文档库 最新最全的文档下载
当前位置:文档库 › 矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算(1)(1)
矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算

周和伟

物理与电子信息工程学院 07物理学 07234030

[摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。

[关键词]:矩形波导电磁波截止波长

1 绪言

波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。

2 电磁波基本原理

2.1建立麦克斯韦方程组的历史背景

麦克斯韦首先从论述力线着手,初步建立起电与磁之间的基本关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第的电紧态和力线概念,引进感生电场概念,推导出了感生电场与变化磁场之间的关系。

1862年他发表了第二篇论文《论物理力线》,不但进一步发展了法拉第的思想,扩充到磁场变化产生电场,而且得到了新的结果:电场变化产生磁场。因此预言了电磁波的存在,并且证明了这种波的速度等于光速,揭示了光的电磁本质。

1864年他的第三篇论文《纯磁场的动力学理论》,这篇文章包括了麦克斯韦电磁理论研究的主要成果,麦克斯韦主要从几个基本实验事实出发,运用场论的观点,引进了位移电流概念,按照电磁学的基本原理推导出全电流定理,最后建立起电磁场的基本方程。

麦克斯韦在总结库仑、高斯、欧姆、安培、毕奥萨伐尔、法拉第等前人的一系列发现和实验成果的基础上。结合自己提出的涡旋电场和位移电流的概念,建立了第一个完整的电磁理论体系。这个重要的研究结果以论文的形式发表在1865年的英国皇家学会的会报上。论文中列出了最初形式的方程组,由20个等式和20个变量组成,其中包括麦克斯韦方程组的分量形式。

2.2 麦克斯韦方程组

2.2.1 涡旋电场假说、位移电流假说

一个闭合回路固定在变化的磁场中,则穿过闭合回路的磁通量就要发生变化。根据法拉第电磁感应定律,闭合回路中要产生感应电动势。因而在闭合回路中,必定存在一种非静电性电场。

麦克斯韦对这种情况的电磁感应现象作出如下假设:任何变化的磁场在它周围空间里都要产生一种非静电性的电场,叫做感生电场,感生电场的场强用符号E 表示。感生电场与静电场有相同处也有不同处。它们相同处就是对场中的电荷都施以力的作用。而不同处是[4]:(1)激发的原因不同,静电场是由静电荷激发的,而感生电场则是由变化磁场所激发:(2)静电场的电场线起源于正电荷,终止于负电荷,静电场是势场,而感生电场的电场线则是闭合的,其方向与变化磁场的关系满足左旋法则,因此感生电场不是势场而是涡旋场。正是由于涡旋电场的存在,才在闭合回路中产生感生电动势,其大小等于把单位正电荷沿任意闭合回路移动一周时,感生电场i E 所作的功表示为: ?=-=Edl dl

d E m l φ (2.1) 应当指出:法拉第建立的电磁感应定律,只适用于由导体构成的回路,而根据麦克斯韦关于感生电场的假设,电磁感应定律有更深刻的意义,即不管有无导体构成闭合回路,也不管回路是在真空中还是在介质中,式(2.1)都是适用的。如果有闭合的导体回路放人该感生电场中,感生电场就迫使导体中自由电荷作宏观运动,从而显示出感生电流;如果导体回路不存在,只不过没有感生电流而已,但感生电场还是存在的。从式(2.1)还可看出:感生电场E 的环流一般不为零,所以感生电场是涡旋场。

位移电流概念是麦克斯韦在建立电磁场理论过程巾提出的重要假设。它表明,磁砀不仅可以由电流产生,变化的电场也可以产生磁场。位移电流和有旋电场的概念从两个方面深刻而完整地揭示了电场和磁场之间的在联系和相互依存,即电磁场是统一的不可分割的整体。

传导电流和位移电流都能产生磁场,两种磁场都能对其中的电流或运动电荷施加磁力,两种磁场的性质也相同,即都是有旋无源的。但是,两种磁场也有区别,除了产生原因不同外,由于位移电流并不表示电荷在空间的运动,所以它与传导电流不同,没有

热效应和化学效应,只有磁效应。空间的总磁场是传导电流和位移电流产生的磁场之和,是无源有旋的矢量场,其磁力线闭合。

位移电流假设的提出,消除了把安培环路定理从恒定情形推广到变化情形时遇到的矛盾和困难,使麦克斯韦得以建立完备的电磁场方程组。麦克斯韦方程组关于电磁波等理论预言实验的证实,不仅具有深刻的理论意义和巨大的应用价值,也证明了位移电流假设的正确性。

2.2.2 麦克斯韦方程组的简易推导

(1)麦克斯韦方程组的积分形式[5]

在电磁学中我们知道,一个电荷q 发出的电通量总是正比于q ,与附近有没有其他电荷存在无关。由库仑定律可以推出关于电通量的高斯定理:

εq s d E s =?? (2.2) 因静电场的电场线分布没有旋涡状结构,因而可推导静电场是无旋的。1831年法拉第发现当磁场发生变化时,附近闭合线圈中的感应电动势与通过该线圈部的磁通量变化率成正比,可表示为:

S d B dt

d s ?-=?ε (2.3) 感应电动势是电场强度沿闭合回路的线积分,因此电磁应定律可写为:

S d B dt

d l d E s ?-=??? (2.4) 若回路L 是空间中的一条固定回路,则(2.4)式中对t 的全微分可代为偏微分:

S d t B l d E s ???-=??? (2.5)

下面研究电流和磁场的相互作用。

实验指出,一个电流元历在磁场中所受的力可以表为:

B l Id F d ?= (2.6)

恒定电流激发磁场的规律由毕奥一萨伐尔定律给出。设()

'x J 为源点'x 上的电流密度,'r 为由'x 到场点x 的距离,则场点上的磁感应强度为:

()()

'3'0

4dr r r x J u x B ??= π (2.7) 试(2.7)中的0u 为真空磁导率,积分遍及电流分布区域。细导线上恒定电流激发磁场的毕奥一萨伐尔定律写为:

()?=34r l Id u x B o

π (2.8)

根据安培环路定律,对于连续电流分布j ,在计算磁场沿回路l 的环量时,只需考虑通过以l 为边界的曲面的电流,在s 以外流过的电流没有贡献。因此,环路定律表为:

s d j u l d B s o l

?=??? (2.9) 上面研究了变化磁场激发电场,由麦克斯韦位移电流假设的结论变化电场激发磁场可推广得:

s d t E j u l d B o s o ????

? ????+=???ε (2.10) 由电磁学的知识,我们知道由电流激发的磁感应线总是闭和曲线,因此,磁感应强度雪

是无源场,表示B 无源性的积分形式是雪对任何闭和曲面的总通量为零,即利用磁场高

斯定理得:

o s d B s =?? (2.11)

由上得出麦克斯韦方程组的积分形式:

εq s d E s =?? S d t B l d E s l ???-=???

o s d B s =??

s d t E j u l d B o s o l ????

? ????+=???ε (2.12) (2)麦克斯韦方程组的微分形式【7】

由麦克斯韦方程组的积分形式和数学公式:

()

V d A S d A v s ??=??? ()S d A l d A s

l ??=??? (2.13) 推导出微分形式如下:

o

E ερ=?? t

B E ??-=?? 0=??B

t

E u j u B o o o ??+=?? ε (2.14) 2.2.3 麦克斯韦方程组的意义

麦克斯韦方程组最重要的特点是它揭示了电磁场的部的作用和运动。不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。因此只要某处发生电磁扰动。由于电磁场相互激发,它就在空间中运动传播,形成电磁波。麦克斯韦首先从这个方程组在理论上预言了电磁波的存在,并且指出光波就是一种电磁波【10】。麦氏方程组不仅揭示了电磁场的运动规律,更揭示了电磁场可以独立于电荷之外而存在,这样就加深了我们对电磁场物质性的认识。

2.3 从麦克斯韦方程组出发推导电磁波的波动方程

2.3.1 电磁波波动方程

一般情况下,电磁波的基本方程是麦克斯韦方程组[5]:

t

B E ??-=?? J t

D H +??=?? ρ=??D 0=??B (2.15)

现在我们在研究在没有电荷电流分布的自由空间或均匀的绝缘介质中的电磁场运动形式。在自由空间中,电磁和磁场互相激发,电磁场的运动规律是齐次得到麦克斯韦方程组:

t

B E ??-=?? t

D H ??=?? 0=??D

0=??B (2.16)

先讨论真空情形。在真空中,E D 0ε= ,H B 0μ=。取( 2.16 )第一式子的旋度并利用

第二式得:

()

2200t E B t E ??-=????-=???? εμ (2.17) 用矢量分析公式及0=??E 得

E E E E 22)()(-?=?-???=????

代入(2.17)式得电场E 的偏微分方程:

022002=??-?t

E E εμ (2.18)

截止波长

8-1 什么叫截止波长?为什么只要c λλ<的波才能在波导中传输? 答:导行波系统中,对于不同频率的电磁波有两种工作状态——传输与截止。介于传输与截止之间的临界状态,即由0=γ所确定的状态,该状态所确定的频率称为截止频率,该频率所对应的波长称为截止波长。 由于只有在02<γ时才能存在导行波,则由0222<-=k k c γ可知,此时应有 22k k c < 即 ωμεμεω<2c 所以,只有c f f >或c λλ<的电磁波才能在波导中传输。 8-2 何谓工作波长,截止波长和波导波长?它们有何区别和联系? 解:工作波长就是TEM 波的相波长。它由频率和光速所确定,即 r r f c ελελ0==光 式中,0λ称为自由空间的工作波长,且f c 光 = 0λ。 截止波长是由截止频率所确定的波长,且 r c c f c ελ= 波导波长是理想导波系统中的相波长,即导波系统内电磁波的相位改变π2所经过的距离。波导波长与c λλ,的关系为 21???? ??-=c g λλλ λ 8-3 何谓相速和群速?为什么空气填充波导中波的相速大于光速,群速小于光速? 解:相速是电磁波等相位点移动的速度。群速是包络波上某一恒定相位点移动的速度。 根据平面波斜入射理论,波导内的导行波可以被看成平面波向理想金属表面斜入射得到的,如图所示。从图中可以看出,由于理想导体边界的作用,平面波从等相位面D 上的A 点到等相位面B 上的M 点和F 点所走过的距离是不同的,AF AM <。但在相同的时间内,相位改变量相同。这必要求沿→AF 即Z 轴方向的导行波的相速p v 比沿→ AM 方向的平面波的相

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要] 人类进入21世纪的信息时代,电子与信息科学技术在飞速发 展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。.矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作, 所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导 TM 波 TE 波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银, 它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们将波导的良导电体壁近似为理想导电壁。由前面的讨论我们知道,矩形波导中不能传输TEM 波,只能传输TE 波和TM 波。设矩形波导宽为a,高为b,(a>b )沿Z 轴放置,如图(1)所示。下面分别求解矩形波导中传输的TE 波和TM 波。 1TM 波 对于TM 波,z z E H ,0=可以表示为; z jk z z e y x E z y x E -=),(),,(0 (1) 式中),(0y x E 满足齐次亥姆霍兹方程,故有 0),(),(02 02 =+?y x E k y x E c (2) 采用分离变量法解此方程,在直角坐标系中,令 ) ()(),(0y Y x X y x E = (3)

0)()(2 ''=+x X k x X x 将(3)式代入(2)式中,并在等式两边同除以)()(y Y x X 得: 0) ()()()(2 ''''=++c k y Y y Y x X x X (4) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的常数,要使上式对任何X 、Y 都成立,第一和第二项也应分别是常数,记为: 2 ''2 '') ()()()(y x k y Y y Y k x X x X -=-= 这样就得到两个常微分议程和3个常数所满足的方程: (5) 0)()(2 ''=+y Y k y Y y (6) 222y x c k k k += (7) 常微分方程(5)和(6)的通解为 )sin()cos()(21x k C x k C x Y x x += (8) )sin()cos()(43y k C y k C y Y y y += (9) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到z E 的通解为 [][] z jk y y x x z z e y k C y k C x k C x k C z y x E -++=)sin()cos()sin()cos(),,(4321 由矩形波导理想导电壁的边界条件0=E ,确定上式中的几个常数,在4个理想导电壁上,z E 是切向分量,因此有: (1) 在0=X 的波导壁上,由0),,0(==z y x E z 得01=C ; (2) 在0=Y 的波导壁上,由0),0,(==z y x E z 得03=C ; (3) 在a X =的波导壁上,要使0),,(==z y a x E z 有0)sin(=a k x ,从而必须有 πm a k x =,其中 3,2.,1=m 为整数,由此得 a m k x π = (10) (4)在b X =的波导壁上,要使0),,(==z b y x E z 有,0)sin(=b k y 从而必定有πn b k y =,其中 3,2.,1=n 也为整数,由此得

(完整word版)利用Matlab实现矩形波导电磁场分布图的绘制

利用Matlab实现矩形波导电磁场分布图的绘制(附源程序) 通过Matlab 计算并绘出任意时刻金属矩形波导的主模TE10 模的电磁场分布图。波导 尺寸、工作频率及时刻均由外部给定。 A.矩形波导中传输的主模为TE10模。设金属波导尺寸为a*b,TE10模的截止波长为 2*a。其电磁场分量可推导表示如下:?(1-1)上式中各参量如下,λ?(1-2) B.用Matlab画电磁力线的步骤: 1.由外部给定的波导尺寸、工作频率参照(1-2)式计算得到参量。 2.由外部给定的绘图精度,分别确定电场和磁场的坐标点。按照公式(1-1)计算 得到电场、磁场的分量。 3.用quiver3函数,绘制磁场分布。允许图像叠加。 4.用quiver3函数,绘制电场分布。不允许图像叠加。 C.三维的电力磁力线分布效果图

图1 图2 C.附程序清单 rectwavestrct1(22.86,10.16,6,1,9.84*10^9,0.03); %main function rectwavestrct1(ao,bo,d,H0,f,t) %画矩形波导场结构所有计算单位为米输入为毫米 %f l0 工作频率/波长 %lg 波导波长%lc TE10模截止波长 %a b 波导尺寸%c 传输方向这里取为波导波长%d 采样精度%t t时刻的场结构图 a=ao/1000; b=bo/1000;

lc=2*a; %TE10截止频率 l0=3*10^8/f; u=4*pi*10^(-7); if(l0>lc) return; else clf; lg=l0/((1-(l0/lc)^2)^0.5); c=lg; B=2*pi/lg; w=B/(3*10^8); x=0:a/d:a; y=0:b/d:b; z=0:c/d:c; [x1,y1,z1]=meshgrid(x,y,z); %mesh(x1,y1,z1); hx=-B.*a.*H0.*sin(pi./a.*x1).*sin(w*t-B.*z1)./pi; hz=H0.*cos(pi./a.*x1).*cos(w*t-z1.*B); hy=zeros(size(y1)); quiver3(z1,x1,y1,hz,hx,hy,'b'); hold on; x2=x1-0.001; y2=y1-0.001; z2=z1-0.001; ex=zeros(size(x2)); ey=w.*u.*a.*H0.*sin(pi./a.*x2).*sin(w*t-B.*z2)./pi; ez=zeros(size(z2)); quiver3(z2,x2,y2,ez,ex,ey,'r'); xlabel('传输方向'); ylabel('波导宽边a'); zlabel('波导窄边b'); hold off; end %------------------------------------------------------------------End Code----------------------------------

第八章矩形波导复习资料0604要点

第八章 矩形波导 1. 波导中的传播条件:f>fc 或λ<λc 2. 矩形波导能传输TM 波和TE 波,不能传输TEM 波。 3. 矩形波导中:TEmn 模:m 和n 皆可取0,但又不能同时为0 TMmn 模。显然,m,n 皆不可能为0,故最低阶模为TM11 其中:m 表示电磁场沿波导宽边a 分布的半波数的个数,n 表示电磁场沿波导窄边b 分布的半波数的个数。 当m 和n 取非零值时,TMmn 模和TEmn 模具有相同的截止参数,这种现象称为模式简并,相应的模式称为简并模式。例如,TM21模和TE21模是简并模式。 4. 波长 ①工作波长λ:定义:微波振荡源所产生的电磁波的波长。 v f λ= = 若填充空气,则8310/v c m s ===? 若填充r ε 的介质,则v = ②波导波长λg :在波导内,合成波沿的等相位面在一个周期内所走过的路程定义为波导波长λg 。 2g π λβ = = ③截止波长λc :电磁波处于能传输与不能传输的临介状态,此时对应的波长称为截止波长,对应的频率叫截止频率,fc.(或定义为:导行波不能在波导中传输时所对应的最低频率称为截止频率,该频率确定的波长称为截止波长。) g λλ >

c c v f λ= = c c v f λ= 5.传播速度 若填充空气,则8310/v c m s ===? ,若填充r ε 的介质,则v = ①相速度vp :定义 p v ω β = = 或 p g v f λ= p v v > ②群速度vg :群速度(能速)就是电磁波所携带的能量沿波导纵轴方向(z 轴)的传播速度。 g v = 2p g v v v = g v v < 6.色散现象:传播速度与频率有关的现象 时延失真:波导传输频带内各不同频率的信号传输时间不等,造成信号失真,这种失真称为时延失真。 7. 波阻抗:波导中某种波型的阻抗简称为波阻抗。定义为波导横截面上该波型的电场强度与磁场强度的比值。 TM 波的:x TM y E Z H ==TE 波 : TE Z =

矩形波导中场结构模拟实验

实验 矩形波导中场结构模拟实验 一、实验目的要求: 1.通过实验编程及图像动态演示,形象具体的了解电磁波在波导中传播特性。 2.通过编写Matlab 程序,加深矩形波导中电磁波公式推导以及单模电磁波在矩形波导中的传播理解。 二、实验内容: 电磁场本身比较复杂和抽象,是涉及空间和时间的多维矢量场,需要具有较强的空间想象能力来理解它。 1.实验原理: 矩形波导是截面形状为矩形的金属波导管,如图一所示。 波导内壁面位置坐标设为:x=0和x=a ;y=0和y=b 。波导中填充介电常数为ε、磁导率为μ、电导率为σ的媒质,通常波导内填充理想介质(σ=0)。由于波导内没有自由电荷和传导电流,所以传播的电磁波是正弦电磁波。理想导电壁矩形波导中不可能传输TEM 模,只能传输TE 模或TM 模。对于矩形波导中TE MN 模的电场强度E 、磁场强度H 场分量表达式为: (02cos sin j t z x c j n m n E H x y e k b a b )ωβωμπππ???????=???????????? (1) (02sin cos j t z y c j m m n E H x y e k a a b )ωβωμπππ???????=???????????? (2) (3) 0z E =

(02sin cos j t z x c j m m n H H x y e k a a b )ωββ πππ???????=???????????? (4) (02cos sin j t z y c j n m n H H x y e k b a b )ωββπππ???????=???????????? (5) (0cos cos j t z z m n H H x y e a b )ωβππ?????=???????? (6) 其中:ω为微波角频率;m 和n 值可以取0或正整数,代表不同的TE 波场结构模式,称为TE 模,波导中可有无穷多个TE 模式;k c 为临界波束,k c 2=(m π/2)2+(n π/b )2;β为相 位常数,β= 。 波导中的一个重要参数为截止频率f c ,有 c f = (7) 当工作频率低于截止频率f c 时,电磁场衰减很快,不可能传播很远,所以波导呈现高通滤波器的特性,只有工作频率高于截止频率f c 时电磁波才能通过。具有最低截止频率的模式,成为最低模式,也称为主模,其他模式都成为高次模式。在矩形波导内传输 的所有模型中,TE 10模为主模。 2. 实验步骤: 设置矩形波导宽边a =22.86mm ,窄边b =10.16mm ,波导内媒质为空气,当工作频率f 为9.84GHz 时,波导中只能传输TE 10模。 利用Matlab 显示矩形波导TE10模的电磁场分布的程序设计过程: (1)根据已知参数m ,n ,a ,b 和f 编程计算kc ,β和ω角频率等参数。 Matlab 中代码实现: a=22.86*1e-3; b=10.16*1e-3; f=9.84*1e9; m=1; n=0; miu=4*pi*1e-7; eps=8.854*1e-12; %E=2.71828; kc=((m*pi/a)^2+(n*pi/b)^2)^0.5; w=2*pi*f; beta=(miu*eps*w^2-kc^2)^0.5; (2)根据式1-6定义的各场强变量,以电场强度、磁场强度各分量为因变量,以时间t 为自变量。 Matlab 中代码实现: ngrid=20; x=[0:a/ngrid:a];y=[0:b/2:b]; z=[0:0.04/ngrid:0.04];%定义x ,y ,z 坐标空间矩阵 %公式表示 for p=0:ngrid%执行循环p 赋初值0,循环步长为1,总步长ngrid for q=0:2 for r=0:ngrid%三层循环,赋值ex 、ey 、ez 、hx 、hy 、hz 空间上的数值 ex(p,q,r)=j*(w*miu/kc^2)*(n*pi/b)*cos((m*pi/a)*x(p))*sin((n*pi/b)*y(q))*exp(j*(

电磁波的在规则波导中的传播

讨论电磁波的在规则波导中的传播特性,就是确定在给定的边界条件下,满足麦克斯韦方程组的解,这个解的不同形式就表示不同的波型,这个解随时空的变化规律,便是电磁波在波导中传播规律。本节讨论在任意截面波导中的波动方程的求解方法以及电磁波在波导中传播的一般特性。 一、麦克斯韦方程组及边界条件 1.一般边界条件 2.理想导体表面的边界条件 二、规则波导中电磁场的求解方法 1.直接求解法 在给定边界条件下求解上述波动方程,便可得波导中电磁场的解。

2.赫兹矢量位法 (1)赫兹电矢量位引入赫兹电矢量位 (2)赫兹磁矢量位引入赫兹磁矢量位 3.纵向分量法 先求解满足标量波动方程的z方向分量(纵向分量);然后,由各分量间的关系求出其他分量(横向分量) 三、导行波波型的分类 波型也称模式,它指的是能够单独在波导传输线中存在的电磁场结构的型式。 1.横电磁波:即没有纵向电场又没有纵向磁场分量,即和的波,并以TEM 表示。TEM波只能存在于多导体传输线中,而不能存在于空心波导中。 2.横电波:凡是磁场矢量既有横向分量又有纵向分量,而电场矢量只有横向分量,即 的波称为磁波或横电波,通常表示为H波或TE波。 3.横磁波:凡其电场矢量除有横向分量外还有纵向分量,而磁场矢量只有横向分量,即 的波称为电波或横磁波,通常表示为E波或TM波。

§2.2 导行波的传输特性 各种不同横截面的波导系统传输导行波时,尽管横向场分布彼此各异,但它们有着共同的纵向传输特性。导行波的传输特性包括六个方面: 截止波长、波导波长、相速群速和色散、波阻抗、传输功率以及导行波的衰减 一、截止波长 在即的情况下,称为传输状态。 在即的情况下,这是传输系统的截止状态。 就是介于传输状态和截止状态之间的临界状态。 临界频率或截止频率: 临界波长或截止波长: 截止波数: 二、波导波长 波导中的波长称为波导波长,并记为 为真空中的波长。 对于TEM波, 三、相速、群速和色散 1、相速度——波导中传输的波的等相位面沿轴向移动的速度。 TE、TM波的相速度公式为 对于TEM波, 则

第五章 动态电磁场与电磁波(4)

?? =??-z x E j y H ωε ??? -=+??x y z z H j E jk y E ωμ ? ?-=-y x z H j E jk ωμ ?? -=??-z x H j y E ωμ 可得 y H k k j E z z x ??-- =? ? 22 ωμ y H k k jk H z z z y ??-- =? ? 22 y E k k jk E z z z y ??-- =?? 22 y E k k j H z z x ??-= ?? 22 ωε 式中μεω=k 。 显然,平板波导是一种均匀传输线。然而,上式表明,该导波系统还可以导引其它形式的电磁波。也就是说,沿电磁波传输方向的纵向磁场可以产生横向电场和横向磁场,或沿电磁波传输方向的纵向电场可以产生横向磁场和横向电场。在传输方向仅存在纵向磁场的电磁波被称为横电波(简称TE 波)或磁波(简称H 波),在传输方向上仅存在纵向电场的电磁波被称为横磁波(简称TM 波)或电波(简称E 波)。因此,对于一个导波系统,可能存在三种波型,即TEM 波、TE 波和TM 波。 TE 波:由波动方程,得 0d d 2 222=+-? ?? z z z z H k H k y H 引入y 方向波数k y ,使其满足

μεω2222==+k k k z y 则纵向磁场分量为 y k B y k A H y y z cos sin +=? 进一步,得 )sin cos (y k B y k A k j E y y y x --=? ωμ 由图示边界条件知,当y =0和y =b 时,0=? x E ,代入上式,得 0=A , ? =0H B ,b n k y π = , n = 1,2,3,… k y 称为平板波导的特征值。所以,TE 波的电磁场为 z k z z y b n H z y H j 0e cos ),(-? ? π= z k x z y b n H n b j z y E j e -??ππ=sin ),(0ωμ z k z y z y b n H n bk j z y H j e -??ππ=sin ),(0 2 2221?? ? ??-=??? ??π-=b n b n k z λμεωμεω 需要注意的是,上式中,n ≠0。当n =0时,不存在电磁波。下图分别画出了n =1和n =2时的场图。 (a) TE 1 (n =1)波型 (b) TE 2 (n =2)波型 图 TE n 波型场图 从图示场图不难看出,在横向y 方向上电磁场呈驻波分布,n 为横向y 方向

波导管的截止频率

能够在波导管内传播的电磁波型的最低角频率c ω,称为该波形的截止频率。 已知波数μεω22=K ,即K 决定于激发频率ω。由式.....2,1,0,,,z ===n m b n K a m K y ππ知x K 、y K 决定于波导管的几何尺寸ɑ、b 和波型m 、n 。从式με ω22222==++K K K K z y x 和.....2,1,0,,,z ===n m b n K a m K y ππ可知,对一定波形的波,其z K 为 2222 ,)()(b n a m C K mn z ππω--= 当2222 )()(b n a m C ππω+<时,z K 为虚数,此时传播因子z iK z e 变为衰减因子z K z e -。此情形下,电磁场振幅沿z 轴方向不断衰减,这种电磁波就不能在波导中传播。由此可见,角频率不能小于某一临界值,该值称为截止频率,所以 2222)()()()(b n a m b n a m c +=+=μεππυω 为明确起见,把对应的(m,n) 标出,有 22,)()(b n a m mn c +=μεπ ω 设ɑ>b,选0=z E 的横电波10TE ,得最低截止频率为 a c μεπω=10, 若管内为真空,则相应的频率和截止波长为 a C f c 2210,==πω a f C c 210,== λ 可见,波导管中能传输的最大波长取决于波导管的尺寸。由于波导管的几何尺寸不能做的过大,所以波长在厘米波段,波导管的应用最广。 心得:本次实验过程中,老师将书本上的理论知识生动形象地讲解出来,让我对书本上的知识有了更加深刻的理解。理论加实践的教学方式对于《勘探电磁场论》的学习有着非常大的帮助!

波导

解释1:由引导电磁波的一组物质边界或构件制成的传输线。 注:最普通的波导形式是一根金属管子。其他形式有(电)介质棒或由导电材料和介质材料组成的混合构件。 是一种用来约束或引导电磁波的结构。通常,波导专指各种形状的空心金属波导管和表面波波导,前者将被传输的电磁波完全限制在金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周围,又称开波导。当无线电波频率提高到3000兆赫至300吉赫的厘米波波段和毫米波波段时,同轴线的使用受到限制而采用金属波导管或其他导波装置。波导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗;结构简单,易于制造。波导管内的电磁场可由麦克斯韦方程组结合波导的边界条件求解,与普通传输线不同,波导管里不能传输TEM模,电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速度与频率有关。表面波波导的特征是在边界外有电磁场存在。其传播模式为表面波。在毫米波与亚毫米波波段,因金属波导管的尺寸太小而使损耗加大和制造困难。这时使用表面波波导,除具有良好传输性外,主要优点是结构简单,制作容易,可具有集成电路需要的平面结构。表面波波导的主要形式有:介质线、介质镜像线、H-波导和镜像凹波导。 波导(waveguide)用来引导电磁波的结构。因此,在广义的定义下,波导不仅是指空金属管,同时也包括其他波导形式如脊形波导、椭圆波导、介质波导等;还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等(下图)。如不附加说明,一般说到波导就是指空心金属管。根据波导横截面的形状不同,可分为矩形波导、圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导和圆波导仍是两种最主要的波导形式。 电磁波在波导中的传播受到波导内壁的限制和反射。波导管壁的导电率很高(一般用铜、铝等金属制成,有时内壁镀有银或金),通常可假定波导壁是理想导体,波导管内的电磁场分布可由麦克斯韦方程组结合波导的边界条件来求解。波导管内不能传输TEM波,电磁波在波导中的传播存在着严重的色散现象。波导中可能存在无限多种电磁场的结构或分布,每一种电磁场的分布称为一种波型(模式),每一种波型都有对应的截止波长和不同的相速。横截面均匀的空心波导称为均匀波导,均匀波导中电磁波的波型可分为电波(TM模)和磁波(TE 模)两大类。 矩形波导 矩形波导中可以存在无限多个TMmn 模,波型指数m,n分别表示电磁场沿波导宽边a和窄边b 的驻波最大值的个数,m,n=1,2,… 最简单的是TM11模。同样,还可以存在无限多个TEmn模,m,n=0,1,2,…但不能同时为零。矩形波导中的最低模式是TE10模,其截止波长最长λC=2a,因此,就有可能在波导中实现单模传输。TE10模又称为矩形波导中的主波,是矩形波导中最重要的波型。实际应用中矩形波导都工作在TE10模。 圆波导 圆波导中也可以存在无限多个TMmn和TEmn模,m,n分别表示场沿圆周和径向的变化次数。圆波导中只存在TM0n,TMmn(m,n=1,2,…),TE0n和TEmn(m,n=1,2,…)模。圆波导中截止波长最长的主波是TE11模,其截止波长λc=3. 14a(a 为波导半径)。常用的模式还有TM01和TE01模。

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。

滤波器截止频率与频响曲线的关系

截止频率 | | (2013-10-07 23:50:04) 转载▼ 分类:Vision 在物理学和电机工程学中,一个系统的输出信号的能量通常随输入信号的频率发生变 化(频率响应)。截止频率(英语:Cutoff frequency —)是指一个系统的输出信号能量开始大幅下降(在带阻滤波器中为大幅上升)的边界频率。 概述 电子滤波器等信号传输通道中的诸如低通、高通、带通、带阻等频带特性都应用了截止频率的概念。截止频率有时被定义为电子滤波器的导通频带和截止频带的交点,例如电路标称输出信号减3分贝的位置的频率。在带阻滤波器中,截止频率则被定义在输出信号能量大幅上升(或大幅下降)、失去“阻止”(或失去“通过”)信号效果的位置。在波导管或者天线的例子中,截止频率通常包括上限频率和下限频率。 截止频率的概念除了在电子工程有广泛应用,截止频率的概念还在等离子区振荡中 有所应用。 电子学 参见:波德图及分贝 在电子学中,截止频率是电路(例如导线、放大器、电子滤波器)输出信号功率超出或低于 传导频率时输出信号功率的频率。通常截止频率时输出功率为传导频率的一半,在波德图上

相当于为降低3分贝的位置所表示的功率,因为此时功率比例它:①将能m传到频带上的 Slk^fwdl 输出功率[2]。 低通滤波器的截止频率 右图所示为一个一阶的低通滤波器。它的截止频率由下式决定: 严—翻字 当信号频率低于这个截止频率时,信号得以通过;当信号频率高于这个截止频率时, 信号输出将被大幅衰减。这个截止频率即被定义为通带和阻带的界限。 高通滤波器的截止频率 右图所示为一个一阶的高通滤波器。它的截止频率由下式决定: JQ_2TT RC固 当信号频率高于这个截止频率时,信号得以通过;当信号频率低于这个截止频率时, 信号输出将被大幅衰减。这个截止频率即被定义为通带和阻带的界限。

矩形波导

微波技术基础考察小论文 请讨论矩形波导TE 10模的截止波长、相速、波导波长、波阻抗;其外形结构尺寸的确定遵循什么原则? 一、理论依据 1) 通常将由金属材料制成的、矩形截面的、内充空气介质的规则金属波导称为矩形波导, 它是微波技术中最常用的传输系统之一 矩形波导TE 波的截止波数: 2 2 ?? ? ??+??? ??=b n a m K c ππ 它与波导尺寸、传输波型有关。m 和n 分别代表TE 波沿x 方向和y 方向分布的半波个数, 一组m 、n, 对应一种TE 波, 称作TE mn 模; 但m 和n 不能同时为零, 否则场分量全部为零。因此,矩形波导能够存在TE m0模和TE 0n 模及TE mn (m,n ≠0)模; 其中TE 10模是最低次模(主模), 其余称为高次模。 2)单模传输 在传输过程中,如若我们需要传输TE 10模,我们需要抑制高次模的传输。因此工作波长应该满足: 10 20 TE TE λλλ<< 1001TE TE λλλ<< 二、问题解答 对于TE 10模即m = 1, n = 0 1)TE 10模的截止波数c K 为: a K c π= 2) 截止波长c λ: a a K c c 222=== πππλ 3)相速p v 表示波的等相位面沿波导的轴向(z )传播的速度, 其值:

2 2 211?? ? ??-= ??? ? ??-= = a v v w v c p λλλβ 4)波导波长g λ表示波导内沿其轴向传播的电磁波,它的相邻的两个同相位点之间的距离, 其值: 2 1???? ??-= = c p g f v λλλ λ 将截止波长代入,则: 波导波长: 2 2 211?? ? ??-= ??? ? ??-= = a f v c p g λλ λλλ λ 5)在不计损耗的情况下,在行波状态下,电场的横向分量Et 和磁场的横向分量Ht 不仅构成了沿波导轴正Z 方向传播的波,而且对于同一波形而言,t E 和 t H 的比值在波导横截面内处处相等,它与坐标Z 无关,并具有阻抗的量纲。我们称这个比值为波型阻抗Zw 。 其值: 2 211?? ? ??-= == a w H E Z t t w λε μ β μ 6)外形结构尺寸的确定: 1.为使单模TE 10传输,而抑制TE 01和TE 20。我们需要其工作波长大于TE 01和TE 20的截止波长,小于TE 10的截止波长(如图1)。 而通过计算有:a TE 210=λ a TE =20λ b TE 201=λ 则: a a 2<<λ b 2>λ

实验二矩形波导TE10的仿真设计与电磁场分析解读

实验二、矩形波导TE 10的仿真设计与电磁场分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理与参考电路 3.1 3.1.1. 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的; ② 波导管内无自由电荷和传导电流的存在; ③ 波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 22222 2222222222220T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1220E k E ?+=22222222T c E E E x y k k β????=+?????=-?其中式3 222c x y k k k =+

截止波导在电磁屏蔽中的应用

截止波导在电磁屏蔽中的应用 摘要:电磁屏蔽效能取决于屏蔽体薄弱环节,只有屏蔽体的各个组成部分都能达到屏蔽效能要求,才能满足屏蔽体的整体屏蔽要求。在工程实践中,由于功能要求,电子设备的屏蔽体会留有各种各样的孔洞或缝隙,如通风散热孔等,解决这些问题最有效的方法就是截止波导。 关键词:电磁屏蔽截止波导屏蔽效能 1 引言 随着电子设备及系统向轻量、小体积、大功率密度、高频、高效率等方面发展,电磁兼容性问题日益突出,电子设备及系统在电磁环境中的适应能力成为重要考核指标。电磁屏蔽是解决电磁兼容问题的重要手段之一,而屏蔽体上孔缝的处理又是电磁屏蔽的重中之重,因而,截止波导在电子设备及系统应用日益广泛。本文主要讨论截止波导的工作原理、设计计算及工程应用,寻求一种解决电磁屏蔽问题切实有效的方法。 2 工作原理 截止波导是一种具有高通滤波器的特性的管状金属结构。其允许截止频率以上的信号通过,而截止频率以下的信号则被阻止或衰减。利用这个特性,根据电磁干扰信号的频率,设计截止波导,使电磁干扰信号的频率在截止波导的截止区内(如图1所示),对电磁干扰信号产生很大的衰减,从而达到电磁屏蔽的作用。 因为集肤效应,截止波导的管状金属结构壁厚可以很小,总开孔面积相应增加。因此,截止波导既满足通风散热要求,又能满足电磁屏蔽性能要求,是解决通风散热和屏蔽矛盾的优先选择。

图1 3 设计计算 截止波导的截面有圆形、正方形、六角形和矩形等。 3.1截止频率计算 3.1.1圆形波导的截止频率 f0=17.6x109/D (1) 式中:f0-截止频率(Hz); D-圆形截面的直径(cm)。 3.1.2六角形波导的截止频率 f0=15x109/W (2) 式中:f0-截止频率(Hz); W-六角形截面外接圆直径(cm)。 3.1.3矩形波导的截止频率 f0=15x109/L (3) 式中:f0-截止频率(Hz); L-矩形截面对角线长度 (cm)。

微波技术与天线实验2利用HFSS仿真分析矩形波导

实验3:利用HFSS仿真分析矩形波导 一、实验原理 矩形波导的结构(如图1),尺寸a×b, a>b,在矩形波导内传播的电磁波可分为TE模和TM模。 图1 矩形波导 1)TE模,0 = z E。 cos cos z z mn m x n y H H e a b γ ππ - = 2 cos sin x mn c z n m x n y E H b a b j k eγ πππ ωμ- = 2 sin cos z y mn c j m m x n y E H e k a a b γ ωμπππ - =- 2 sin cos z x mn c m m x n y H H e k a a b γ λπππ - = 2 cos sin z y mn c n m x n y H H e k b a b γ λπππ - = 其中, c k22 m n a b ππ ???? ? ? ???? +mn H是与激励源有关的待定常数。 2)TM模 Z H=0,由 Z E的边界条件同样可得无穷多个TM模。注意:对于 mn TM和 mn TE 模,m, n不能同时为零,否则全部的场分量为零。

mn TM 和mn TE 模具有相同的截止波数计算公式,即 c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要]人类进入21世纪的信息时代,电子与信息科学技术在飞速发展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。?矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作,所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导TM波TE波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银,它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们 将波导的良导电体壁近似为理想导电壁。 由前面的讨论我们知道,矩形波导中不能 传输TEM 波,只能传输TE波和TM波。 设矩形波导宽为a,高为b, (a>b)沿Z轴 放置,如图(1)所示。下面分别求解矩形波 导中传输的TE波和TM波 仃M波 对于TM波,H z=O, E z可以表示为; E z(x, y,z) = E°(x, y)e*z(1) 式中E o(x,y)满足齐次亥姆霍兹方程,故有 ' 2E o(x,y) k C?°(x,y) = O ⑵ 采用分离变量法解此方程,在直角坐标系中,令 E°(x,y)=X(x)Y(y) ⑶

将(3)式代入(2)式中,并在等式两边同除以 X(χ)Y(y)得: XW Xiy) k 2 C x(χ) Y(y) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的 常数,要使上式对任何 X 、Y 都成立,第一和第二项也应分别是常数,记为: X ''(X) k χJ X(X^ 0 ⑸ Y ''(y) k :Y(y 「0 ⑹ 2 2 2 k c = kχ + ky ⑺ 常微分方程(5)和(6)的通解为 Y(X)=C i cos(k χX) C 2Sin(k χX) Y(y) =C 3C0s(k y y) C 4Sin(k y y) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到 E z 的通解为 E z (x, y, z) - C 1 cos(k χX) C 2 sin( k χX) IC 3 cos( k y y) C 4 sin( k y y) ^jkZZ 由矩形波导理想导电壁的边界条件 E = 0,确定上式中的几个常数,在4个理想 导电壁上,E Z 是切向分量,因此有: (1) 在X "的波导壁上,由E Z (X =O,y,z)=0得C 1 =0 ; (2) 在Y=0的波导壁上,由E z (x,y =0,z) =0得C^0; (3) 在X = a 的波导壁上,要使E z (x = a, y, z) = 0有Sin(k x a) = 0,从而必须有 k χa =m 二,其中m =1.,2,3^为整数,由此得 (4) 在 X = b 的波导壁上,要使 E z (x,y =b, z) =0有,Sin(k y b) =0 从而必定有 k y b = n 二,其中n =1.,2,3…也为整数,由此得 x ''(χ) X(χ) -k 这样就得到两个常微分议程和 Y ''(y) _ Y (y) 3个常数所满足的方程: (8) (9) k χ m? (10)

(整理)实验21微波波导管内电磁场分布测量.

实验2.1 微波波导管内的电磁场分布测量实验 §2.1.1实验目的 通过测量微波波导管内的电磁场分布,了解微波的产生、传播等基本特性,掌握微波测量的基本方法和技术。 §2.1.2实验原理与方法 一、微波与体效应微波振荡器 1、微波 按照国际电工委员会(IEC)的定义,微波(Microwaves)是“波长足够短,以致在发射和接收中能实际应用波导和谐振腔技术的电磁波”。实际应用中,微波通常指频率在300GHz到300MHz、波长范围1毫米到1米的电磁波,可分为分米波、厘米波、毫米波三个波段。 自上世纪40年代以来,微波科学技术表现出巨大的应用价值。例如, ? 雷达的诞生与成熟(1939一1945年); ? 微波波谱学与量子电子学的巨大进步(1944年-至今); ? 射电天文学大发展(1946—1971年); ? 微波能量利用及微波医学(1947年-至今); ? 卫星通信及卫星广播的建立与普及(1964年-至今); ? 遥感、气象监测等; ? 高功率微波武器。1984年美国国防部制定定向能发展计划(定向能包括高能激光、粒子束和高功率微波(HPM)三个方面)。“微波武器” 将在反卫星、反精确制导武器等方面发挥重要作用。 2、体效应微波振荡器 目前,常用的产生微波振荡器的有两大类,电真空器件与固体器件。其中,电真空器件主要包括微波电真空三极管、反射速调管、磁控管和返波管等;固体器件有晶体三极管、体效应二极管(也称耿氏二极管,由于体效应管中微波电流振荡现象是耿式(J.B Gunn)于1963年首先发现的)和雪崩二极管。由于固体器件具有体积小、重量轻、耗电省及便于集成等优点,近几十年来发展迅速,尤其在中小功率范围内它已经取代电真空器件。固体器件中,采用体效应振荡器制成的微波信号源具有噪声低、工作电压低和便于调谐的优点,目前在实验室中广泛采用该类微波信号源。 1)负阻效应 体效应管的工作原理是基于N型砷化镓(GaAs)的导电能谷——高能谷和低能谷结构,如图2.1-1所示,高低能谷间的能量差0.36eV。处于这两类能谷中的电子具有不同的有效质量和不同的迁移率。在常温下低电场时,大部分导电的电子处在电子迁移率高而有效质量较低的低能谷中,当随外加电场增大,许多电子被激发跃迁到高能谷中,在那里电子迁移率低而有效质量较大。因此,低电场时,导电率高,而在高电场时导电率低。这种效应的结果使电子迁移率急剧下降。这种随电场的增加而导致电流下降的现象称为负阻效应,如图2.1-2

矩形波导的设计介绍

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

相关文档
相关文档 最新文档