文档库 最新最全的文档下载
当前位置:文档库 › 南京邮电大学电磁场与电磁波考试必背公式

南京邮电大学电磁场与电磁波考试必背公式

南京邮电大学电磁场与电磁波考试必背公式
南京邮电大学电磁场与电磁波考试必背公式

电磁场与电磁波复习

第一部分 知识点归纳 第一章 矢量分析

1、三种常用的坐标系 (1)直角坐标系

微分线元:dz a dy a dx a R d z y x →

++= 面积元:?????===dxdy dS dxdz dS dydz

dS z

y

x ,体积元:dxdydz d =τ

(2)柱坐标系

长度元:?????===dz dl rd dl dr

dl z r ??,面积元???

??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z

z r z r ????,体积元:dz rdrd d ?τ=

(3)球坐标系

长度元:???

??===?θθ?

θd r dl rd dl dr dl r sin ,面积元:

??

?

??======θ

?θ?

θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2=

2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系

??

??

???

==+=?????===z z x y y

x r z z r y r x arctan

,sin cos 22??? (2)直角坐标系与球坐标系的关系

?

??

?

??

???

=++=++=?????===z y

z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2

222

22?θθ?θ?θ (3)柱坐标系与球坐标系的关系

??

?

?

???=+=+=?????===??θθ??θ2

2'2

2''arccos ,cos sin z r z z

r r r z r r 3、梯度

(1)直角坐标系中:

z

a y a x a grad z y x ??+??+??=?=→→→

μ

μμμμ

(2)柱坐标系中:

z

a r a r a grad z r ??+??+??=?=→→→

μ

?μμμμ?1

(3)球坐标系中:

?

μ

θθμμμμ?θ??+??+??=?=→→→

sin 11r a r a r a grad r

4.散度

(1)直角坐标系中:

z

A y A x A A div z

y X ??+??+??=→

(2)柱坐标系中:

z

A A r rA r r A div z

r ??+??+??=

??1)(1 (3)球坐标系中:

?θθθθ?

θ??+??+??=

A r A r A r r

r A div r sin 1)(sin sin 1)(122

5、高斯散度定理:???

→→

→=??=?τ

τ

ττd A div d A S d A S

,意义为:任意矢量场→

A 的散度在场中任

意体积的体积分等于矢量场

A 在限定该体积的闭合面上的通量。

6,旋度

(1) 直角坐标系中:

z

y

x

z y x

A A A z y x a a a A ??????=

??→

→ (2) 柱坐标系中:

z

r z r

A rA A z r a ra a r A ?

????????=

??→

→1 (3) 球坐标系中:

?

θ?

θθ?θθθA r rA A r

a r a r a r A r r

sin sin sin 12

??

????=??→

两个重要性质:①矢量场旋度的散度恒为零,0=????→

A ②标量场梯度的旋度恒为零,0=???μ

7、斯托克斯公式:

??→

→→→???=?S

C

S d A l d A

第二章 静电场和恒定电场

1、静电场是由空间静止电荷产生的一种发散场。描述静电场的基本变量是电场强度→

E 、电

位移矢量→

D 和电位?。电场强度与电位的关系为:?-?=→

E

。m F /10854.8120-?≈ε

2、电场分布有点电荷分布、体电荷分布、面电荷分布和线电荷分布。其电场强度和电位的计算公式如下: (1)点电荷分布

C R q R q R R q E N

k k

k

N

k k k

N

k k k k +=?-==∑∑∑===→

101

13041

,)1(41

41

πε?πεπε (2)体电荷分布

C r

r dv r r

r dv r r r E v

v

+-=

--=

?

?

→→

→→

'

'

'0

3'

'

'

'

)(41,))((41ρπε?ρπε

(3)面电荷分布 C r

r dS r r

r dS r r r E S

S S

S +-=

--=

?

?

→→

→→

→→

'

'

'0

3'

'

'

'

)(41,))((41ρπε?ρπε

(4) 线电荷分布

C r

r dl r r

r dl r r r E l

l l

l +-=

--=

?

?

→→

→→

→→

'

'

'0

3'

'

'

'

)(41,))((41ρπε?ρπε

3、介质中和真空中静电场的基本方程分别为 ????????→?=??=?→

→?)面内的总极化电荷之和面内的总源电荷和为介质中的高斯定理((微分形式)

积分形式表示意义

S S q r D q S d D S )()(,ρ场,也是保守场。说明静电场是一种发散安培环路定理(微分形式)

积分形式表示意义

,0)(,0????????→?=??=?→

→?E l d E C

???

????

???→?=??=?→=→→∑?真空中的高斯定理为体电荷密度)(微分形式,积分形式表示意义ρερ

ε01

0).(1E q S d E n i i S 在线性、各向同性介质中,本构方程为:→

→→→→==+=E E P E D r εεεε00 4、电介质的极化

(1)极化介质体积的极化体电荷密度为:)(极化强度矢量→

→?-?=P P p ρ。 (2)介质表面的极化面电荷密度为:)(p 量为表面的单位法向量矢→

→→?=n n P S ρ 5、在均匀介质中,电位满足的微分方程为泊松方程和拉普拉斯方程,即

(无源区域),有源区域0

)(22=?-

=??ε

ρ

? 6、介质分界面上的边界条件 (1)分界面上n D 的边界条件

S S n n D D n D D ρρ=-?=-→

→→)(2121或

(S ρ为分界面上的自由电荷面密度),当分界面上没有 自由电荷时,则有:

→→→→?=?=2121D n D n D D n n 即,它给出了→

D 的法向分量在

介质分界面两侧的关系:

(I ) 如果介质分界面上无自由电荷,则分界面两侧→

D 的法向分量连续; (II )如果介质分界面上分布电荷密度s ρ,→

D 的法向分量从介质1跨过分界面进入介质2

时将有一增量,这个增量等于分界面上的面电荷密度s ρ。 用电位表示:)0(2

2112211

=?Φ?=?Φ?=?Φ?+?Φ?-S S n

n n n ρεερεε和 (2)分界面上t E 的边界条件(切向分量)

=?=?t t E E E n E n 21或,电场强度的切向分量

在不同的分界面上总是连续的。

由于电场的切向分量在分界面上总连续,法向分量 有限,故在分界面上的电位函数连续,即

21??=。

电力线折射定律:2

1

21tan tan εεθθ=

7、静电场能量

(1)静电荷系统的总能量

①体电荷:?Φ=

ττρd W e 21

; ②面电荷:?Φ=S S e ds W ρ21

③线电荷:?Φ=l

l e dl W ρ21

(2)导体系统的总能量为:∑=

k

k k e q W ?21

。 (3)能量密度

静电能是以电场的形式存在于空间,而不是以电荷或电位的形式存在于空间中的。场中任意

一点的能量密度为:32/2

121m J E E D e εω=?=→→

在任何情况下,总静电能可由?=V

e d E W τε2

21来计算。

8、恒定电场存在于导电媒质中由外加电源维持。描述恒定电场特性的基本变量为电场强度

→E 和电流密度→J ,且→

→=E J σ。σ为媒质的电导率。

(1)恒定电场的基本方程

t 2

分界面上t E 的边界条件

分界面上n D 的边界条件

电流连续性方程:??

???

=??+????=????-=?→→→→?0

t -t J J t

q S d J S ρρ或微分形式:积分形式: 恒定电流场中的电荷分布和电流分布是恒定的。场中任一点和任一闭合面都不能有电荷的增减,即

00=??=??t

t q ρ

和。因此,电流连续性方程变为:00=??=?→→→?J S d J S 和,再加上

00=??=?→

?E l d E C

和,这变分别是恒定电场基本方程的积分形式和微分形式。

(2)恒定电场的边界条件

0)()2(,0)()1(21212121=-?==-?=→

→→→→→→→t t t t n n E E n E E J J n J J 或或

应用欧姆定律可得:2

21

12211σσσσ→

=

=t

t

n n J J E E 和

此外,恒定电场的焦耳损耗功率密度为2

E p σ=,储能密度为2

2

1E e εω=

。 第四章 恒定磁场

1

→→

H 来描述,真空中磁感应强度的计算公式为:

(1)线电流:?

?→→

→→

→→

--?=?=

l

l R r

r r r l Id R a l Id B 3

'

'

'

02'

0)(44π

μπμ

(2)面电流:?

?

→→

--?=

?=S

S S

R S dS r

r r r J dS R a J B '3'

'

0'

2

)

(44πμπ

μ

(3)体电流:

??→→

→→

--?=

?=

τ

τ

τπ

μτπ

μ'

3'

'

0'2

0)

(44d r

r r r J d R a J B R

2、恒定磁场的基本方程

(1)真空中恒定磁场的基本方程为:

A 、磁通连续性方程:?????=??=?→→→?00

B S d B S 微分形式:积分形式:,B 、真空中安培环路定理:??

???=??=?→

→→→?J B I l d B l 00μμ微分形式:积分形式: (2)磁介质中恒定磁场的基本方程为:

A 、磁通连续性方程仍然满足:?????

=??=?→→

→?0

0B S d B S 微分形式:积分形式:, B 、磁介质中安培环路定理:??

???

=??=?→

→→→?J H I l d H l 微分形式:积分形式: C 、磁性媒质的本构方程:),(0

0为磁化强度矢量其中→

→→

→→→-=

==M M B

H H H B r μμμμ。

恒定磁场是一种漩涡场,因此一般不能用一个标量函数的梯度来描述。

3、磁介质的磁化

磁介质在磁场中被磁化,其结果是磁介质部出现净磁矩或宏观磁化电流。磁介质的磁化程度用磁化强度→

M 表示。

(1)磁介质中的束缚体电流密度为:→

→??=M J m ;

(2)磁介质表面上的束缚面电流密度为:)(量为表面的单位法向量矢其中,→

?=n n M J mS 4、恒定磁场的矢量磁位为:→

??=A B ,矢量→

A 为矢量磁位。

在库仑规条件(0=?

?→

A )下,场与源的关系方程为:(无源区)有源区0

)(22=?-=?→

→→A J A μ 对于分布型的矢量磁位计算公式:

(1) 线电流:?→

=l R

l Id A πμ4(2)面电流:?

=S

S R dS J A πμ

4(3)体电流:?→

→=

ττπ

μ

R

d J A 4

5、恒定磁场的边界条件

(1)分界面上n B 的边界条件

在两种磁介质的分界面上,取一个跨过分界面 两侧的小扁状闭合柱面(高0→h 为无穷小量), 如右图所示,应用磁通连续性方程可得:

02

1

=?-?=?→

→→→→→?dS n B dS n B S d B S

于是有:n n B B B B n 21120)(==-?→

→或

(2) 分界面上t H (切向分量)的边界条件:

→→→

=-?S J H H n )(21,如果分界面上无源表面电流

(即0=→

S J ),则0)(21=-?→

H H n 即221121sin sin θθH H H H t t ==→

或 磁力线折射定律:2

121tan tan μμθθ=

用矢量磁位表示的边界条件为:→→→→→=??-??=S t t J A A A A )(1

)(1,22

1121μμ

6、电感的计算

(1)外自感:??→

?=ψ=l l R

l d l d I

L 000

004πμ,(2)互感:??→

→?=

=122

121021124l l R l d l d n n M M π

μ

(3)自感:单位长度的圆截面导线的自感为:π

μ8=L (长度为l 的一段圆截面导线的自感为

π

μ8l L =

)。

7、磁场的能量和能量密度 (1)磁场的总能量

磁介质中,载流回路系统的总磁场能量为:∑∑===N j N

k k

j kj m I I M W 11

2

1

(3) 磁场能量密度

A 、 任意磁介质中:→→?=

B H m 21ω,此时磁场总能量可以由?→

→?=τ

τd H B W m 21计算出;B 、在

各向同性,线性磁介质中:→

→→=?=

H B H m μω2

121,此时磁场总能量可以由??=?=

→→τ

ττμτd H d H B W m 221

21 第五章 时变电磁场

分界面上n B 的边界条件

电磁场与电磁波必考重点填空题经典

一、填空题 ▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和; 散度的物理意义是矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是散度一个单位体积内通过的通量。 2.散度在直角坐标系z A y A x A A div Z Y X ??+??+??=散度在圆柱坐标系z A A r r rA r A div Z r ??+??+??=??1)(1 ▲3,矢量函数的环量定义 ??=l l d A C ;旋度的定义MAX l S l d A rot ??=?→?lim 0; 二者的关系 ???=???l S l d A S d A )(;旋度的物理意义:最大环量密度和最大环量密度方向。 4.旋度在直角坐标系下的表达式)()()(y A x A e x A z A e z A y A e z y z z x y y Z x ??-??+??-??+??-?? ▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ; 等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。 6.用方向余弦cos α 、cos β、cos γ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos z y x l e e e e ++= ▲7.直角坐标系下方向导数l u ??的数学表达式 γβαcos cos cos z u y u x u ??+??+??;梯度γβαcos cos cos z y x e e e ++ ▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 ▲9.麦克斯韦方程组的积分表达式分别为 1.?=?S Q S d D ;2.S d t B l d E l S ????-=?;3.0=??S S d B ;4.?????+=?S l S d t D J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源 3.磁感应强度的散度为0,说明磁场不可能由通量源产生; 4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。 ▲10.麦克斯韦方程组的微分表达式分别为 1.ρ=??D ;2.t B E ??-=??; 3.0=??B ; 4.t D J H ??+=?? 其物理描述分别为同第九题 11.时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理 ▲12.坡印廷矢量的数学表达式 H E S ?=; 其物理意义 电磁能量在空间的能流密度; 表达式??S S d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 ▲13.电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。 产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布; 描述电介质极化程度或强度的物理量是极化矢量P

电磁场与电磁波复习

一、名词解释 1.通量、散度、高斯散度定理 通量:矢量穿过曲面的矢量线总数。(矢量线也叫通量线,穿出的为正,穿入的为负) 散度:矢量场中任意一点处通量对体积的变化率。 高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。 2.环量、旋度、斯托克斯定理 环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。其物理意义随A 所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。 旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。 斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。 3.亥姆霍兹定理 在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合 面S上矢量场的分布)唯一的确定。 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 4.电场力、磁场力、洛仑兹力电场力:电场 力:电场对电荷的作用称为电力。 磁场力:运动的电荷,即电流之间的作用力,称为磁场力。 洛伦兹力:电场力与磁场力的合力称为洛伦兹力。 5.电偶极子、磁偶极子 电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。 磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。 6.传导电流、位移电流 传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。 位移电流:电场的变化引起电介质内部的电量变化而产生的电流。 7.全电流定律、电流连续性方程 全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。 电流连续性方程: 8.电介质的极化、极化矢量 电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子, 这种现象称为电介质的极化。 极化矢量P:单位体积内的电偶极矩矢量和。 9.磁介质的磁化、磁化矢量 磁介质的磁化:当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会形成一个个 小的磁偶极子,这种现象称为介质的磁化。

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

南京邮电大学电磁场与电磁波考试必背公式

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:??? ??===?θθ? θd r dl rd dl dr dl r sin ,面积元: ?? ? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ?? ??? ==+=?????===z z x y y x r z z r y r x arctan ,sin cos 22??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 222 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2'2 2''arccos ,cos sin z r z z r r r z r r 3、梯度 (1)直角坐标系中: z a y a x a grad z y x ??+??+??=?=→→→ μ μμμμ (2)柱坐标系中: z a r a r a grad z r ??+??+??=?=→→→ μ ?μμμμ?1 (3)球坐标系中:

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ?和磁场H ? 满足的方程 为: 。 2.设线性各向同性的均匀媒质中, 02=?φ称为 方程。 3.时变电磁场中,数学表达式H E S ? ???=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场)(r A ? ?穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??- =????,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数y x e xz e y B ??2 +-=?是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量z y x e e e A ?3??2-+=?,z y x e e e B ??3?5--=? ,求 (1)B A ? ?+

(2)B A ??? 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E e E --=004?3?? (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题 (每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为0U ,其余两面电位为零, (1) 写出电位满足的方程; (2) 求槽内的电位分布 无穷远 图2 图1

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

《电磁场与电磁波》试题2及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为,则电位移矢量和电场满足的 方程为:。 2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为,电 位所满足的方程为。 3.时变电磁场中,坡印廷矢量的数学表达式为。 4.在理想导体的表面,电场强度的分量等于零。 5.表达式称为矢量场穿过闭合曲面S 的。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是场,因此,它可用磁矢位函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题(每小题10分,共30分) 15.矢量函数 ,试求 (1) (2) 16.矢量 , ,求 (1) (2)求出两矢量的夹角 εD E φ εV ρ()S d r A S ??)(r A S d t B l d E S C ???-=???z x e yz e yx A ??2+-= A ??A ??z x e e A ?2?2-= y x e e B ??-= B A -

17.方程给出一球族,求 (1)求该标量场的梯度; (2)求出通过点 处的单位法向矢量。 四、应用题(每小题10分,共30分) 18.放在坐标原点的点电荷在空间任一点处产生的电场强度表达式为 (1)求出电力线方程;(2)画出电力线。 19.设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置 (2) 直角劈内任意一点 处的电位表达式 20.设时变电磁场的电场强度和磁场强度分别为: (1) 写出电场强度和磁场强度的复数表达式 (2) 证明其坡印廷矢量的平均值为: 五、综合题(10分) 21.设沿方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场只有分量即 (1) 求出反射波电场的表达式; (2) 求出区域1 媒质的波阻抗。 2 22),,(z y x z y x u ++=()0,2,1r r e r q E ?42 0πε= ),,(z y x )cos(0e t E E φω-= ) cos(0m t H H φω-= ) cos(2100m e av H E S φφ-?= z +x z j x e E e E β-=0?

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度 在直角坐标系的表达式 z A y A x A z y x A A ?? ????++=??= div ; 散度在圆柱坐 标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S 点P 时,存在极限环量密度。 二者的关系 n dS dC e A ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。 梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达 式 ; 7、直角坐标系下方向导数 u l ??的数学表达式是cos cos cos l αβγ????????uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ???=++=?=???; 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 2211()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2. ()[()()()]()()()0y x x x z z x y z x y z y y x x z z A A A A A A A e e e e e e x y z y z z x x y A A A A A A x y z y z x z x y ????????????? =++?-+-+-??????????????????=-+-+-=????????? 1. 简述亥姆霍兹定理并举例说明。 2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。 例静电场 s D ds q ?=∑?? 0D ρ??= 有源 0l E dl ?=? 0E ??= 无旋 1. 已知 R r r '=-,证明R R R R e R ' '?=-?==。 2. 证明 x y z x y z R R R x x y y z z R e e e e e e x y z R R R ''' ???---?=++=++??? R '?= …… R =-? 1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢?

电磁场与电磁波习题集

电磁场与电磁波 补充习题 1 若z y x a a a A -+=23,z y x a a a B 32+-=,求: 1 B A +;2 B A ?;3 B A ?;4 A 和B 所构成平面的单位法线;5 A 和B 之间较 小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E ++=是无散的,也是无旋的。 3 若z y x f 23=,求f ?,求在)5,3,2(P 的f 2?。 5 假设0x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为 角频率,β为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。 12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k , 磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m , 求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t )sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相

电磁场与电磁波(必考题)

v1.0 可编辑可修改 1 ())] 43(cos[31,,z x t-e t z x H +=πωπ y ωz x z k y k x k z y x ππ43+=++π3=x k 0=y k π4=z k )/(5)4()3(2 2222m rad k k k k z y x πππ=+=++=λ π 2= k ) (4.02m k ==π λ c v f ==λ)(105.74 .010388 Hz c f ?=?= = λ )/(101528s rad f ?==ππω ) /(31),() 43(m A e e z x H z x j y +-=ππ ) /()243254331120),(),(),() 43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+? ?=?=?=πππ π πππηη(() [])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω ())] 43(cos[31 ,,z x t-e t z x H +=πωπ y () []() [])/()43(cos 322431)] 43(cos[31 )43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+?+--=?=πωπ πωπ πωy () )43(2432),(z x j z x e e e z x E +--=π)43(31),(z x j y e e z x H +-=ππ () () )/(322461312432Re 21Re 212* )43() 43(*m W e e e e e e e H E S z x z x j y z x j z x av +=?????????????????-=??? ???= +-+-ππππ z 00 x φ==0 x a φ==00001 (,)()()(sin cos )(sinh cosh ) (3) n n n n n n n n n x y A x B C y D A k x B k x C k y D k y φ∞ ==+++ ++∑(0,)0 (0)y y b φ=≤< 0001 0()(sinh cosh ) n n n n n n B C y D B C k y D k y ∞ ==+++∑y 0b →0(0,1,2,) n B n ==0001 (,)()sin (sinh cosh ) n n n n n n n x y A x C y D A k x C k y D k y φ∞ ==+++∑(,)0(0)a y y b φ=≤< 0001 0()sin (sinh cosh ) n n n n n n n A a C y D A k a C k y D k y ∞ ==+++∑y 0b →00A =sin 0(1,2,)n n A k a n ==n A 0φ≡sin 0n k a = (1,2,) n n k n a π==1 (,)sin (sinh cosh )n n n n n x n y n y x y A C D a a a πππφ∞ ==+∑ (,0)0 (0)x x a φ=≤≤ 1 0sin n n n n x A D a π∞ ==∑ 0a →0n A ≠ 0(1,2,)n D n == 1(,)sin sinh n n n x n y x y A a a ππφ∞ ='=∑ n n n A A C '= 0 (,)(0)x b U x a φ=≤≤ 01 sin sinh n n n x n b U A a a ππ∞ ='=∑ n A '(0,)a sin n x a π????? ? 01 sin n n n x U f a π∞ ==∑ 002sin a n n x f U dx a a π= ?041,3,5,0 2,4,6, U n n n π?=?=??=? sinh n n f A n b a π'=041,3,5,sinh 02,4,6,U n n b n a n ππ? =?? =??=?? 1,3, 41(,)sin sinh sinh n U n x n y x y n b a a n a ππφππ ∞ == ∑ ) 0(0),0(b y y <≤=?)0(0),(b y y a <≤=?)0(0)0,(a x x ≤≤=?) 0(),(0 a x U b x ≤≤=?02= ??

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 、填空题(每小题 1分,共10分) 1. 在均匀各向同性线性媒质中,设媒质的导磁率为 ,则磁感应强度 B 和磁场 H 满足的方程 矢量场 A(r) 穿过闭合曲面S 的通量的表达式为: 静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 12 .试简述唯一性定理,并说明其意义。 13 .什么是群速?试写出群速与相速之间的关系式。 15.按要求完成下列题目 (2) 如果是,求相应的电流分布。 (1) A B 为: 2. 设线性各向同性的均匀媒质中, 0 称为 方 程。 3. 时变电磁场中,数学表达式 S H 称为 4. 在理想导体的表面, 的切向分量等于零。 5. 6. 电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7. 8. 如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9. 对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10 .由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t ,试说明其物理意义,并写出方程的积分形式。 14.写出位移电流的表达式, 它的提出有何意义? 三、计算题 (每小题 10分, 共30分) (1)判断矢量函数 B y 2e X xz &是否是某区域的磁通量密度? 16 .矢量 A 2& & 3?z B 电3?y e z 求

(2)A B 17. 在无源的自由空间中,电场强度复矢量的表达式为 E &3E° &4E。e jkz (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18 .均匀带电导体球,半径为a,带电量为Q。试求 (1 ) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 19 .设无限长直导线与矩形回路共面,(如图1所示), (1) 判断通过矩形回路中的磁感应强度的方向(在图中标出) (2) 设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为U。,其余两面电位为零, (1 ) 写出电位满足的方程; (2) 求槽内的电位分布

相关文档
相关文档 最新文档