次测得值的实验标准偏差: 840.01 )()(1 2 =--= ∑=n l l l s n i i i mm(C.4) 式中: i l —第i 次测量结果,mm ;

l —10次测量结果的平均值,mm ; n —测量次数; 实际测量以3次测量的算术平均值作为测量结果,则重复性测量引入的标准不确定度分量)(1l u 按下式计算: 840.03 ) ()(1== i l s l u mm (C.5) C.4.2数显卡尺最大允许误差引入的标准不确定度分量)(2l u 由于数显卡尺的最大允许误差为±0.04mm ,则可能值区间的半宽度a 为0.04mm ,认为其均匀分布,取包含因子k 为3,则数显卡尺最大允许误差引入的标准不确定度为: 230.03 40.0)(2=== k a l u mm (C.6) C.5 合成标准不确定度的评定 标准不确定度分量汇总见表C.2: 表C.2 标准不确定度汇总表 认为各输入量间不相关,则合成的标准不确定度为: 50.0230.0480.0)(22=+=L u c mm (C.7) C.6 扩展不确定度的评定 取包含因子k =2,摆锤下落高度测量结果的扩展不确定度为: 1.0250.0)()(=?=?=k L u L U c mm (C.8) 硫化橡胶回弹性试验机摆锤下落高度测量结果的扩展不确定度为:U =0.1mm ,k =2。

热塑性弹性体目前主要分为以下几类

热塑性弹性体分类 1.苯乙烯类TPE 苯乙烯类TPE又称TPS,为丁二烯或异戊二烯与苯乙烯嵌段型的共聚物,其性能最接近SBR橡胶。目前世界TPS的产量已达70多万t,约占全部TPE一半左右。代表性的品种为苯乙烯一丁二烯一苯乙烯嵌段共聚物(SBS),广泛用于制鞋业,已大部分取代了橡胶;同时在胶布、胶板等工业橡胶制品中的用途也在不断扩大。SBS还大量用作PS塑料的抗冲击改性剂,也是沥青铺路的沥青路面耐磨、防裂、防软和抗滑的优异改性剂。以SBS改性的PS 塑料,不仅可像橡胶那样大大改善抗冲击性,而且透明性也非常好。以SBS改性的沥青路面较之SBR橡胶、WRP胶粉,更容易溶解于沥青中。因此,虽然价格较贵,仍然得到大量使用。现今,更以防水卷材进一步推广到建筑物屋顶、地铁、隧道、沟槽等的防水、防潮上面。SBS与S-SBR、NP橡胶并用制造的海绵,比原来PVC、EVA塑料海绵更富于橡胶触感,且比硫化橡胶要轻,颜色鲜艳,花纹清晰。因而,不仅适于制造胶鞋中底的海绵,也是旅游鞋、运动鞋、时装鞋等一次性大底的理想材料。近些年来,异戊二烯取代丁二烯的嵌段苯乙烯聚合物(S 工S)发展很快,其产量已占TPS量的1/3左右,约90%用在粘合剂方面。用SIS制成的热熔胶不仅粘性优越,而且耐热性也好,现已成为美欧日各国热熔胶的主要材料。 SBS和SIS的最大问题是不耐热,使用温度一般不能超过80℃。同时,其强伸性、耐候性、耐油性、耐磨性等也都无法同橡胶相比。为此,近年来美欧等国对它进行了一系列性能改进,先后出现了SBS和SIS经饱和加氢的SEBS和SEPS。SEBS(以BR加氢作软链段)和SEPS(以IR加氢作软链段)可使抗冲强度大幅度提高,耐天候性和耐热老化性也好。日本三菱化学在1984年又以SEBS、SEPS为基料制成了性能更好的混合料,并将此饱和型TPS命名为“Rubberron”上市。因此,SEBS和SEPS不仅是通用,也是工程塑料用的改善耐天候性、耐磨性和耐热老化性的共混材料,故而很快发展成为尼龙(PA)、聚碳酸酯(PC)等工程塑料类“合金”的增容剂。此外,还开发了环氧树脂用的高透明性TPS以及医疗卫生用的生体无毒TPS等许多新的品种。 SBS或SEBS等与PP塑料熔融共混,还可以形成IPN型TPS。所谓IPN,实际是两种网络互相贯穿在一起的聚合物,故又称之为互穿网络化合物。虽然它们大多数属于热固性树脂类,但也有不少像TPE的以交叉连续相形态表现出来的热塑性弹性体。用SBS 或SES为基材与其他工程塑料形成的IPN—TPS,可以不用预处理而直接涂装。涂层不易刮伤,并且具有一定的耐油性,弹性系数在低温较宽的温度范围内没有什么变化;大大提高了工程塑料的耐寒和耐热性能。苯乙烯类化合物与橡胶接技共聚也能成为具有热塑性的TPE,己开发的有EPDM/苯乙烯、BR/苯乙烯、CI-IIR /苯乙烯、NP/苯乙烯等。 2.烯烃类TPE 烯烃类TPE系以PP为硬链段和EPDM为软链段的共混物,简称TPO。由于它比其它TPE的比重轻(仅为O.88),耐热性高达100℃,耐天候性和耐臭氧性也好,因而成为TPE中又一发展很快的品种。自从1972年在美国由UniroyaI公司以TPR的商品名首先上市以来,多年以两位数增长,2000年生产量已达3 5万t,到2002年估计可达40万t。现在,TPO已成为美日欧等汽车和家电领域的主要橡塑材料。特别是在汽车上已占到其总量3/4,用其制造的汽车保险杠,已基本取代了原来的金属和PU。 1973年出现了动态部分硫化的TPO,特别是在1981年美国Mansanto公司开发成功以Santoprere命名的完

橡胶制品常用测试办法及标准

精心整理1.胶料硫化特性 GB/T9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 2 法 3. GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法

DIN53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)ISO34-1:2004硫化或热塑性橡胶—撕裂强度的测定-第一部分:裤形、直角形和新月形试片 5. DIN53505-2000橡胶试验邵式A和D的硬度试验 6.压缩永久变形性能 GB/T7759—1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定

ASTMD395-2003橡胶性能的试验方法压缩永久变形 JISK6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法 7.橡胶的回弹性 GB/T1681—1991硫化橡胶回弹性的测定 8. ASTMD746-2004用冲击法测定塑料及弹性材料的脆化温度的试验方法ASTMD2137-2005弹性材料脆化温度的试验方法 JISK6261-1997硫化橡胶及热塑性橡胶的低温试验方法

相关文档
相关文档 最新文档