文档库 最新最全的文档下载
当前位置:文档库 › 平面变压器绕组高频损耗的研究

平面变压器绕组高频损耗的研究

平面变压器绕组高频损耗的研究
平面变压器绕组高频损耗的研究

变压器停送电操作顺序规则

变压器停送电的操作顺序有哪些规则来源:国家电力信息网作者:佚名发布日期:2008-5-28 18:22:59 (阅21次) 关键词:电力 变压器停送电的操作顺序有哪些规则 主变压器停电操作的顺序是:停电时先停负荷侧,后停电源侧,送电操作顺序是,先送电源侧,再送负荷侧,这是因为: 1)从电源侧向负荷侧送电,如有故障,便于确定故障围,及时作 出判断和处理,以免故障蔓延扩大; 2)多电源的情况下,先停负荷可以防止变压器反充电,若先停电源侧,遇有故障可能造成保护装置误动或拒动,延长故障切除时 间,并可能扩大故障围; 3)当负荷侧母线电压互感器带有低频减负荷装置,而未装电流闭锁时,一旦先停电源侧开关,由于大型同步电机的反馈,可能使 低频减负荷装置误动。 电压互感器和电流互感器在作用原理上有什么区别 主要区别是正常运行时工作状态很不相同,表现为: 1)电流互感器二次可以短路,但不得开路;电压互感器二次 可以开路,但不得短路;

2)相对于二次侧的负荷来说,电压互感器的一次阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却阻很大,以至可以认为是一个阻无穷大的电流源。 3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远 远超过饱和值。 继电保护及二次回路:对继电保护装置有哪些基本要求要求是:选择性、快速性、灵敏性、可靠性。 ⑴选择性:系统中发生故障时,保护装置应有选择地切除故障部 分,非故障部分继续运行; ⑵快速性“短路时,快速切除故障这样可以①缩小故障围,减少短路电流引起的破坏;②减少对用记的影响;③提高系统的稳定 性; ⑶灵敏性:指继电保护装置对保护设备可能发生的故障和正常运行的情况,能够灵敏的感受和灵敏地作,保护装置的灵敏性以灵 敏系数衡量。 ⑷可靠性:对各种故障和不正常的运方式,应保证可靠动作,不 误动也不拒动,即有足够的可靠。

配电变压器节能设计选型

配电变压器节能设计选型 发表时间:2017-03-28T09:31:58.897Z 来源:《电力设备》2017年第2期作者:汪一波 [导读] 本文对于配电变压器节能设计选型进行了有效探讨。 (北京大学北京 100871) 摘要:变压器经济运行是采取各种措施减少各种损失来提高变压器的运行效率。变压器损耗可分为空载损失和负荷损失两部分,运行中的空载耗损是恒定的。若负载损耗发生变化,压力调节器的工作效率也随之变化。尽管配电变压器是一个高效的设备,但由于其数量庞大,以及空载耗电的固定性,变压器本体的节能潜力巨大。因此,本文对于配电变压器节能设计选型进行了有效探讨。 关键词:配电变压器;节能设计;选型 前言 在学校高速发展的今天,电力成为我们平时生产生活中最重要的能源之一。现在国家对公共机构节能要求越来越高,节能减碳工作势在必行。校内变压器数量现达到140余台,总装机容量10万KVA,应用节能变压器可以有效的降低用电量,而变压器的工作环境、负荷大小不一样,选择合理的变压器型号又成为重中之重。 1变压器的分类 除了干式变压器和油浸式变压器外,变压器还有很多分类方法,下面简单介绍几种: 1.1根据变压器相数,可将其分为三相变压器和单相变压器。三相变压器主要用于三相电力系统中,容量大且运输受限的情况下,也可使用三台单相式变压器组成变压器组来替代三相变压器。 1.2根据变压器绕组数,可将其分为双绕组变压器和三绕组变压器。每相铁芯上有原绕组和副绕组两个绕组的称之为双绕组变压器,它的应用相对广泛。当容量变压器在5600kVA以上时,一般采用三相绕组变压器,以实现三种电压输电线的连接。 1.3根据变压器结构,可将其分为芯式变压器和壳式变压器。铁芯式变压器的绕组处于铁芯的外围,壳式变压器的铁芯处于绕组外围。它们在结构有细微的区别,但是在原理是相似的。 2配电变压器节能设计 通过前文分析不难看出配电变压器节能的重要性和必要性,配电变压器节能是提升供配电系统社会效应、经济效益、环境效益的必经之路。下面通过几点来分析配电变压器的节能措施。 2.1用新工艺、新材料降低损耗 2.1.1改进工艺。通过改进工艺来降低运行损耗,最主要的是控制变压器的硅钢片精度。为此,可通过数控加工,利用自动化技术来精确控制硅钢片的形状、规格、厚度等。目前,加工精度达到0.18mm,就可大大降低变压器的空载损耗。 2.1.2重设结构。降低变压器损耗的重要手段之一是重设结构布局。目前,常见的结构布置方式有新型绕组和新型线圈。传统的绕组结构,在抗谐波、节能方面的效果不理想;若根据不同的配电电压来确定绕组结构,则可控制绕组的损耗,如漏磁走向的控制可采用自粘型换位导线。新型线圈结构是控制涡流损耗的理想手段,按涡流流向选择合理的纵向或横向的布置方式,可有效降低涡流损耗,进而达到理想的运行效果。 2.1.3新材料应用。制造变压器时,若选择的材料质量不好,其电阻率就会产生变化,引起损耗,同时变压器中铜铁材料的用量较大且用于关键部件,因此材料的质量将直接影响变压器的传输效率。新材料的突破使得优化变压器材料成为可能,将原有的铜铁材料替换为新型材料,能有效降低损耗,提高转换效率,制成高效节能变压器。磁体材料的优化,也是解决磁滞损耗的理想方法,如非晶合金,相比传统材料制成的磁体,在磁化和消磁性能方面明显胜出。利用非晶合金制作铁芯,能有效控制损耗,提高效益,但成本高,并未大面积推广。 2.1.4新型导线。使用无氧铜制作的导线,可有效降低变压器线圈内阻,从而降低铁损和铜损。如高温超导配电变压器,就是利用超导线材替换了铜芯线材,有效降低了损耗,同时还使变压器具备理想的抗短路性能。 2.2注意干式变压器的负载控制 目前我校对干式变压器的应用还比较多,但这种变压器过负荷时阻抗电压增幅较大,负载损耗十分严重。因此,建议对干式变压器的使用范围和使用数量进行控制,对已使用干式变压器的区域进行定期维护,提高变压器稳定性,避免过负载的发生,这样才能有利于电力节能的实现。 2.3优化配电变压器的选型 目前我国市面上的主流节能配电变压器主要有S7、S9、S11等等,这一系列变压器经过不断技术改良,其空载损耗有明显下降。电力工程中配电变压器的选型应注意优选,要综合考虑电网经济运行参数,根据变压器容量利用率来选择,以降低配电变压器运行中的无功损耗与有功损耗。虽然使用大容量变压器会增加一次性投资量,但却可以降低损耗,节约后续运行成本,所以建设中应根据优化需求来选择型号,电压偏移较大的区域应选择SZL7和SZ9系列,若对电能质量要求较高的区域应选择S11,若雷灾区,要选择防雷配电变压器。 2.4合理配置电网的补偿装置,合理安排补偿容量 2.4.1增加无功补偿的设备,以提高功率的因数 在线路中可以合理的运用电容器来实现提高电网中的无功补偿的能力,电容器充电、放电两大基本功能就可以帮助线路中提高无功功率补偿的能力,从而提高供电系统中的功率因数,降低供电变压器以及输送线路的损耗,提高供电效率。 2.4.2无功功率的合理分布 对于无功功率也要高度的重视,无功功率的存在降低了发电机和电网的供电效率,所以对于无功功率要合理的配置,减少无功功率的运输距离,除此之外还要注意其他方式的损耗进行计算和补偿。 2.4.3合理计划并联补偿电容器的运行 从大量的经验中表现出变压器的节能降耗主要是投入使用电容器。但是人们只是意识到了电容器的积极作用却忽视了其也会造成电网整体的损耗,所以在现实的节能降耗中要考虑整体的耗能来合理的设计电容器的投入。

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。 计算公式为 AP=AwAe 式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。根据计算出的AP值,即可查表找出所需磁心型号。下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。 1 高频变压器电路的波形参数分析 开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。 1)波形系数Kf 为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。正弦波的电压有效值为

在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。 2)波形因数kf 为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压 压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式 以正弦波为例, 这表明,Kf=4kf,二者相差4倍。 开关电源6种常见波形的参数见表1。因方波和梯形波的平均值为零,故改用电压均绝值来代替。对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

变压器损耗计算公式

变压器损耗计算公式 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器. 将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比. 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比. UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示. 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比. 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比. PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损.其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示). 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗. 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率. 3、变压器节能技术推广 1) 推广使用低损耗变压器; (1)铁芯损耗的控制

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

配电变压器节能降耗措施的探讨(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 配电变压器节能降耗措施的探 讨(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

配电变压器节能降耗措施的探讨(通用版) 摘要:随着我国经济的快速发展,用电量逐年增加,作为电力系统实现电能输送与分配的重要设备之一,变压器的用量也势必不断增长,降低变压器损耗是降低电网线损的关键。变压器的节能措施涵盖在变压器生产、使用、运行等各个方面。本文首先分析了变压器运行的损耗及制造中的降耗措施,然后从配变损耗增大原因及在变压器的选型、配置、运行方式、无功补偿和管理等7各方面个方面探讨了变压器的节能降耗措施。 关键词:配电网;变压器;节能降耗 1引言:变压器是电网中运用最普遍的设备之一,它贯穿于电力系统的发、输、变、配、用各个环节。一般说来,从发电到用电需要经过3~5次的电压变换过程,其中变压器必然产生有功和无功损耗,其电能总损耗约占发电量的10%。尤其在配电网中,增加配变布点的

要求使得配电变压器的数量和总容量非常庞大,在配电网线损中配电变压器损耗占了60%以上。在整个电力系统中,变压器中占了相当比例。因此,提高配变的运行效率、降低配网损耗具有极为重大的意义。 2变压器的损耗分析及在制造工艺上应采取的措施 变压器运行时从电网吸收功率,其中很小一部分消耗在原绕组的电阻和铁心上。其余部分通过电磁感应传给副绕组,副绕组获得的电磁功率又有很小一部分消耗在副绕组的电阻上,其余的传给负载。其中消耗在电阻上的叫铜耗,消耗在铁心上的叫。变压器的损耗就包括铁损和铜损。铁耗与铁芯的材质有关,与负荷大小无关,其值基本上是固定的;铜耗与变压器的负载密切相关,近似与负荷电流的平方成正比。 2.1降低空载损耗,改进铁心结构。 空载损耗虽然只占变压器总损耗的20%~30%,但它不是随负载变化而变化的损耗。对于年最大负载利用小时较低的中小型变压器来说,降低空载损耗的意义更为重大。变压器空载损耗为

变压器损耗计算公式分析

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK -------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

各配电房停送电操作流程

A座配电房送电操作流程 低压部分操作: 一、1#变压器(1TA)及其配电柜的操作 检查1#变压器(1TA)有响声,1AL1电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1AL2无功补偿柜的开关(手柄上箭头指向off) 2、1AL 3、1AL 4、1AL1AL 5、1AL 6、1AL7五面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到停止状态(箭头指向0,手柄水平); 3、按1AL1电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1AL2无功补偿柜的开关(手柄上箭头指向on) 5、1AL3、1AL4、1AL1AL5、1AL 6、1AL7五面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记 二、2#变压器(1TC)及其配电柜的操作 检查2#变压器(1TC)有响声,1BL1电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1BL2无功补偿柜的开关(手柄上箭头指向off) 2、1BL 3、1BL 4、1BL5三面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到停止状态(箭头指向0,手柄水平); 3、按1BL1电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1BL2无功补偿柜的开关(手柄上箭头指向on) 5、1BL3、1BL4、1BL5三面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记 三、3#变压器(1TB)及其配电柜的操作 检查3#变压器(1TB)有响声,1AL9电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1AL10无功补偿柜的开关(手柄上箭头指向off)

配电变压器能效标准及技术经济评价导则(20121122)

Q/CSG 中国南方电网公司企业标准 配电变压器能效标准及技术经济评价导则 (报批稿) 中国南方电网有限责任公司发布

目录 前言............................................................................... II 1 范围 (3) 2 规范性引用文件 (3) 3 术语与定义 (3) 4 总则 (4) 5 基本要求 (4) 6 配电变压器能效参数 (4) 7 技术经济评价方法 (12) 附录A 用词说明 (15) )取值 (16) 附录B年最大负载损耗小时数( 附录C 现值系数取值 (17) 附录D配电变压器空载电流 (18) I

前言 为贯彻落实国家节能政策,使电网向更加智能、高效、可靠、绿色方向转变,进一步加大电网降损力度,建设资源节约型、环境友好型电网,完善配电变压器能效评价,特制定本标准。 本导则以国家、行业有关法律法规、标准为基础,适用于中国南方电网有限责任公司配电变压器设备选型。 本次修订与Q/CSG 11624—2008相比,主要在以下方面有所变化: ——对规范性引用文件进行了更新; ——将总拥有费用更名综合能效费用; ——对配电变压器能效限定值和领跑能效值进行了更新; ——修改了综合能效费计算公式; ——简化了单位空载损耗等效初始费用、单位负载损耗等效初始费用的计算; ----删除了回收年限的计算; 本导则由中国南方电网有限责任公司标准化委员会批准。 本导则由中国南方电网有限责任公司生产技术部归口。 本导则起草单位: 本导则主要起草人: 本导则主要审查人: 本导则实施后代替Q/CSG 11624—2008。 本导则首次发布时间:2008年4月11日,本次为第一次修订。 本导则在执行过程中的意见或建议反馈至中国南方电网有限责任公司生产技术部(广州市天河区珠江新城华穗路6号,510623)。 II

(整理)电感、变压器的高频特性与损耗、

绕组高频效应及其对损耗的影响 1.集肤效应 1.1集肤效应的原理 图1.1表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: (1.1) 其中:γ为导体的电导率,μ为导体的磁导率,f为工作频率。 图1.1.集肤效应产生过程示意图 图1.2.高频导体电路密度分布图

高频时的导体电流密度分布情形,大致如图1.2所示,由表面向中心处的电流密度逐渐减小。 由上图及式1.1可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2影响及应用 在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 2邻近效应 图2.1表示了邻近效应的产生过程。A、B两导体流过相同方向的电流IA和IB,当电流按图中箭头方向突增时,导体A产生的突变磁通ΦA-B在导体B中产生涡流,使其下表面的电流增大,上表面的电流减少。同样导体B产生的突变磁通ΦB-A在导体A中产生涡流,使其上表面的电流增大,下表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导体有效截面面积不同。研究表明:导体的相对面积越大则导体有效截面越大,损耗相对较小。

变压器损耗估算1

变压器损耗估算315kVA 项目新上S13-315/10/0.4变压器1台。由变压器型号查得下列参数: 表*-*-* 变压器参数表 有功功率损耗: △P= P0+β2P K=0.48+0.772×3.65=2.64kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×315×10-2=0.95kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×315×10-2=12.6 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.95+0.772×12.6=8.42 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =2.64+0.1×8.42=3.48kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-315/10变压器的年电能损耗为:3.48×8760×1=3.05万kWh 变压器损耗估算100kVA 项目新上S13-100/10/0.4变压器1台。由变压器型号查得下列参数:

有功功率损耗: △P= P0+β2P K=0.2+0.772×1.5=1.09kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×100×10-2=0.3kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×100×10-2=4.00 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.3+0.772×4.00=2.67 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =1.09+0.1×2.67=1.36kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-100/10变压器的年电能损耗为:1.36×8760×1=1.19万kWh

三相配电变压器节能技术规范

《三相配电变压器节能技术规范》 编制说明 (申请备案稿) 中国质量认证中心 2012年10月

第一部分、《三相配电变压器节能认证规范》编制说明 本技术规范为配合国家政策需要而编制,节能评价值采用于2012年10月15日通过审批并同意报备的新版《三相配电变压器能效限定值及能效等级》标准。待新版《三相配电变压器能效限定值及能效等级》标准颁布实施后,即可进行直接替换。其他引用《三相配电变压器能效限定值及能效等级》编制说明。 第二部分、引用《三相配电变压器能效限定值及能效等级》编制说明(报批稿) 一、标准工作简况 1.任务来源 电力变压器(包括输电变压器和配电变压器)是国民经济各行业中广泛使用的电气设备。由于使用量大、运行时间长,变压器在选择和使用上存在着很大的节能潜力,尤其10kV配电变压器应用量大面广,节能潜力更为显著。降低变压器损耗,提高供配电效率,是目前世界各国普遍关注的问题,也是我国政府抓工业节能工作的重点之一。 自我国改革开放以来,由于我国国民经济一直保持着高速增长,人民生活水平不断提高,电力需求与供给量呈不断上升的趋势,最高负荷持续攀升,一度时期出现多省电网拉闸限电的现象,同时我国输配电损失量也在不断增加。另一方面由于我国针对电力变压器开展了节能措施,使得我国输配电损耗占总耗电量的比重呈下降的趋势(如图1所示)。因此,通过制定供电设备能效标准,提高我国输配电运行效率,降低配电变压器损耗已是我国节能工作的重要任务。

图1 我国输配电损失量及与总消耗量的比重 2004年,在《中华人民共和国节约能源法》(以下简称《节能法》)明确提出了节能产品认证制度、高耗能产品淘汰制度和能效标识管理制度。为配合《节能法》的实施,提高配电变压器的能源利用效率、降低其损耗,引导企业的节能技术进步,提高配电变压器产品在国际市场竞争力,在国家发改委的统一安排下,提出了制订我国配电变压器的能效标准,并于2006年我国发布实施了GB 20052-2006《三相配电变压器能效限定值的节能评价值》,该标准的实施大大推动了我国配电变压器产品结构的调整,2004年我国S11的油浸变压器的比例为6%,S9的比例为93%,到2009年S11的比例增加到61.3%,S9的比例下降到14%,同时S13和S15也获得较大的发展。 由于配电变压器能效标准已将实施4年多的时间,其中规定的目标能效值在2010年7月1日已经开始实施,需制定新的能效限定值和节能评价值。另外我国对一些工业产品实施了能效标识管理制度,对提高这些工业产品的能源利用效率,加强能效指标监督提供了有效的政策保障,为将配电变压器纳入能效标识管理范围,所以在这些修订配电变压器能效标准时也需将能效等级加入标准之中。随即我国能效标准的归口单位:全国能源基础与管理标准化技术委员会向原国家质量技术监督局申报修订国家标准《配电变压器能效限定值与节能评价值》项目,经批准,该项目被列入了国家标准化管理委员会《2010年制修订计划国家标准项目计划》(项目编号:20101406-Q-469)。 2.工作过程 1)信息调研 2010年标准起草组委托调查公司对我国配电变压器生产企业进行了抽样调查,调查内容主要有配电变压器市场规模和发展趋势、配电变压器中各类型(干

各配电房停送电操作流程

各配电房停送电操作流程

A 座配电房送电操作流程 低压部分操作: 一、1#变压器(1TA )及其配电柜的操作 检查1#变压器(1TA )有响声,1AL1电缆受电柜的分闸指 分闸指示灯(绿色)灭; 检查2#变压器(仃C )有响声,1BL1电缆受电柜的分闸指 示灯(绿色)亮,则执行如下操作:] 1、 断开1BL2无功补偿柜的开关(手柄上箭头指向 off ) 2、 1BL3、1BL4 1BL5三面低压馈电抽屉柜的各抽屉式开关的手 柄式开关打到停止状态(箭头指向 0,手柄水平); 3、 按1BL1电缆受电柜的合闸按钮,则合闸指示灯(红色)亮, 分闸指示灯(绿色)灭; 4、 合上1BL2无功补偿柜的开关(手柄上箭头指向 on ) 5、 1BL3、1BL4 1BL5三面低压馈电抽屉柜的各抽屉式开关的手 柄式开关打到运行状态(箭头指向 1,手柄竖直)。不在用的除 外---有标记 、断开无功补偿柜的开关(手柄上箭头指向 )

2、1AL11、1AL12、1AL13三面低压抽屉柜的各抽屉式开关的手 柄式开关打到停止状态(箭头指向0,手柄水平); 3、按1AL9电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1AL10无功补偿柜的开关(手柄上箭头指向on) 5、1AL11、1AL12、1AL13三面低压抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记以上操作的同时关注各个设备有无异常,送电后关注小区的 各个负载的情况,检查各低压开关柜及小区各负载的运行情况,确保电梯、消监控室、门卫、水泵房等设施设备已经有电,并都正常运行。若有异常及时停掉相应开关,进行检查,故障排除确认无误后再给该回路的送电,遇到疑难情况及时通知主管。____________________________ 送电操作完成后,做好停电原因、停电及送电时间等情况的书面记录及时交到办公室存档备查。 科瑞物业工程部 2016 年9月5日

提升住宅小区配电变压器节能降耗的技术措施分析

提升住宅小区配电变压器节能降耗的技术措施分析 发表时间:2019-12-30T13:24:19.063Z 来源:《科学与技术》2019年 15期作者:刘雪梅[导读] 节能型建筑是现阶段较为主流的建筑发展方向。摘要:节能型建筑是现阶段较为主流的建筑发展方向。配电变压器在住宅小区供电系统中发挥着极为重要的作用,是实现节约电力的关键节能设备。文章对住宅小区配电变压器的节能运行进行了相关探讨,以期能够为建设节能型住宅小区提供有效参考。关键词:住宅小区;配电变压器;节能;用电在可持续发展战略理念的背景下,现代供电系统中如何实现对住宅小区的节能配电,成为了最为关键的问题在减小供电消耗方面,配电变压器发挥着极为重要的应用效果,是进一步解决节能降耗问题的有效手段。配电变压器在供电线路的使用数量大,产生了较大的电能 损耗,可见实现住宅小区配电变压器的节能运行对于实现集约型发展的住宅小区,降低供电成本有着至关重要的作用。近些年,对于节能型变压器应用研究不断加深,对于住宅小区配电变压器的节能运行,采取了更为科学的运行管理方式,不但有效地满足了小区的用电需求,而且实现了较好的节能降耗效果,进一步推动了我国节约型社会建设水平提升。 一、住宅小区配电变压器运行分析为提升住宅小区配电变压器的节能使用,实施节能型的供配电系统,必须基于对于满足住宅小区用电需求的前提。据调查显示,住宅小区用电高峰期与最低用电量时间段的用电总量差别较大,一般在17:00——22:00时间段为用电高峰期,而0:00——05:00是住宅小区的最小用电负荷时期,正是因为如此才为配电变压器节能运行提供了可行性。经过对配电变压器的合理配置,与自动化调控,在住宅小区用电的峰值阶段满负荷运行,而峰值过后可关闭一定数量的配电变压器,达到节能降耗的目的。这也是现代住宅小区配电变压自动化系统应用的根本目的。 二、住宅小区配电变压器的节能运行(一)以节能型配电变压器应用为基础住宅小区配电变压器节能运行的关键基础在于对节能型变压器的应用。其中较为典型的节能型变压器应用包括有着低损耗变压器、非晶合金铁芯变压器以及、调容变压器等,配合配电变压器自动化运行控制系统,可以实现较好的节能效果。尤其是在使用新型材料与技术工艺研发的新的低损耗配电变压器,更是成为各个住宅小区配电变压器节能运行的重要基础,这种低损耗配电变压器具备低损耗、低噪音的明显优势,在自动化配电变电系统中应用大幅降低了配电线路的电量损耗,取得较好的节能效果。卷铁心配电变压器的应用起源于上世纪六十年代的发达国家,发展至今已经出现了S11型卷铁心配电变压器的应用,能够使电路的空载损耗平均下降30%,节约70%左右的空载电流,噪音水平也降低7~10dB,具备较为明显的节能降耗效果。相关实验测算得出,337台这种节能型变压器大约了节约电能176万KWH,相当于能够为1万个普通家庭节约2个月的用电量。卷铁心配电变压器的应用具备较大的节能潜力,以节约电量的形式提高了住宅小区的电力供应能力,能够大幅缓解用电高峰的供电压力,为住宅小区争取了更大用电空间。在降低低压配电损耗方面,单相配电变压器有着极大的应用意义,在空载与负载运行方面所产生的损耗都较少价格也较为低廉,但需要对电力系统进行较大规模的改制,因此在应用推广方面存在较大困难。结构简单、维护便捷、防尘与防火能力强,是干式配电变压器的显著特点,因而通常被应用于对于安全要求较高的配电线路中。在技术不断发展的推动作用下,各式各样的配电变压器在住宅小区的应用越来越广泛。如,环氧树脂干式变压器、浸渍式干式变压器、箱式变压器等新,在住宅小区配电变压器节能中应用,都获得不同程度的节能效果,推动着住宅小区配电变压器节能系统的的不断提升。(二)正确选择变压器的运行方式通常情况下要想改造配电网均要求综合考量符合增长的实际情况,因此都会存在备用变压器,所以在对其容量进行选择时,均会合理的增加。不过由于配电网的峰谷存在差异,因此会受到季节性因素的影响较大,所以需要根据供电系统的特征来将过负荷与轻负荷的情况出现以确保能够有效降低有功功率的损耗,并且提升整体变压器的经济运行效果。(三)配电变压器自动化运行技术在越发成熟的现代自动化运行技术的推动作用下,基于自动化运行技术的住宅小区配电变压自动化系统的应用也不断成熟。现代住宅小区的配电线路中,自动化的变压系统应用水平不断提升,已经成为了住宅小区配电变压器节能应用的主要发展方向。以小区用电分析以及峰谷用电负荷为基础的自动化配电变压器节能系统,实现了对变压器负荷的合理分配。配电变压系统在用电高峰时进行满负荷运转,在用电量较低的时间段则使用单变压器的运行方式来减小空载导致的变压器损耗,进而实现对住宅小区配电变压器节能应用的自动化控制。配电变压器自动化节能技术的应用,不但提高了变压器的运行效率,而且有利于对配电变压器的科学保养。(四)以科学节能测算维保障基于科学的节能测算,是住宅小区配电变压器实现节能效益的关键所在。对于配电变压器节能方案的确定,必须对设备运行能耗、投资成本等进行全面考虑,切不可以破坏环境来换取投资上的节省。为了实现和谐的环境发展与投资建设,应在合理的成本回收期内进行对节能系统的改造,实现较大的节能经济效益补偿。对住宅小区配电变压器设计时,必须以科学的用电需求分析为前提,在确保设计科学合理之后方可对变压器进行安装施工。在完成配电变压器系统的安装后,供电部门要充分做好配电变压器节能测算工作,做好变压器节能运行的基础数据准备。近几年在对住宅小区配电变压器的测算实践中得出,使用双复核配电变压器模式可以大幅降低变压器在住宅小区电力系统中的损耗,提升节能效果。在低负荷阶段使用小容量变压器,在高负荷阶段使用大容量变压器,这是住宅小区配电变压器节能自动化运行的原理,而这一重要前提则是基于对节能效果的测算分析,分析住宅小区用电规律,进而供电系统的节能降耗。(五)做好配电变压器的维护与保养住宅小区配电变压系统实现较好的节能效果,必须以确保配电变压器运行状态良好为前提。这就必须做好配电变压器的维护与保养,以确保配电变压器时刻处于正常、高效的运行状态,预防由于配电变压器“带伤运行”而导致的大量的电量损耗。而且这也是预防变压器出现故障影响住宅小区居民正常用电的关键措施。因此,必须制定出科学的配电变压器维护、保养计划,使住宅小区的配电变压器长效、高效运行,为配电变压器系统的节能运行提供保障。 三、结束语

变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.wendangku.net/doc/6413582597.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

各配电房停送电操作流程

各配电房停送电操 作流程

A座配电房送电操作流程 低压部分操作: 一、1#变压器(1TA)及其配电柜的操作 检查1#变压器(1TA)有响声,1AL1电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1AL2无功补偿柜的开关(手柄上箭头指向off) 2、1AL 3、1AL 4、1AL1AL 5、1AL 6、1AL7五面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到停止状态(箭头指向0,手柄水平); 3、按1AL1电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1AL2无功补偿柜的开关(手柄上箭头指向on) 5、1AL3、1AL4、1AL1AL5、1AL 6、1AL7五面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记 二、2#变压器(1TC)及其配电柜的操作 检查2#变压器(1TC)有响声,1BL1电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1BL2无功补偿柜的开关(手柄上箭头指向off) 2、1BL 3、1BL 4、1BL5三面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到停止状态(箭头指向0,手柄水平);

3、按1BL1电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1BL2无功补偿柜的开关(手柄上箭头指向on) 5、1BL3、1BL4、1BL5三面低压馈电抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记 三、3#变压器(1TB)及其配电柜的操作 检查3#变压器(1TB)有响声,1AL9电缆受电柜的分闸指示灯(绿色)亮,则执行如下操作: 1、断开1AL10无功补偿柜的开关(手柄上箭头指向off) 2、1AL11、1AL12、1AL13三面低压抽屉柜的各抽屉式开关的手柄式开关打到停止状态(箭头指向0,手柄水平); 3、按1AL9电缆受电柜的合闸按钮,则合闸指示灯(红色)亮,分闸指示灯(绿色)灭; 4、合上1AL10无功补偿柜的开关(手柄上箭头指向on) 5、1AL11、1AL12、1AL13三面低压抽屉柜的各抽屉式开关的手柄式开关打到运行状态(箭头指向1,手柄竖直)。不在用的除外---有标记 以上操作的同时关注各个设备有无异常,送电后关注小区的各个负载的情况,检查各低压开关柜及小区各负载的运行情况,确保电梯、消监控室、门卫、水泵房等设施设备已经有电,并都

相关文档
相关文档 最新文档