文档库 最新最全的文档下载
当前位置:文档库 › 反比例函数定义与性质

反比例函数定义与性质

反比例函数定义与性质
反比例函数定义与性质

状元廊学校数学思维方法讲义之三 年级:九年级

§第3讲 反比例函数(1)

【精彩知识】

1.反比例函数的定义 一般地,如果两个变量x ,

y 之间的关系可以表示为x

k y =

(或1

-=kx y )(k 为常数,且0__k )的形式,那么称y 是x 的 函数。自变量x 与的取值范围是 。 y 是x 的反比例函数?x

k

y =?1-=kx y ?k xy =?y 与x 成反比例函数。

2.反比例函数的图象和性质

反比例函数x

k

y =

(0≠k )的图象是由两支曲线组成的,称为 ,它们关于原点成 对称,关于直线x y ±=成 对称,与两坐标轴 交点。

①当k >0时, 图象(双曲线)的两个分支分别在第 象限,且在每个象限内,y 随x

的增大而 ;

②当k <0时, 图象(双曲线)的两个分支分别在第 象限,且在每个象限内,y 随x 的增大而 。

3.反比例函数x k

y =

(0≠k )中的比例系数k 的几何意义 过双曲线上任一点作x 轴、y 轴的垂线PM 、PN 所得的矩形PMON

的面积||

||__S P M

P N x y =?=?=;若连接PO ,则

_____==??P

O N

P

O M

S S 。

【典例解析】

考点1: 反比例函数的概念 【例1】已知1

2

2)2(-++=m m x

m m y

(1)如果y 是x 正比例函数,求m 的值;

(2)如果y 是x 反比例函数,求m 的值。

【例2】已知12y y y =-,其中1y 与x 成反比例,2y 与2x +成正比例,且12,y y 所表示的函数图象相交于点P (1,5)。求当5x =时y 的值。

变式训练1: 1.已知函数m

m x

m y 3123--+=

是反比例函数,则m 的值为 ;

2. 若y 与

x 1成反比例函数,x 与z

1

成正比例函数,则y 是z 的( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数 考点2: 反比例函数的图象和性质

【例3】若M ??? ??-1,21y 、N ??

? ??-2,41y 、P ??? ??3,21y 三点都在函数x k y 12--=的图象上,则321y y y 、、的大小关系为( )

A 、2y >3y >1y

B 、2y >1y >3y

C 、3y >1y >2y

【例4】如图,一次函数y =x +3的图象与x 轴,y

轴交于A ,B 两点,与反比例函数x

y 4

=

的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论

是 。

变式训练2:

1. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数k

y x

=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )

A .2≤k ≤9

B . 2≤k ≤8

C . 2≤k ≤5

D . 5≤k ≤8

G

2. 如图,P 是函数x y 21=(x >0)的图象上的一点,直线1+-=x y 分

别交x 轴、y 轴于点A 、B ,过点P 分别作PM ⊥x 轴于点M ,交AB 于点E ,作PN ⊥y 轴于点N ,交AB 于点F ,则AF ·BE 的值为 。

考点3: 反比例函数x

k

y =(0≠k )中的比例系数k 的几何意义与面积法的综合运用

【例5】如图,正方形OABC 的面积是4,点B 在反比例函数

(00)k

y k x x

=><,的图象上.若点R 是该反比例函数图象上异于

点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m (m 为常数,且0

变式训练3:

1.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分 别交函数x k 1y =

(x >0)和x

k

2y =(x >0)的图象于点P 和Q ,连接OP 、 OQ ,则下列结论正确的是( )

A .∠POQ 不可能等于900

B .

2

1K K QM PM

= C .这两个函数的图象一定关于x 轴对称 D . △POQ 的面积是)(|k ||k |2

1

21+

2.如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线(0)k

y x x

=

>上,且214x x -=,122y y -=;分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 .

考点4:函数综合题(待定系数法+数形结合、函数与方程思想、分类讨论思想)

【例6】已知反比例函数x

k y 2=与一次函数12-=x y ,其中一次函数的图象经过(a ,b )、

(a +1,b +k )两点.

(1)求反比例函数的解析式;

(2)如图,已知A 点是上述两函数图象在第一象限内的交点,求A 点的坐标;

(3)利用(2)的结果,在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请把所有符合条件的P 点坐标都求出来;若不存在,请说明理由.

变式训练4:

如图,一次函数y kx b =+的图象 与坐标轴分别交于A ,B 两点,与反比例函数m

y x

=的图象在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =2,OD =4,△AOB 的面积为1,

(1)求一次函数与反比例函数的解析式; (2)根据两函数图象直接写出不等式0m

kx b x

+->的解集。

【例7】如图,已知双曲线k

y x

=

,经过点D (6,1)C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接(1)求k 的值;

(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.

变式训练5:

如图,直线4y kx =+与函数m

y x

=

(x >0,m >0)的图像交于A ,B 两点,且与,x y 轴分别交于C ,D 两点.

(1)若直线y =kx +4与直线y =-x -2平行,且△AOD 面积为2,求m 的值;

(2)若△COD 的面积是△AOB 倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.

①求:AH OD 的值; ②求k 与m 之间的函数关系式.

(3)若点P 坐标为(2,0),在(2)的条件下,是否存在,k m ,使得△APB 为直角三角形,且0

90APB ∠=.若存在,求出,k m 的值,若不存在,请说明理由.

y =x +4与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x 2+bx +c 经过A 、B x 轴交于另一点C (点C 点A 的右侧),点P 是抛物线上一动点. C 的坐标;

P 作PD ⊥轴于D ,交AB 于点E .当点P 运动到什么位置时,PE 等于多少?

x 轴的动直线l 与抛物线交于点Q ,与直线AB 交于点N ,点M 为OA 的中点,l ,使得△MON 是等腰三角形?若存在,请求出点Q 的坐标;若不存

【课后测试】

1.在同一坐标系内,表示函数b kx y +=与()0,0≠≠=

b k x

kb

y 的图像是下图中的( )

(A ) (B ) (C ) (D )

2.如图,直线6y x =-交x 轴、y 轴于A 、B 两点,P 是反比例函数4

(0)y x x

=

>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。则AF BE ?=( ) A .8 B .6 C .4 D

第2题图 第3题图 第4题图

3.如上图中,正比例函数x y 3=的图象与反比例函数)0(>=k x

k

y 的图象交于点B ,若k 取1,

2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…,20S ,则1S +2S +…+20S = ; 4.两个反比例函数k y x =

和1y x =在第一象限内的图象如图所示,点P 在k

y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k

y x

=的

图象上运动时,以下结论:

①△ODB 与△OCA 的面积相等; ②四边形P AOB 的面积不会发生变化; ③P A 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 。

5.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数k

y x =

(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA =2

1. (1)求反比例函数的解析式和n 的值;

(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.

6.如图,在直角坐标平面内,函数m

y x

=

(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB . (1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥;

(3)当AD BC =时,求直线AB 的函数解析式.

【例4】根据题意可求得D (1,4 ),C (-4,-1),则F (1,0),∴△DEF 的面积是:1

4122

??=,

△CEF 的面积是:

1

4122

??=,∴△CEF 的面积=△DEF 的面积,故①正确;②即△CEF 和△DEF 以EF 为底,则两三角形EF 边上的高相等,故EF ∥CD ,△AOB ∽△FOE ,故②正确;DF =CE ,四边形CEFD 是等腰梯形,所以△DCE ≌△CDF ,③正确;⑤∵BD ∥EF ,DF ∥BE ,∴四边形BDFE 是平行四边形,∴BD =EF ,同理EF =AC ,∴AC =BD ,故④正确;正确的有4个.

【例7】解:(1)∵双曲线

k

y

x

=经过点D(6,1),∴

k

1

6

=,解得k=6。

(2)设点C到BD的距离为h,

∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=1

2

×6?h=12,解得h=4。

∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4= -3。

∴6

3

x

=,解得x= -2。∴点C的坐标为(-2,-3)。

设直线CD的解析式为y=kx+b,

2k b3

6k b1

-+=-

?

?

+=

?

,解得

1

k

2

b2

?

=

?

?

?=-

?

∴直线CD的解析式为

1

y x2

2

=-。

(3)AB∥CD。理由如下:

∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),∴点A、B的坐标分别为A(-2,0),B(0,1)。

设直线AB的解析式为y=mx+n,

2m n0

n1

-+=

?

?

=

?

,解得

1

m

2

n1

?

=

?

?

?=

?

∴直线AB的解析式为

1

y x1

2

=+。

∵AB、CD的解析式k都等于1

2

相等。

∴AB与CD的位置关系是AB∥CD。

【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,平行的判定。

【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解。

(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答。

(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知

与直线

CD的解析式k值相等,所以AB、CD平行。

7解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,4)。

∵抛物线y=-x2+bx+c经过A、B两点,

164b c0

c4

--+=

?

?

=

?

,解得

b 3

c4

=-

?

?

=

?

∴抛物线解析式为y=-x2-3x+4。

令y=0,得-x2-3x+4=0,解得x1=-4,x2=1,

∴C(1,0)。

(2)如图1,设D(t,0)。

∵OA=OB,∴∠BAO=45°。

∴E(t,t+4),P(t,-t2-3t+4)。

PE=y P-y E=-t2-3t+4-t-4=-t2-4t=-(t+2)2+4。

∴当t=-2时,线段PE的长度有最大值4,此时P(-2,6)。

(3)存在。如图2,过N点作NH⊥x轴于点H。

设OH=m(m>0),∵OA=OB,∴∠BAO=45°。

∴NH=AH=4-m,∴y Q=4-m。

又M为OA中点,∴MH=2-m。

当△MON为等腰三角形时:

①若MN=ON,则H为底边OM的中点,

∴m=1,∴y Q=4-m=3。

由-x Q2-3x Q+4=3

,解得

Q

x=。

∴点Q

3

,3)。

②若MN=OM=2,则在Rt△MNH中,

根据勾股定理得:MN2=NH2+MH2,即22=(4-m)2+(2-m)2,

化简得m2-6m+8=0,解得:m1=2,m2=4(不合题意,舍去)。

x=

∴y Q=2,由-x Q2-3x Q+4=2,解得Q

∴点Q,22)。

③若ON=OM=2,则在Rt△NOH中,

根据勾股定理得:ON2=NH2+OH2,即22=(4-m)2+m2,

化简得m2-4m+6=0,∵△=-8<0,

∴此时不存在这样的直线l,使得△MON为等腰三角形。

综上所述,存在这样的直线l,使得△MON为等腰三角形。所求Q点的坐标为

3,3,22)。【考点】二次函数综合题,曲线图上点的坐标与方程的关系,二次函数的最值,等腰三角形的判定和性质,勾股定理,解一元二次方程。

【分析】(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标。

(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值。

(3)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标。“△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解。

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

一次函数的概念和性质

课题一次函数的概念及其性质 一、本次课授课目的及考点分析:授课目的: 1、掌握一次函数的定义、图象和主要性质; 2、了解一次函数与正比例函数的关系; 3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思维和渗透数形结合思想. 教学重点: 会根据已知条件求出一次函数的解析式; 教学难点: 在y=kx+b中,k和b的数与形的联系; 二、本次课的内容:一次函数的概念、一次函数的图像、一次函数的性质 教学过程 一、错题回顾: 二、教授新课: (一)复习 1.写出正比例函数的解析式. 2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样? (二)新课 这些函数的共同的特点都是含自变量的一次式. (1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数. (2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况. (3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出两

个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件. 例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是[ ]. (A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6) 这六个式子是 (1)y=3x+5;(2)3x+5;(3)y=3x2+5; 分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D). 例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______. 解:设此一次函数式为y=kx+b.由已知,可列出方程组 所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10. (4)一次函数图象与正比例函数的图象的关系. 我们从下面的列表,观察、归纳.

反比例函数的性质

反比例函数定义 一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。k大于0时,图像在一、三象限。k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。 反比例函数图像及性质 反比例函数图像: 1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或 第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每 一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。 反比例函数性质: 1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大 而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为 增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与 x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与 坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。 6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B 两点关于原点对称。 7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则 n^2+4k·m≥(不小于)0。 8.反比例函数y=k/x的渐近线:x轴与y轴。 9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。 10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为 |k| 11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。 12.|k|越大,反比例函数的图象离坐标轴的距离越远。 13.[对称性]反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也 是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。 反比例函数知识点汇总

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

北师大版反比例函数知识点总结及例题

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)下列函数表达式中,y 是关于x 的反比例函数的有( ) ① ② y=21x -;③ y=x -;④ y=13x -;⑤ y=1x ;⑥ y=23x +;⑦ y=3 2x -; ⑧ -2xy=1 A .2个 B .3个 C .4个 D .5个 (3)关于函数y= 1 2 x -,以下说法正确的是( )

A .y 是x 的反比例函数 B .y 是x 的正比例函数 C .y 是x-2的反比例函数 D .以上都不对 (4)函数22 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (5)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (6)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (7)(2013安顺)若y=(a+1)2 2a x -是反比例函数,则a 的值是 ,该反比例函数为 (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 例题讲解:

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

(完整版)反比例函数教案

9.1 反比例函数 【教学目标】 知识与能力:(1)理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数; (2)能根据已知条件确定反比例函数的表达式; 过程与方法:经历从实际问题中概括出反比例函数模型的过程,体会反比例函数来源于实际问题。 情感、态度与价值观:(1)经历反比例函数的形成过程,使学生体会到函数是描 述变量间对应关系的重要数学模型。 (2)通过学习反比例函数,培养学生合作交流和探索的能 力。 【教学重难点】 重点:根据已知条件确定反比例函数的表达式. 难点:理解反比例函数的意义. 【教学过程】 一、创设情境,引入新课 同学们,你们还记得在小学里学过的,两个变量满足什么条件时成反比例关系吗?你能写出下列例子中的等式吗? 1.当路程s 一定时,时间t 与速度v的关系 2.当矩形面积S一定时,长a与宽b的关系 3.当三角形面积S 一定时,三角形的底边y 与高x的关系 学生通过回忆已学知识回答:如果两个量x和y满足xy=k(k为常数, k ≠0)那么x、y就成反比例关系. 现在我们来看生活中的例子。 活动一汽车从南京出发开往上海(全程约300km),全程所用的时间t(h)随着速度v(km/h)的变化而变化。 (1)你能用含v的代数式表示t吗?

(2)利用(1)的关系式完成下表: 随着速度的变化,全程所用时间发生怎样的变化? (3)时间t是速度v的函数吗? (4)时间t是速度v的一次函数吗?是正比例函数吗? 引导学生回忆函数、一次函数、正比例函数有关的概念,引出新知:反比例函数. 二、引导学生探索反比例函数的概念和表达式 活动二用函数关系式表示下列问题中两个变量之间的关系: 1.一个面积是64002 m的长方形的长a(m)随宽b(m)的变化而变化,则a与b的关系式为_____. 2.京沪线铁路全程为1463 km,某列车平均速度为v(km/h),全程运行时间为t(h),则v与t的关系式为_____ 3.已知三角形的面积是8,它的底边长y与底边上的高x之间的关系式为_____ 4.实数m与n的积是—200,m与n的关系式为_____ 【讨论、交流】 1. 函数关系式 6400 a b =、 1463 v t =、 16 y x =、 200 m n =-具有什么共同特征? 2它们与正比例函数关系式有什么不同? 3.你能仿照y=kx的形式表示一下上面函数的一般形式吗? 结论:反比例函数的定义: 一般的,形如 (k为常数,k ≠0)的函数称为反比例函数.其中x是自变量,y是x的函数,k是比例系数。 注:(1)有时反比例函数也写成y=1 kx-或k=xy的形式. (2)反比例函数的自变量x的取值范围是不等于0的一切实数。

反比例函数的知识点的总结

反比例函数知识点总结 李苗 知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时, x k y =,就不是反比例函数了,由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式

由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比 例函数的表达式。 知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分 别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用 光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐 标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数 值的增减情况,如下表:

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

反比例函数概念与性质

一、反比例函数的概念 1. ( )可以写成 ( )的形式,注意自变量x 的指数为 ,在解决有关自 变量指数问题时应特别注意系数这一限制条件; 2. ( )也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得 到反比例函数的解析式; 3.反比例函数 的自变量 ,故函数图象与x 轴、y 轴无交点. 二、反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x 的取值不能为0,且x 应对称取点(关于原 点对称). 三、反比例函数及其图象的性质 反比例函数 )0#(k x k y = k 的符号 0>k 0

1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性: 图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在D 双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

函数函数概念及基本性质

集合 0集合的概念 我们把所要研究的事物全体称为集合,构成集合的事物称为元素,集合一般用大写字母A、B C……表示,元素一般用小写字母a、b、c……表示。 如果元素二是集合A中的元素,记二三上,否则记厘三上。 有限集:只有有限个元素的集合。 无限集:有无穷多个元素的集合。 空集:不含有任何元素的集合叫空集,记常。 臼集合的表示方法列举法:如乂■仙上心町,召-卩2和??」5 描述法:如八㈤只* 1 = —w旳,U< ,曲旳 0子集 如果集合A中的元素都是B的元素,称A是B的子集(或称A包含于B),记 A u召或月二)卫 如: 0并集:

集合A 与集合B 的元素放在一起构成的集合,称为 A 与B 的并集。记」?_」三,即 HUE = (x | re 卫或工匡5) 如:一一 .......... 「一二…-丄 …一…—. NS ■叶 2C x < 4,xs K) O 交集: 记集合A 与集合B 的公共元素构成的集合,称为 A 与B 的交集,记 卫门/ 即丿门月:{和工乞卫且工€月} ZnF-(J-- < x< 0,ie2?) 则: 2 绝对值与绝对值不等式 几何意义:点T 到原点的距离。 如: Y CUE 幻月珂*2—*忒刃 ? x> 0 x< 0 几何意义:点芒到点*的距离。 性质: 1) ?、 ■ A |20 ? 3)十 UI

4)设a>0 , 环|3}?{兀卜说""} 区间与邻域 *+y|“|+恫 6) - _ 「 7) 例1 :解下列不等式 x -4| < 4 0 <〔―分 < 4 ^r-j|2 H~ H 2… -, 3) 匕十 4| > 1 5) 解.1) - -上.、.--二 _ 4 =〕_ ?.■ _L E 2) ?.::-;; 3) 卞一一"-或 F _ 丄:_ [ — - - _ 二或二 一二 4) (^ - 2| < 2 fCl < x < 4 "2 =(工产 2 5) G >0 < 0 J A <0 或

最新反比例函数图像与性质试题及详细答案

精品文档 反比例函数图像与性质试题 一.选择题(共21小题) 安顺)若是反比例函数,则a的取值为(2013?)1.(±l 1C.D.l 任意实数A.B.﹣ 2.(1998?山西)若函数y=(m+1)是反比例函数,则m的值为() =1 mC.m=2或m=1 ﹣A.m=2 DB..m=﹣2或﹣1 (m为常数)当x<3.反比例函数0时,y随x的增大而增大,则m的取值范围是() B.C.D A.m<0 .m ≥ 4.下列函数中,是反比例函数的为() y=2x+1 2y=x D.C..B. A y= y= 5.下列函数中,y是x的反比例函数是() C.D..AB. 是反比例函数,且图象在第二、四象限内,则m的值是()6.已知函数 ±2 2B.A.C.﹣2 D.

是反比例函数,则m的值为(.若函数7y=) 2 ±2 B.C..AD.± 8.(2014?自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是() A.B.C.D. 精品文档. 精品文档

y=(m≠0)的图象可能是(y=mx+m与)9.(2014?泉州)在同一平面直角坐标系中,函数 A.B.C.D. 10.(2014?牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.

11.(2014?海南)已知k>0>k,则函数y=kx和y=的图象在同一平面直角坐标系中大致是()121C.D.A .B.

12.(2014?乐山)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是() A.B.C.D.

函数的概念与性质

函数的概念与性质 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

(八)函数的概念 与性 质 【命题解读】 考向1:函数的概念与性质(包括基本初等函数) 分析定位:理解函数概念的核心是从运动与相互联系的角度理解两个变量之间的关系,定义域、值域与对应法则是函数的三要素,而单调性、奇偶性、对称性等是一个 函数特有的性质,是认识函数的重要桥梁,特别是基本初等函数的性质,常成为命题的重要载体. 例1(2015年全国Ⅰ卷第13题)若函 数()ln(f x x x =为偶函数,则 a = . 分析:先转化成()ln(g x x =为奇函数,再联想到ln(y x =是奇函数进行解决. 解:因为()ln(g x x =为奇函数,先从定义域入手,解02>++x a x 得x x a ->+2,若0>x ,则只需02≥+x a ;若0≤x ,则0>a ,否则无解; 所以0>a ,且()()ln 0g x g x a +-==,即1=a . 总结:函数的概念与性质是必考知识点,考生要抓住它们的本质进行解题,当然还要了解一些特殊的函数如x x x f e e )(±=,1 1 lg )(-+=x x x g 的性质. 考向2:函数的零点与方程的根 分析定位:函数的零点与方程的根是考查函数与方程思想、数形结合思想的重要载体,常放在压轴位置进行考查. 例2(2016年全国Ⅱ卷第12题)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x +=与()y f x =图像的交点为()11x y ,, ()22x y ,,,()m m x y ,,则()1m i i i x y =+=∑ (A )0 (B )m (C )2m (D )4m

反比例函数教案第一课时

课题名称:初中数学《反比例函数》第一课时 执教者:陈彬彬 执教年级:八年级(1)班 教学目标: 知识与技能: 1.理解并掌握反比例函数的概念。 2.能判断一个给定的函数是否为反比例函数。 3.会根据已知条件,求出反比例函数的解析式。 过程与方法: 通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。 情感、态度与价值观: 经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。 教学重点、难点设计: 对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。 教学准备与方法设计: 通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。 教学内容与程序设计: 一、问题引入 1.小明家到学校约5千米,在他骑车上学的过程中,你能找出其中变化的量与不变的量吗? 2.你能表示出上述过程中几个量之间的关系吗? 二、自主探索 1.利用所列关系式,填写下表: 速度v(千 5 10 15 20 米/小时) 时间t (小 时) 2.你有什么发现? 3.观察所列式子的特征,你能仿照关系式自编一道类似的题目吗? 4.思考讨论 用函数关系式表示下列问题中两个变量之间的关系: (1)一个面积为6400m2的长方形的长a(m)随b(m)的变化而变化; (2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化; (3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化; (4)实数m与n的积为-200,m 随n的变化而变化. 三、交流展示 1.概念归纳:

基本初等函数定义及性质知识点归纳

基本函数图像及性质 一、基本函数图像及其性质: 1、一次函数:(0) y kx b k =+≠ 2、正比例函数:(0) y kx k =≠ 3、反比例函数:(0) k y x x =≠ 4、二次函数:2(0) y ax bx c a =++≠ (1)、作图五要素: 2 12 4 (,0),(,0),(0,),(),(,)() 224 b b a c b x x c x a a a - =-- 对称轴顶点(2)、函数与方程:2 =4=0 b ac > ? ? ?-? ?< ? 两个交点 一个交点 没有交点 (3)、根与系数关系: 12 b x x a +=-, 12 c x x a ?=

5、指数函数:(0,1)x y a a a =>≠且 (1)、图像与性质: (i )1 ()(0,1)x x y a y a a a ==>≠与且关于y 轴对称。 (ii )1a >时,a 越大,图像越陡。 (2)、应用: (i )比较大小: (ii )解不等式: 1、回顾: (1)()m m m ab a b =? (2)()m m m a a b b = 2、基本公式:

(1)m n m n a a a +?= (2)m m n n a a a -= (3)()m n m n a a ?= 3、特殊: (1)01(0)a a =≠ (2)11(0)a a a -=≠ (3 )1;0)n a n a R n a = ∈≥为奇数,为偶数, (4 ;0;0||a n a a a a a n ≥??==? ?-

相关文档
相关文档 最新文档