文档库 最新最全的文档下载
当前位置:文档库 › 浅谈奥氏体不锈钢应力腐蚀开裂

浅谈奥氏体不锈钢应力腐蚀开裂

应力腐蚀断裂精编版

应力腐蚀断裂精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

应力腐蚀断裂 一.概述 应力腐蚀是材料、或在静(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有 害物质浓度往往很低,如大气中微量的H 2S和NH 3 可分别引起钢和铜合金的应力腐蚀

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

304不锈钢的腐蚀

304不锈钢的腐蚀 应力腐蚀 应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。三、一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分 应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂 晶间腐蚀 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

管道的应力腐蚀断裂参考文本

管道的应力腐蚀断裂参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 管道的应力腐蚀断裂参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2S大大超过规走的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词Stress Corrosion CracKing而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac时,管线是不会断裂的’但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac时”则管道产生断

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

奥氏体不锈钢在Cl~-介质中应力腐蚀研究

奥氏体不锈钢在Cl-介质中应力腐蚀研究 郦建立Ξ(抚顺石油学院) 王宽福 (浙江大学) 摘 要 评述了奥氏体不锈钢在氯化物介质中应力腐蚀开裂。从环境、冶金和力学等方面论述了SCC的主要因素,综合论述了控制奥氏体不锈钢SCC的工程参量和安全评定的方法。提出了预防奥氏体不锈钢应力腐蚀的一些措施。 关键词 奥氏体不锈钢 应力腐蚀 工程参量 奥氏体不锈钢(304,316)以其优异的耐蚀性和较好的加工性,在化工、石油、动力工业和核工业等部门得到广泛的应用,然而其SCC(Stress Corrosion Cracking)破坏的几率也随之增大。化工设备失效中SCC的失效占1/4,其中奥氏体不锈钢设备SCC失效要占其1/2[1],而且大部分由含Cl-介质环境引起。因此对奥氏体不锈钢氯化物开裂进行了大量的研究[2~9]。 本文综述了奥氏体不锈钢SCC的主要影响因素、工程参量及安全评定的方法,并提出了一些预防措施。 1 奥氏体不锈钢Cl2环境开裂影响因素 1.1 环境因素 1.1.1 介质和浓度 引起奥氏体不锈钢SCC破裂的介质,认为一般限于Cl-、F-、Br-、H2S x O6、H2S和NaOH等几种。介质浓度越高,奥氏体不锈钢发生SCC的敏感性增加。工程实际表明开裂常发生在温度高的部位,特别是热传递速度大、易发生干湿交替的部位[10,11]。曾发现隔热层中浸出微量的Cl-引起SCC。Staehle[12]发现汽相部位产生破裂的Cl-浓度较低,而液相则需要较高的Cl-浓度。在实际工况中,设备的许多局部部位Cl-的浓度因设备结构和其所处环境条件的变化而提高,使较低Cl-浓度的介质也发生奥氏体钢的SCC,这给确定Cl-SCC的敏感性的浓度上限带来困难。 若在Cl-溶液中加入一些氧化剂(Fe3+, Cu2+,O2),将缩短破裂时间[13]。有研究表明,Cl-溶液若能完全除去氧,SCC将不会发生。卤化物中除Cl-外,F-和Br-同样具有SCC敏感性,但认为I-对Cl-溶液的SCC有缓蚀作用[14]。阳离子的种类对SCC也有影响,Thomas[15]认为MgCl2溶液促进SCC的作用比NaCl强。 1.1.2 温度 奥氏体不锈钢含Cl-溶液发生SCC破裂敏感性随温度升高而增大。SCC开裂温度也是一个重要参数。Truman[16]认为,奥氏体不锈钢在室温下一般不发生氯化物开裂。Money[17]也证实只有严重敏化的奥氏体不锈钢才发生IGSCC(Intergranular Stress Corrosion Cracking)。传统的工程观点认为,温度高于50℃时,在腐蚀环境中经长期暴露的材料有可能发生氯化物开裂。氯化物开裂与温度的下限有一定的依赖关系,但 601 化 工 机 械 1998年Ξ郦建立,男,1967年11月生,博士生。辽宁省抚顺市,113001。

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀 是材料、或在静 (主要是拉应力 )和腐蚀的共同作用下产生的失效现 象。 它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧 急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜 被腐蚀而受 到破坏 , 破坏的表面和未破坏的表面分别形成阳极和阴极 , 阳极处的金属 成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电 流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹, 裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还 能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应 力腐蚀, 不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合 避免使用对应力腐蚀敏感的材料 , 可以采用抗应力腐蚀开裂的不锈钢系列 工作状态下构件所承受的外加载荷形成的抗应力。 加工,制造,热处理 引起的内应力。 装配,安装形成的内应力。 温差引起的热应力。 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要 的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开 裂,合金比纯金属更易发生应力腐蚀开裂。 下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金 可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有害物 质浓度往往很低,如大气中微量的 H 2S 和NH 可分别引起钢和铜合金的应力腐蚀开裂。 空气中少量NH 是鼻子嗅不到 而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响 理选材, 如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构 件,减 少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。 采用金属或 非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也 可减小或停止应力 腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究, 并分析比较应力腐蚀断裂 其他环境作用条件下发生失效的特征。,由于应力腐蚀的 测试方法与本文中重点分析之处 结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1. 2. 3 . 4 .

管道的应力腐蚀断裂.docx

管道的应力腐蚀断裂 四川省的天然气管线由于介质未处理好,在被输送的天然气中 H2S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国 1955 年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越 来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCracKing而来的,其定义为:在应力和介质联 合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a 小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或( 和 ) 环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互作用下引起的应力腐蚀 断裂。一、应力腐蚀的机理 为说明应力腐蚀需先简单的介绍腐蚀反应。大家知道,钢铁 放在潮湿的空气中,就会生锈,锈不断脱落,就会导致截面减小 和重量减轻,这称为钢铁受到了腐蚀。腐蚀是一种电化学过程, 它又可分为阳极过程和阴极过程,这二者是共存的。 金属原子是由带正电的金属离子,对钢来说,就是二价的铁离子 F2+和周围带负电的电子云 ( 用 e- 来表示)构成的,如下所

示: Fe→ Fe2++2e-上式是一个可逆反应。当铁遇到水,铁离子Fe2+ 和水化合的倾向比 Fe2+与 e- 结合成金属的倾向还要强,因此金 属铁遇到水后就会发生如下反应: 上式放出电子e- ,故称为阳极反应。 阳极反应所放出的电子必须通过阴极过程( 即吸收电子的过 程) 被取走,式的反应才能继续存在,否则该式将是可逆的。 一种常见吸收电子的阴极过程是吸氧过程,见下式: O2+2H2O+4e→- 4OH-氢氧根 OH-和铁离子F e2+结合,就会产生铁锈,即 Fe2O3 2Fe2++60H-→ Fe2O3·3H2O综合阳极过程和阴极过程,即联合上两式,可写出下式: 4Fe+nH2O+3O2→ 2Fe2O3·nH2O 由上式可以看出,钢管生锈的条件为第一要接触水( 或潮湿的空气 ) ,第二要接触空气,以提供 O2前者是阳极过程,后者是阴极过程。 实验表明,和腐蚀介质相接触的阳极金属介面上会形成一层 致密的复层,即纯化膜,它能阻碍阳极金属进一步溶解。但金属

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响 赵尔冰1 ,张亦良2 ,陈鴒志1 ( 1. 北京市朝阳区特种设备检测所,北京 100122; 2. 北京工业大学 机械工程与应用电子技术学院,北京 100124) 摘 要: 针对氯离子环境中奥氏体不锈钢焊缝较高的焊接残余应力极易引发应力腐蚀开裂的普遍性工程难题, 对国产 304、316 L 、德国 304 钢 3 种材料的不同焊接工艺进行了系列应力腐蚀实验研究. 焊接工艺包括手工焊条 电弧焊及 CO 2 保护药芯电弧焊、焊后空冷及浇水速冷,取样位置包括母材、焊缝起弧及收弧. 通过 100 多个试样 的应力腐蚀对比实验,研究了各种工艺之间的优劣,拟合了 2 种材料在沸腾氯化镁环境中应力 - 寿命的数学关 系. 结果表明,对应力腐蚀寿命而言,316 L 是 304 钢的 15 倍以上、焊接起弧点高于收弧点、对接焊缝高于角焊 缝; 焊后速冷工艺可提高焊接接头抗应力腐蚀能力. 关键词: 奥氏体不锈钢; 起弧; 收弧; 水冷处理; 氯离子应力腐蚀 中图分类号: O 346. 2 + 2; T G174. 3 + 6; R187 + 5 文献标志码: A 文章编号: 0254 - 0037( 2011) 11 - 1601 - 06 为了满足卫生要求,医疗、卫生和食品行业使用的灭菌器一般采用奥氏体不锈钢制造. 进口灭菌器寿 命一般为 10 a 以上[1-2] ,而国产灭菌器短时间内开裂报废的现象十分普遍,已经成为行业一大难题,在造 成医疗成本居高不下的同时,对医疗卫生安全产生极大隐患. 作者曾对开裂的灭菌器进行失效分析,结果 表明开裂原因为典型的氯离子应力腐蚀 [3-4] ,开裂灭菌器及金相、断口形貌见图 1、 2. 图 1 灭菌器内腔开裂 F i g . 1 I nn e r surface of the s t e r i l i z e r 图 2 典型的应力腐蚀特征 F i g . 2 T y p i c a l feature of s t r e ss c o rr os i o n 虽然采用铁素体、马氏体或双相不锈钢可以解决应力腐蚀问题,但考虑到制造工艺和制造成本,国内 外设备制造单位仍然选用奥氏体不锈钢. 该材料的最大问题是氯离子应力腐蚀,主要影响因素为拉应力 水平和氯离子浓度[5-6] ,其中残余应力是最主要的影响因素,目前对有效降低焊接残余应力虽然已经做了 一些工作 [7-11 ] ,但研究成果的实用性仍较为欠缺. 针对灭菌器裂纹主要出现在焊缝及热影响区的特征[3] ,鉴于目前氯离子应力腐蚀数据较少、尤其缺 乏不同焊接工艺的影响、不同材料与实际工况对比实验的现状,本文立足于通过对 3 种不同材料、不同焊 接工艺、不同焊后处理工艺等系列应力腐蚀实验,得到相应的应力腐蚀断裂寿命,比较不同材料及不同工 艺的应力腐蚀特征,找出焊后的薄弱环节,提出防止应力腐蚀的有效措施,为工艺改造提供基础实验依据. 收稿日期: 2009-07-13. 基金项目: 北京市朝阳区社会发展项目( SF0702) . 作者简介: 赵尔冰( 1963—) ,男,河北平山人,高级工程师.

应力腐蚀

应力腐蚀 (一)应力腐蚀现象 金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。 应力腐蚀断裂并不是金属在应力作用下的机械性破坏与在化学介质作用下的腐蚀性破坏的迭加所造成的,而是在应力和化学介质的联合作用下,按持有机理产生的断裂。其断裂抗力比单个因素分别作用后再迭加起来的要低很多。由拉伸应力和腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀(常用英文的三个字头SCC表示)。不论是韧性材料还是脆性材料都可能产生应力腐蚀断裂。 应力腐蚀断裂一般都是在特定的条件下产生的: 1.只有在拉伸应力作用下才能引起应力腐蚀开裂(近来有研究说压应力下也可能产生)。这种拉应力可以是外加载荷造成的应力;也可以是各种残余应力,如焊接残余应力,热处理残余应力和装配应力等。一般情况下,产生应力腐蚀时的拉应力都很低,如果没有腐蚀介质的联合作用,机件可以在该应力下长期工作而不产生断裂。 2.产生应力腐蚀的环境总是存在特定腐蚀介质,这种腐蚀介质一般都很弱,如果没有拉应力的同时作用,材料在这种介质中腐蚀速度很慢。产生应力腐蚀的介质一般都是特定的,也就是说,每种材料只对某些介质敏感,而这种介质对其它材料可能没有明显作用,如黄铜在氨气氛中,不锈钢在具有氯离子的腐蚀介质中容易发生应力腐蚀,但反应过来不锈钢对氨气,黄铜对氯离子就不敏感。 3.一般只有合金才产生应力腐蚀,纯金属不会产生这种现象.合金也只有在拉伸应力与特定腐蚀介质联合作用下才会产生应力腐蚀断裂。 常见合金的应力腐蚀介质: 碳钢:荷性钠溶液,氯溶液,硝酸盐水溶液,H2S水溶液,海水,海洋大气与工业大气 奥氏体不锈钢:氯化物水溶液,海水,海洋大气,高温水,潮湿空气(湿度90%),热NaCl,H2S水溶液,严重污染的工业大气(所以不锈钢水压试验时氯离子的含量有很严格的要求)。 马氏体不锈钢:氯化的,海水,工业大气,酸性硫化物 航空用高强度钢:海洋大气,氯化物,硫酸,硝酸,磷酸

奥氏体不锈钢的常见腐蚀及避免措施

奥氏体不锈钢的常见腐蚀及避免措施 古晓辉 (江西东风药业股份有限公司工程维修部) 摘要:奥氏体不锈钢的常见腐蚀、腐蚀机理及采取避免措施 关键词:奥氏体不锈钢腐蚀机理措施 在不锈钢中,铬镍奥氏体不锈钢(以Cr18Ni9为基本型)得到广泛应用,其产量占不锈钢产量的70%左右,常见的品种有316(O Cr17Ni12Mo2)、316L (OO Cr17Ni14Mo2)、304(OCr18Ni9)、304L(00Cr18Ni10)及321(OCr18Ni10Ti),不同型号不锈钢合金元素的组成(见下表): 组成 316 OCr17Ni12Mo2 316L OO Cr17Ni14Mo2 304 O Cr18Ni9 304L O Cr18Ni10 321 OCr18Ni10Ti C碳[0.06%[0.03%[0.06%[0.03%[0.06% Si硅[1%[1%[1%[1%[1% Mn锰[2%[2%[2%[2%[2% P磷[0.035%[0.035%[0.035%[0.035%[0.035% S硫[0.03%[0.03%[0.03%[0.03%[0.03% Ni镍16%-18%16%-18%8%-11%8%-12%8%-12%6 Cr铬12%-14%14%-16%17%-19%17%-19%17%-19% Mo钼 1.8%- 2.5% 1.8%- 2.5% 其它Ti:@C%-0.6 它们的共同特点是具有耐腐蚀性和较好的耐热性。然而,/耐腐蚀0性是相对的,其/耐腐蚀0性是指在一定的外界条件和一定的腐蚀介质中,具有高的化学稳定性的特性。但此类不锈钢在某些介质情况下使用,会产生晶间腐蚀、点蚀和应力腐蚀等类型的腐蚀,特别是在含氯离子的介质中尤会产生腐蚀,众所周知,在二次大战中,有人曾用普通奥氏体不锈钢建造扫雷艇在海水中使用,其根据是奥氏体不锈钢也是非磁性的,而且比木材(高级),但这艘船并未投入使用,在试航期间就是由于发生应力腐蚀破裂而损坏。 通常采用超低碳或低碳不锈钢的方法来解决,但超低碳或低碳不锈钢不是解决此类腐蚀的根本方法,因此类腐蚀还与其它因素有关。笔者曾作过这样的试验,在无菌液贮罐(外带夹套,夹套内走氯化钙)的制作中,筒体材料一台选316L,而一台选321,对其在制造中考虑到其它因素(从结构、焊接工艺、制后处理等方面加以保证)。结果3161L贮罐只使用了3-4月就出现腐蚀,而另一台321贮罐使用近两年还没出现腐蚀。因此,我们在实际应用中要想合理选用奥氏体不锈钢,就得了解其腐蚀机理,从而采用相应的避免腐蚀措施。1、奥氏体不锈钢的腐蚀机理: 奥氏体不锈钢的常见腐蚀:有晶间腐蚀、点蚀和应力腐蚀等。 1.1当奥氏体不锈钢在制造和焊接时,加热温度和加热速度处在敏化温度区域时,材料中过饱和碳就会在晶粒边界首先析出,并与铬结合形成碳化铬,此时碳在奥氏体内的扩散速度比铬扩散速度大,铬来不及补充晶界由于形成碳化铬而损失的铬,结果晶界的铬的含量不断降低,形成贫铬区,使电极电位下降,当与含氯离子等腐蚀介质接触时,就会引起微电池腐蚀。虽然腐蚀仅在晶粒表面,但却迅速深入内部形成晶间腐蚀。由此,我们知道产生晶间腐蚀的原因有:只有在 220江西化工2006年第4期

氯离子对奥氏体不锈钢的腐蚀机理

氯离子对奥氏体不锈钢的腐蚀机理 氯离子对奥氏体不锈钢的腐蚀主要使点蚀。 机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性路氯化物,结果在露出来的机体金属上腐蚀了一个小坑。这些小坑被成为点蚀核。这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平很腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。如此循环,奥氏体不锈钢不断的腐蚀,越来越快,并且向孔的深度方向发展,直至形成穿孔。 由于Cl离子是水中经常含有的物质,又是引起若干合金局部腐蚀的所谓“特性离子”(破钝剂),它进入缝隙或蚀孔内还会与H+生成盐酸,使腐蚀加速进行。 氯离子被认为是304不锈钢发生局部腐蚀的主要原因之一,由于氯离子半径小,穿透钝化膜的能力强,其电负性又很大,氯离子的存在加速了304不锈钢的腐蚀。另外,应力的存在也加速了氯离子对304不锈钢的腐蚀,降低了304不锈钢抗氯离子应力腐蚀的临界浓度。 在氯离子存在的情况下,多发生的是孔蚀也叫点蚀,属于电化学腐蚀。点腐蚀多发生在上表面生成钝化膜的金属材料上或表面有阴极性镀层的金属上,当这些膜上某点发生破坏,破坏区下的金属基体与膜未破坏区形成活化—钝化腐蚀电池,钝化表面为阴极,而且面积比活化区大很多,腐蚀就向深处发展而形成小孔。 点腐蚀发生于有特殊离子的介质中,例如不锈钢对含有卤素离子的溶液特别敏感,其作用顺序为Cl—>Br>1—。这些阴离子在合金表面不均匀吸附导致膜的不均匀破坏。氯离子具有很强的穿透本领,容易穿透金属氧化层进入金属内部,破坏金属的钝态。同时,氯离子具有很小的水合能,容易被吸附在金属表面,取代保护金属的氧化层中的氧,使金属受到破坏。点腐蚀发生在某一临界电位以上,该电位称为点蚀电位(或击破电位),用Eb表示。如把极化曲线回扫,又达到钝态电流所对应的电位Erb,称为再钝化电位(或叫保护电位)。大于此值,点蚀迅速发生、发展;在Eb~Erb之间,已发生的蚀孔继续发展。此种形态的腐蚀决定于阳极和阴极的面积比。若阳极的位置不随时间而变化,且阳极的面积远小于阴极,则阳极的电流密度(currentdensity注二)甚大,因此腐蚀速率较快而产生孔蚀,点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 氯化物应力腐蚀开裂简介 氯化物应力腐蚀开裂是一种十分常见的奥氏体钢炉管破裂形式。不同材质的奥氏体钢炉管发生开裂时介质中的氯化物浓度差别很大,一般在30ppm以上,但少数比较敏感的钢,如304钢可能几个ppm甚至更低的浓度就会腐蚀开裂。在某些情况下,虽然介质中氯化物浓度较低,但由于在某些不规则表面的局部浓缩,也会造成应力腐蚀开裂。在有溶解氧的情况下会加速腐蚀。大多数奥氏体钢应力腐蚀开裂均发生在75℃以上,低于50℃时,材料不发生应力腐蚀开裂。一般情况下,氯化物应力腐蚀开裂为穿晶开裂,但由于热处理不当使材料敏化或材料长期处于敏化温度工作时,也会发生沿晶开裂。

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

相关文档
相关文档 最新文档