文档库 最新最全的文档下载
当前位置:文档库 › 有机共轭聚合物概述

有机共轭聚合物概述

有机共轭聚合物概述
有机共轭聚合物概述

有机共轭聚合物概述

摘要:概述了有机共轭聚合物以其独特性质在有机发光、有机自旋电子学等多个领域的应用,同时介绍了有有机共轭聚合物的元激发,孤子、极化子和双极化子。

关键词:有机共轭聚合物功能特性元激发

1 有机共轭聚合物的功能特性

有机共轭聚合物作为一种新型的功能材料,人们已逐渐认识到其丰富的功能特性。从小分子到高分子,其电磁光等特性越来越明显。早在20世纪70年代初,Heeger,Macdiamid及Shirakawa等人发现通过对绝缘材料聚乙炔进行掺杂,其电导率急剧提高,可增加几个甚至十几个数量级。某些聚合物的电导率接近甚至超过金属铜(铜的电导率为6105)。还有些聚合物材料如(SN)x在极低的温度(Tc=0.15K)下具有超导电性。有特殊结构的有机半导体可能具有磁性,如高分子-金属配合物、分子内含氮氧稳定自由基团结构的有机化合物、平面大π键结构的有机物以及电子转移复合物等。有机发光二极管(OLEDs)是有机分子材料的一个重要应用,目前以小分子合成的发光器件已经实用化,高分子有机发光二极管也达到实用标准。总之,有机共轭聚合物由于其丰富的电、磁、光等功能特性,现已在有机发光、有机场效应管、塑料电子学、有机铁磁体和分子电子学等多个领域得到了广泛的应用和研究。

高分子结构和形态特点

1. 结构 高聚物是由许多巨大的分子构成的。这些大分子有许多重复的结构单元组成。某些高聚物的结构单元是完全一致的(均聚),但另一些则是由两种以上的结构单元混合组成(共聚),同时大分子之间又有各种联系。因此必须从微观、亚微观直到宏观不同的结构层次来描述高聚物分子结构、形态和聚集态等。 高聚物主要分为以下结构:一次结构(近程结构)、二次结构(远程结构)、三次结构(聚集态结构)和高次结构的层次。 一次结构式是指大分子的化学组成,均聚或共聚,大分子的相对分子量,链状分子的形状如直链、支化、交联。此外还包括大分子的立体构型如全同立构、间同立构、无规立构、顺式、反式的等的区别。 二次结构指的是单个大分子的形态(微观),如无规线团、折叠链、螺旋链等。 三次结构指的是具有不同二次结构的单个大分子聚集在一起形成的不同的聚集态结构。如:无规线团构成的线团胶团、缨束状结构、片晶和超螺旋结构。 高次结构指三次结构以及与其他物质构成尺寸更大的结构,如由折叠链形成的片晶构成球晶。 2.高聚物结构的测定方法 测定结构的方法有X射线衍射法(大角),电子衍射法、中心散射法、裂解色谱-质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分析法、核磁共振法、顺磁共振法、荧光光谱、偶极矩法、旋光分光法、电子能谱等。 测定聚集态结构的方法有X射线小角散射、电子衍射法、电子显微镜、光学显微镜、原子力显微镜、固体小角激光光散射等。 测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收(宽线)、红外吸收光谱,密度法,热分析法。 3.高聚物分子运动(转变与松弛)的测定 了解高聚物多重转变与运动的各种方法,主要有四种类型:体积的变化、热力学性质及力学性质的变化和电磁效应。测定体积的变化包括膨胀计法、折射系数测定法等;测定热学性质的方法包括差热分析方法(DTA)和差式扫描量热法(DSC)等;测定力学性质的变化的方法包括热机械法、应力松弛法等;还有动态测量法如动态模量和内耗等;电磁效应包括测定介电松弛、核磁共振等。 4.高聚物性能的测定 高聚物的力学性能主要是测定材料的强度和模量以及变形。试验的方法有很多种,有拉伸、压缩、剪切、弯曲、冲击、蠕变、应力松弛等。静态力学性能试验机有静态万能材料试验机,专用应力松弛仪、蠕变仪、摆锤冲击机、落球冲击机等,动态力学试验机有动态万能材料试验机、动态粘弹谱仪、高低频疲劳试验机。 材料本体的粘流行为主要是测定粘度和切变速率的关系、剪应力与切变速率的关系等,采用的仪器有旋转粘度计、熔融指数测定仪、高压电击穿试验机等。 材料的电学性能主要有电阻、介电常数、介电损耗角正切、击穿电压,采用仪器有电阻计,电容电桥介电性能测定仪、高压电击穿试验机等。 材料的热性能,主要有导热系数、比热、热膨胀系数、耐热性、耐燃性、分解温度等。测定仪器有高低温导热系数测定仪、差示扫描量热仪、量热计、线膨胀和体膨胀测定仪、马丁耐热仪和维卡耐热仪、热失重仪、硅碳耐燃烧试验机等。

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

金属配位聚合物的研究现状_武文

金属配位聚合物的研究现状 武 文 (安徽教育出版社,安徽 合肥 230063) [摘 要]叙述了国际、国内金属配位聚合物的研究现状及应用前景。[关键词]金属配合物;聚合物;研究现状 [中图分类号]065 [文献标识码]A [文章编号]1001-5116(2007)03-0090-03 1 引言 金属配位聚合物以其复杂多变的空间结构和电子结构以及由此产生的电、磁等物理化学性质、功能及多方面的应用前景引起了各国科学家的极大重视。因此,促进了物理、化学和材料科学三大学科之间的交叉和渗透,成为各国科学家研究的热点。 目前国外许多著名学得如法国的Lehn ,美国的Yaghi ,Zubieta 、德国的Muller 、意大利的Ciani 、澳洲的Robson 、日本的Fujita 和韩国的K im 等研究组开展了卓有成效的研究[1-5]。2 金属配位聚合物的研究 2001年,美国的Yaghi 教授报道的以苯环的1, 3和5位作为三角形的第二构筑板块,即以4,4’, 4”2笨21,3,52三2苯三甲酸(B TB )得到一个层状的开 放式结构Cu 3(B TB )2(H 2O )3?(DM F )9(H 2O )2就是一个非常典型的例子[5]。这个晶体结构是由一对完全一样的骨架构成的,每个B TB 基团连接 Cu (Ⅱ)离子形成“螺旋桨式”簇的图案。每个B TB 基团连接三个这样的簇,而每个簇连接四个B TB 基团(Fig 11A 2C ),这些三角形基团(表现在羧酸的苯环 中心上)在3168!距离(与强的π2 π堆积作用相一致)内取代,在0186!距离内允许交汇成两个亚单元(Fig 11D ) 。 Fig 11 Single 2crystal st ruct ure of Cu 3(B TB )2(H 2O )3(DM F )9(H 2O )2composed of (A )square paddle -wheel and t riangular B TB SBU s ,which assemble into (B and C )a pair of augmented Pt 3O 4net s t hat are held toget her by (D )numerous p -p and C 2Hzzzp interactions to yield (E )a pair of interwoven t hree 2dimension 2al porous f rameworks 1(F )Two MOF 214f rameworks interwoven about a p -minimal surface wit hout inter 2secting t he surface 1 [收稿日期]2007-01-10 [作者简介]武文,理学硕士,安徽教育出版社副编审。 在两个苯环相到占有紧密连接在一起的B TB 基团间有六个C 2H 的π堆积作用(3169!)。在这个化合物中,两个不连续的网络在(1/2,1/2,1/2)替代另一个,也独立于双曲线表面。尽管在双曲线表面上的两个网络是分离的,但一个网络的环由于相到贯穿而有效连接另外一个(Fig.1.E ),交叉作用有效地加强了体积庞大的B TB 基团,独立的维持刚性不是很强的开放式骨架结构。该物质的一对骨架的交织贯穿占据含有很大空腔的晶体的可利用空间,球的每个空腔的直径为1614!。又如2003年,Yaghi 等人在Science 杂志上发表的“Hydrogen Storage in 92007年5月第25卷第3期 安徽教育学院学报Journal of Anhui Institute of Education May.2007 Vol.25No.3

发光性液晶共轭聚合物的研究进展[1]

发光性液晶共轭聚合物的研究进展 王国杰 李 敏3 陈欣方 (吉林大学材料科学系 长春 130023) 摘 要 综述了可用做发光材料的液晶共轭聚合物(LCCPs)的种类及其制备,介绍了LCCPs在制备发光器件中的取向方法,并对其光学性能进行了评述。 关键词 液晶聚合物 共轭聚合物 发光 Abstract The development of liquid crystalline conjugated polymers(LCCPs)used as light emitting materials is reviewed.The synthesis and properties of electroluminescent LCCPs,and various techniques for orienting LCCPs are presented. K ey w ords Liquid crystalline polymers,C onjugated polymers,Luminescence 1990年Burroughes等[1]在Nature上首次报道了聚合物半导体聚苯撑乙烯(PPV)的电致发光性。随后在1991年得到了Heeger等的进一步确证[2],从此,发光聚合物的研究在世界范围内广泛开展起来。相对于无机和有机小分子发光材料,共轭聚合物发光材料具有以下特点[3]:有良好的成膜性及加工性、可通过旋涂、浇铸等方法制成大面积薄膜;共轭聚合物有优良的粘附性、机械强度及稳定性;其电子结构、发光颜色等通过化学结构的改变和修饰可进行调节;虽然,聚合物自身的电导率很低,但作发光层的膜非常薄(100nm),因此即使驱动电压很低,加在聚合物膜上的电场强度仍足以产生器件发光所需要的电流密度,从而消除了掺杂带来的结构不稳定性。 液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子[4~14],它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。与各向同性发光聚合物相比,LCCP具有独特的长程有序性、光学各向异性。因而,可用于制备具有偏振发光性和发光视角可控的新型发光器件,并且其分子排列的各向异性可导致材料电荷传输的各向异性。具有取向的发光聚合物发射的偏振光用做液晶显示(LC D)的背照明,可明显提高LC D的亮度、对比度、发光效率和视角等。LCCP 在信息显示方面的应用前景和可观的实用价值,已经引起了科学界和工业界极大兴趣。本文将综述这一类新型功能高分子的研究进展。 1 液晶共轭聚合物的合成与性质 按照聚合物主链的不同,目前文献报道的液晶共轭聚合物可分为聚苯撑乙烯型、聚苯型、聚噻吩型、共聚噻吩型等四类。图1给出了文献报道的液晶共轭聚合物的分子结构。 1.1 聚苯撑乙烯型 二卤代苯与二烯苯通过Heck偶合反应可制备2,52二烷氧基聚苯撑乙烯[4](图1a)。反式聚苯撑乙烯衍生物主链刚硬,侧链烷氧基柔韧,因而,在一定条件下呈现出向列液晶相。此类LCCP的 王国杰 男,28岁,博士,从事高分子化学与物理研究。 3联系人 国家自然科学基金资助项目(29974013) 2000201209收稿,2000205230修回

金属有机骨架材料(MOFs)简介

金属—有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过 有机桥联配体和无机的金属离子的结合构成的有序网络结构。MOFs 呈现出目前最高的 比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使 MOFs 可以实现一些特 殊的应用,包括气体的存储和分离,催化以及药物缓释等。通过在有机配体中引入功能 基团或者利用 MOFs 作为主体环境引入活性组分,合成功能化的 MOFs 材料,可以大大 拓宽其应用范围。-华南理工-袁碧贞 金属有机骨架(Metal-Organic Frameworks MOFs)材料是利用含氧、氮等多齿有机 配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料 [1]。—华南理工-袁碧贞 MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金 属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好! 构型多样化的类沸石材料[22一],其发展历程大致可以分为三代12.]"如图1一1所示" 最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材 料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率" 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中 性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空 位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分 子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离 子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而 含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。——北化-安晓辉金属-有机骨架 ( metal-organic frameworks, MOFs) 材料是由金属离子与有机配体通过自组装过 程杂化生成的一类具有周期性多维网状结构的多孔 晶体材料,具有纳米级的骨架型规整的孔道结构,大 的比表面积和孔隙率以及小的固体密度,在吸附、分 离、催化等方面均表现出了优异的性能,已成为新材 料领域的研究热点与前沿。MOFs 材料的出现可以 追溯到 1989 年以 Robson 和 Hoskins 为主要代表的 工作,他们通过 4,4',4″,4-四氰基苯基甲烷和正 一价铜盐[Cu( CH 3 CN) 4 ]·BF 4 在硝基甲烷中反应, 制备出了具有类似金刚石结构的三维网状配位聚合 物 [1] ,同时预测了该材料可能产生出比沸石分子筛 更大的孔道和空穴,从此开始了 MOFs 材料的研究 热潮。但早期合成的 MOFs 材料的骨架和孔结构不 够稳定,容易变形。直到 1995 年 Yaghi 等合成出了 具有稳定孔结构的 MOFs

共轭聚合物合成方法的研究

80 2003年增刊 化学与生物工程 ————一———————一—_—h—一—————●—___-一 共轭聚合物合成方法的研究 王维,张爱清 (中南民族大学化学与生命科学学院,湖北武汉4311074) 摘要:综连了聚芳撑(PPP、PPY、PqP)、聚对苯撑乙烧(PPV)、聚苯胺(PAn)、聚腈(PAZ)几种共轭聚合物的合成 方法,井指出了甚轭聚各物应用中存在问题厦夸后的合成方向。 关键词:典轭聚合物;聚对苯撑}聚吡咯}聚噻吩;聚对苹撑乙烧;聚苯胺;聚腈;合成中图分类号:0631.23 文献标识码:A 文章编号:1672—5425(20(13)增刊一0080一07 聚合物常被认为是绝缘体,但共轭聚合物因其结构特征而具有优良的光电学性能。自1977年白川英 树(K.Shiakawa)和MacDiarmid等人首次用AsF5或 12对聚乙炔(Polyaeetylene,PA)进行P型掺杂,获得 103 s?m1以上的高电导率以来,人们对共轭聚合物 的结构和性能有了新的认识。1990年剑桥大学的Burronghes等用聚对苯撑乙炔(PPV)制备了电致发光器件,引起了世人的关注。共轭聚台物的研究在世 刘丽,路庆华,印杰,朱子康,王宗光.溶胶一凝胶{击制备聚酰亚胺/二氧化钛赙光杂化材料[J].高等学校化学学报,2001.22 (11),1943—1944. JPhotopolSdTechno】,1992-298. KerwlnR E,GodrickMR.Thermally stablephotorejist p。ly— mer[J]PdymEng Sci,1971,8(5)l426—429.YochN.HiramotoH.New photosensitivehigh temperaturepol— ymers forelectric applications[J].JMaeromol Sei Chem,1984, A211I3-14):1641—1663. 攘豪情,李悦生t丁盂贤.新的离子型光敏秉酡亚胺U3.应用化 学,1998.1 8(2).J00—105. WilsonD,Santa Ann.StenzenbergerH D.et a1.Polyimide[M]. Puhllshed r,theUSAChapman andHallNew York.1990:119. Hasegawn M.KoehiM,Mita1,eta1.Moleeulafaggragadonand fluorescencespectraofaromatic I)0lyimides[J].EurPolymJ, 1989,25:349‘354 RubnerR.Kieeberg W,KuhnE.German Patent2 437 348, 1994 界范围内乍l益广泛的开展起来,已逐渐成为一门新型的多学科交叉的研究领域。近些年研究主要集中在聚对苯撑(PPP)、聚吡咯(PPY)、聚噻吩(PTP)、聚苯胺(PAn)和聚苯撑乙炔(PPV),这是因为它们原料易得.合成方法简便、聚合物性能优良等优点,并显示出了广泛的应用前景。其应用领域主要包括:发光材料、非线性光学器件、充电电池、电容器、传感器、液晶材料等,国内外相关研究有不少文献报道[1“…,且部分应用已 [i9]柬普坤,李佐弗,李加深,玛戚,王强.主链古有机硅结构的光敏 聚酰亚胺的研究[J].功能高分子学报,1998.11(1):1998 f20]LinAA,VinodRS,et a1.MaeromoIeeules,1998,21:1165[213 ScaianoJ C.Ferrira J C N。Polym EngSci.1989,29(14);942 [zz3 Chiang wT.MeiwP.Tetrahedmn Letters,199Z,33‘511: 7869-7878. [23]ChiangWT,MeiWP.JApplyPolymSci,1993.50,2191—8195.[24]1wamotoM,KasaharaS?IrayamaK,ct日1.JpnJ Appl phys, 1991.30(2A):L218 [zsJ Jgargoa,MethodsMater,MleroeleetronTechaol(Proc hit. Syrup)。1982:81. [883JoChoi,e1.a1.Polym EngSci,1992.32(21)11632. [273KRCarter.eta1.PMSE,1995t72I 385. [683 E PCassidy,etal Po[ymNews.1989,14:392. 作者简介:扬志兰(1979一),士,硕士研宛生.研究方向:高分子 功能材料。 StudyofPhotosensitivePolyimide YANGZhHan,ZHANGAi-qing (College∥ChemistryandLi尼Science,SouthCentralUniversityforNationalities,Wuhan430074。Chinn) Abstract:Thepresentpaperreviewstheinvestigativeresearchofphotosensitivepolyimides.Thesyntheticmethods,propertiesandapplication arc discussedindetail.Beside,thedevelopmentaldirectionandappliedforegroundo{photosensitivepolyimides in microelectron are included. Keywords:photosensitive;polyimide;syntheticmethod;property;application;microelectron 圮玷钉 q 阳朝 叼 龃 ;  万方数据

高分子材料结构特点及形成原因

高分子材料的结构特点及形成原因 刘海翔 103511072 摘要:简单综述了高分子材料的结构特点,包括高分子链结构、晶体结构和微区结构等,同时简要阐述这些结构特点是如何形成的。 关键字:高分子材料;结构特点 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子的链结构 高分子链结构是指单个高分子化合物分子的结构,链结构主要包括高分子链的组成与结构和高分子链的分子量与构象。高分子链的组成是由聚合单体决定的,通常对某一种高分子材料而言,单体的组成并不是研究的主要对象。即使高分子链具有相同的组成,材料的性能也可能不同,这可能与高分子链的形态有关。图1展示了常见的分子链形态。

金属有机膦酸配位聚合物的合成及性质

金属有机膦酸配位聚合物的合成、表征及晶体结构研究 中文摘要 金属有机膦酸配位聚合物因其结构上的多样性以及在离子交换、嵌入材料、吸附材料、质子导电材料和催化材料等领域具有潜在的应用前景,己引起人们的广泛关注。本文主要介绍了利用低温水热合成技术,以具有手性结构特征的功能性有机膦酸RP03H2为构筑单元(R为手性或非手性功能性有机基团,结构中含有一oH,一NH2或一cOOH等功能性基团中的一种或几种),通过直接反应法或引入模板剂法成功地合成的未见文献报道的新型金属有机膦酸配位聚合物的晶体材料,并利用x一射线单晶衍射、IR光谱和TG、DTA 分析对所合成材料的晶体结构及骨架热稳定性进行的研究。 关键饲 金属有机膦酸,配位聚合物,水热合成,杂化材料,晶体结构 前言 材料是人类赖以生存和发展的重要物质基础,材料的发展水平直接反映了社会的生产力水平。新型材料的发展和创新对经济、科技、国防以及综合国力的增强都具有特殊重要的作用,其研究、开发和利用能力也是一个国家科技进步和经济发展的重要标志之一。随着科学技术的发展,人们对材料提出了越来越多、新的要求。能够在设计的基础上有目的的合成指定性能的材料一直是材料科学家们的不懈追求。金属有机膦酸配位聚合物由于其在结构上与相应的无机磷酸盐相似,具有孔道及较大的比表面积,它们可以作为分子吸附剂,从而可以对进入孔道的客体分子进行识别或者为客体分子提供反应环境,已引起了人们的极大兴趣。 1.金属有机膦酸配位聚合物简介 金属有机膦酸配位聚合物作为一类新型的有机一无机杂化材料,由于其结构上的多样性以及它们在离子交换材料、嵌入材料、吸附材料、质子导电材料和催化材料等材料科学领域中具有潜在的应用前景,已引起世界各国科学家的广泛关注。金属有机膦酸配位聚合物由于其在结构上与相应的无机磷酸盐相似,具有规则孔道结构及较大的比表面积,它们可以作为分子吸附剂,从而可以对进入孔道的客体分子进行识别或者为客体分子提供反应环境。在过去的二十年中,金属有机膦酸配位聚合物在合成和结构方面的研究已得到迅速发展,并已取得许多重要的研究成果.晶体结构也己扶一维链状拓展到二维层状和三维空旷骨架结构。最近。具有沸石型结构和手性结构特征的化合物也披合成出来,并通过x-射线单晶衍射对它们的晶体结构进行了深入研究。结构和性质研究表明,该类化合物在多相不对称催化合成反应中可能具有潜在的应用前景。这些研究成果的取得,极大地刺激了人们在该领域的研究热情。近年来人们已经认识到,如能将功能性有机活性基团引入到金属有机膦酸配位聚合物的骨架结构中,将会使所合成的材料能够表现出某种选择性吸附功能、催化功能或手性识别功能。这些新型金属有机膦酸配位聚合物材料的成功合成,不仅进一步丰富了该类化合物的结构,同时这些材料将可能表现出某种功能,从而为金属有机膦酸配位聚合物的应用研究提供新的思路。 2.实验总述 2.1化合物合成方法 本论文中所述金属膦酸配位聚合物的合成均采用水热合成方法。首先制各初始凝胶,将初始凝胶转移至不锈钢反应釜中,密封后放入恒温干燥箱中,在一定晶化温度和自生压力下晶化一定时间,得到的产物冷却后经去离子水洗涤,烘干后即得金属有机麟酸配位聚台物的单晶。 2.2制备原理 水热合成是一类处于常规溶液合成技术和固相合成技术之间的温度区域的反应,它是目前多数无机功能材料、特种组成与结构的无机化合物以及特种凝聚态材料的重要合成途径。近来被用于合成各种各样的配位聚合物晶体材料。 水热合成化学侧重于研究水热与溶剂热条件下物质的反应性能、生成规律以及合成产物的结构与性质。通常在120一260℃的自生压力下。在高压釜内由于温差的存在、产生强烈对流;使底部饱和溶液在上部生长,形成过饱和溶液,在釜壁四周上形成晶体。釜内过饱和溶液分布取决于釜内对流强烈程度,不断循环,晶体就在釜内不断生长。当反应结束后,缓慢将温度降至室温,就得到晶体。 3.层状膦酸铅配位聚合物的水热合成及结构研究 3.1综述

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910179842.0 (22)申请日 2019.03.11 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 潘春跃 何训名 喻桂朋  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C07D 417/14(2006.01) B01J 31/02(2006.01) C07D 209/30(2006.01) B01J 35/10(2006.01) (54)发明名称 一种基于吩噻嗪的共轭微孔聚合物、制备方 法和高效催化应用 (57)摘要 本发明公开了一种基于吩噻嗪的共轭微孔 聚合物、制备方法和高效催化应用,属于光催化 功能材料制备技术领域,本发明所述基于咔唑- 吩噻嗪共轭微孔聚合物,具有高比表面积,优异 的热稳定性及化学稳定性和良好的紫外吸收性 能,具有良好的光催化活性,在光照有氧条件下, 能够高效地催化吲哚的有氧硒化,转化率大于 99%,而且作为异相催化剂,便于分离和回收,能 实现循环使用,基于吩噻嗪的共轭微孔聚合物拓 宽了CMPs在光催化中的应用,具有重要的应用价 值和应用前景。权利要求书2页 说明书11页 附图3页CN 109942570 A 2019.06.28 C N 109942570 A

1.一种基于吩噻嗪的共轭微孔聚合物,其特征在于, 具有式I结构:其中, 单元具有如下结构式中任意一种: 式1-1,式1-2,式1-3分别命名为CMP -CSU8,CMP -CSU8-2和CMP -CSU8-3。 2.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物为粉末状或颗粒状。 3.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物的平均孔径范围是0.5~50nm,更优选为1~6nm。 4.根据权利要求1~3中任一项所述基于吩噻嗪的共轭微孔聚合物的制备方法,其特征在于,包括以下步骤:(1)制备单元的三溴代物;(2)制备三咔唑吩噻嗪单体: 单元的三溴代物与咔唑以1:3~1:6的物质的量比例加入,在CuI和1,10-菲啰啉的催化下发生偶联反应,即得; (3)将步骤(2)所得三咔唑吩噻嗪单体溶于有机溶剂,加入到有氧化剂的有机溶液中混合进行反应,然后过滤,洗涤,干燥,得到所述基于吩噻嗪的共轭微孔聚合物材料。 权 利 要 求 书1/2页2CN 109942570 A

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

高聚物概述

聚合物生产技术绪论 高聚物的概念:高聚物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达10^4~10^6)化合物。例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。 高聚物的基本特点:相对分子质量大,分子链长(一般在~m),同时相对分子质量具有多分散性。高弹形变和黏弹性是聚合物特有的力学性能。这些特性均与大分子的多层次结构的大分子链的特殊运动方式以及聚合物的加工有密切的关系。聚合物的强度、硬度、耐磨性、耐热性、耐腐蚀性、耐溶剂性以及电绝缘性、透光性、气密性等都是使用性能的重要指标。 高聚物的分类:高分子化合物的分类众多,按其元素组成可分无机高分子化合物(如石棉,云母等)和有机高分子化合物(如橡胶,蛋白质);按其来源可分为天然高分子化合物(如淀粉,天然橡胶,蛋白质,石棉,云母)和合成高分子化合物(如合成塑料,橡胶,纤维)合成高分子化合物;又可按生成反应类型分加聚物(聚乙烯,聚氯乙烯)和缩聚物(聚酰胺,聚酯,酚醛树脂):按链的结构可分线型高分子(合成纤维)和体型高分子(酚醛树脂)。高分子化合物中的各种官能团,都能正常反应,如羰基加成,脱碳,酯和酚胺水解等。由于分子量大,结构特殊,他们各自有其独特的物理性质,作为高分子材料证实利用了这些性质。 结构:对聚合物链的重复单元的化学组成一般研究得比较清楚,它取决于制备聚合物时使用的单体,这种结构是影响聚合物的稳定性、分子间作用力、链柔顺性的重要因素。键接方式是指结构单元在高聚物中的联结方式。在缩聚和开环聚合中,结构单元的键接方式一般是明确的,但在加聚过程中,单体的键接方式可以有所不同,例如单烯类单体(CH2=CHR)在聚合过程中可能有头—头、头—尾、尾—尾三种方式:对于大多数烯烃类聚合物以头-尾相接为主,结构单元的不同键接方式对聚合物材料的性能会产生较大的影响,如聚氯乙烯链结构单元主要是头-尾相接,如含有少量的头-头键接,则会导致热稳定性下降。

金属有机多孔配位聚合物的研究进展

金属有机多孔配位聚合物的研究进展 多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。 和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。 由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。作为一个重要组成部分,金属离子在配位聚合物的形成中起到极其重要的作用,配体的配位信息就是通过金属离子,根据它们配位点化学本性和几何学的规则来识别的。首先,金属离子本身的特性决定

高分子聚合物的详细介绍

高分子聚合物又称高分子化合物,是天然高分子和合成高分子化合物的总称,是由一种(均聚物)或几种(共聚物)结构单元用共价键连接在一起的、分子量很高的、比较规则的连续序列所构成的化合物。 高分子聚合物或其预聚体均称为合成树脂,高分子聚合物是通过聚合反应而制得的,且大多数是由人工合成制得的,故人们又称其为高分子合成材料。 高分子聚合物可以抽丝做成合成纤维,做成高弹性的合成橡胶,也可以通过加工成型形成刚性材料—塑料,这就是所谓的三大合成材料,高分子聚合物还可以用来生产涂料、胶黏剂和密封材料。 (一)高分子聚合物的分类 高分子聚合物根据其来源,可分为天然聚合物、人工合成聚合物、半合成聚合物等几类;根据其使用性能,可分为纤维、橡胶、塑料、涂料和胶黏剂等几类;根据分子量大小的不同,可以把聚合物分为齐聚物、低聚物和高聚物;其重复单元的种类仅为一种的称为均聚物,可分为线型聚合物、接枝共聚物、嵌段共聚物(又称镶嵌共聚物)、网状聚合物等;从高分子化学角度着眼,一般以有机化合物分类为基础,根据其主链结构,可分为热塑性聚合物和热固性聚合物二类。 (二)高分子聚合物的特性 合成高分子聚合物的化学组成比较简单,许多小分子化合物如果它们带有两个以上的可反应基团(功能基),则这类小分子化合物即可发生聚合反应,生成高分子聚合物(这类小分子化合物称为单位)。例如聚氯乙烯则是由氯乙烯结构单元重复而成,若聚合物的分子量已经很高,再增加几个机构单元并不显著影响其物理机械性能者,称高聚物;泛指的聚合物多是单体通过聚合形成的高聚物;若聚合物的聚合度很低(几至几十),再增加几个结构单元对其性能有明显影响者,则称为低聚物或齐聚物。 聚合物通常是由分子量不等的许多大分子链组成,这是在单体进行聚合的过程中,由于许多因素的影响,而使生成的聚合物是许多结构和性质相类似而聚合度不完全相等的混合物所致。这些聚合物称为同系聚合物,因此高分子聚合物是不同分子量的同系聚合物,这种特点称为多分散性,多异高分子聚合物的分子量也只能用平均分子量来表示,这是聚合物的又一特征。 潍坊市凯鑫防水材料有限公司

(整理)聚合物的表征概述

精品文档 目录1 前言 0 2 表征方法 (1) 2.1 红外光谱法(IR) (1) 2.2 核磁共振法(NMR) (3) 2.3 热分析法 (3) 2.4 扫描电镜法 (5) 2.5 X-射线衍射法 (5) 2.6 原子力显微镜法 (6) 2.7 透射电镜法 (7) 3 聚合物表征的相关研究 (8) 4 结论 (8) 参考文献 (9)

精品文档 聚合物表征方法概述 摘要:介绍了常规的聚合物的表征方法,具体叙述了红外光谱(IR)、X射线衍射(XRD)、透射电镜(TEM)、核磁共振(NMR)等的原理、方法、特点、局限性及改进方法并展望了聚合物表征方法的发展趋势。 关键词: 聚合物表征方法 Summary of polymer characterization methods Abstrac t:The conventional polymer characterization methods were introduced in this paper. The principle, method, characteristics infrared spectra (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and the nuclear magnetic resonance (NMR) have been described, the limitations, the improved method and the predicts the development trend of those polymer characterization methods have been summarized. Keyword:polymer characterization method 1 前言 功能高分子是指具有某些特定功能的高分子材料[1]。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。功能高分子材料从20世纪50年代才初露端倪,到70年代方成为高分子学科的一个分支,目前正处于成长时期。它是在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能而制得的一类高分子[2]。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要[3]。

相关文档