文档库 最新最全的文档下载
当前位置:文档库 › 全基因组关联分析的原理和方法题库

全基因组关联分析的原理和方法题库

全基因组关联分析的原理和方法题库
全基因组关联分析的原理和方法题库

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中数以百万计的单核苷酸多态性(single nucleotide ploymorphism,SNP)为分子遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。

随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。

全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。

人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science杂志首次报道了年龄相关性视网膜黄斑变性 GWAS结果,在医学界和遗传学界引起了极大的轰动,此后一系列GWAS陆续展开。2006年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的 GWAS结果 (Herbert等. 2006);2007年, Saxena等多个研究组联合报道了与 2型糖尿病( T2D )关联的多个位点, Samani等则发表了冠心病 GWAS结果( Samani 等. 2007); 2008年, Barrett等通过 GWAS发现了 30个与克罗恩病( Crohns ' disrease)相关的易感位点; 2009年, W e is s等通过 GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对 12 000多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了 5个红斑狼疮易感基因, 并确定了 4个新的易感位点( Han 等. 2009)。截至 2009年 10月,已经陆续报道了关于人类身高、体重、血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的 GWAS结果, 累计发表了近万篇论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和 SNP变异。)标记基因的选择:

1)Hap Map是展示人类常见遗传变异的一个图谱 ,第 1阶段完成后提供了4个人类种族 [ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ]共 269个个体基因组,超过 100万个SNP (约

1 SNP / 3kb )及连锁不平衡区域 ( linkage disequilibrium, LD )关

系的图谱。第二阶段增加了其它的人类种族数据。基于 Hap Map可以选

择 500 000到1 000 000个覆盖全基因组的 SNP。

2)基因组拷贝数变异 ( copy number variations ,CNV )是 20世纪 80年代发现的在人类基因组中存在的多种类型的染色体数目和结构变异。

是指与参考序列相比,基因组中?1 kb的 DNA 片段插入、缺失和 /或

扩增,及其互相组合衍生的复杂染色体结构变异。与 SNP相似,部分 CNV

在不同人群中以不同频率分离并具有显著性差异, 并可能影响基因表达

和表型改变,因此 CNV也是一种引起疾病或增加复杂疾病发病风险的重

要遗传变异。

GWAS采用的研究方式与传统的候选基因病例—对照(case-control)关联分析一致, 即如果人群基因组中一些 SNP与某种疾病相关联, 理论上这些疾病相关 SNP等位基因频率在某种疾病患者中应高于未患病对照人群。

动物重要经济性状即复杂性状GWAS分析方法的原理是,借助于SNP分子遗传标记,进行总体关联分析,在全基因组范围内选择遗传变异进行基因分型,比较异常和对照组之间每个遗传变异及其频率的差异,统计分析每个变异与目标性状之间的关联性大小,选出最相关的遗传变异进行验证,并根据验证结果最终确认其与目标性状之间的相关性。

GWAS的具体研究方法与传统的候选基因法相类似:

1)单阶段方法,即选择足够多的样本,一次性地在所有研究对象中对目标SNP进行基因分型,然后分析每个SNP与目标性状的关联,统计分析关联强度和OR值(计算出的OR值等于1时,则该因素的疾病发生不起任何作用;大于1时,该因素为危险因素;小于1时,该因素为保护因素。)。

2)目前GWAS研究主要采用两阶段方法/多阶段方法。

第一阶段用覆盖全基因组范围的SNP进行对照分析,统计分析后筛选出较少数量的阳性SNP进行。可以以个体为单位,也可以采用DNA pooling的方法(后者可大大降低及基因分型的成本和工作量)。。但是 DNA pooling的基因分型结果与对所有个体进行基因分型的结果仍有一定差异, DNA pooling估计的等位

基因频率标准差在 1 % ~ 4% 的范围, 因而若单独以 DNApooling来估计等位基因频率, 那么这种误差对全基因组的病例—对照研究的检验效能 ( power of test)有重要影响。

第二阶段或随后的多阶段中采用更大样本的对照样本群进行基因分型,然后结合两阶段或多阶段的结果进行分析。这种设计需要保证第一阶段筛选与目标性状相关SNP的敏感性和特异性,尽量减少分析的假阳性或假阴性,并在第二阶段应用大量样本群进行基因分型验证。

结果的统计和分析:

1)在GWAS用于病例-对照研究设计时,比较病例和对照组中每个 SNP等位基因频率差别多采用 4 格表的卡方检验 ( chi-square test ) ,并计算

OR及其 95%的可信区间 ( confidence interval , CI) ,归因分数

( attributable fraction , AF)和归因危险度 ( attributable risk , AR ); 同时需对如年龄、性别等主要混杂因素采用 Logistic回归分析,

以基因型和混杂因素作为自变量,研究对象患病状态为因变量进行分析。

2)GWAS用于研究随机人群的SNP与某一数量性状关联时 (如身高、体重、血压等) ,主要应用单因素方差分析 ( one-way ANOVA )比较 SNP位点 3

种基因型与所研究的数量性状水平的关系,需要调整混杂因素时则采用

协方差分析( analysis o f covariance)或线性回归

引起结果误差的主要原因有人群分层和多重假设检验调整。无论是 GWAS两阶段/多阶段设计, 还是采用 Bonferroni校正等遗传统计方法, 都难以解决人群分层及多重比较导致的假阳性或假阴性问题。GWAS不能仅凭 P 值判断某个 SNP

是否与疾病真正关联, 多种族、多群体、大样本的重复验证研究(replication)才是提高检验效能、确保发现真正疾病关联 SNP的关键。

【例】全基因组关联分析在乳腺癌易感位点筛选的应用

2007 年 6 月,乳腺癌关联协作组 ( Breast Cancer Association Consortium,BCAC) 首先报告了乳腺癌 GWAS 的结果,该研究共包括三个阶段: 第一阶段: 408 例家族性乳腺癌患者和400 名对照,266 722 个 SNP;

第二阶段: 3990 例乳腺癌患者和3916 名对照,12 711 个SNP;

第三阶段: 22 例病例-对照研究,合计21 860 例患者和22 578 名对照,

30 个 SNP。研究结果最终发现了5 个乳腺癌的易感性位点,4 个

位于已知基因: FGFR2 ( rs2981582) 、TNRC9 /LOC643714

( rsl2443621 ) 、 MAP3K1( rs889312) 和 LSPl ( rs3817198) ,

而 rsl3281615 位于染色体8q24。

虽然 GWAS结果在很大程度上增加了对复杂性状分子遗传机制的理解,但也显现出很大的局限性。首先,通过统计分析遗传因素和复杂性状的关系,确定与特定复杂性状关联的功能性位点存在一定难度。通过GWAS发现的许多SNP位点并不影响蛋白质中的氨基酸,甚至许多SNP位点不在蛋白编码开放阅读框(open reading frame ,ORF)内,这为解释 SNP位点与复杂性状之间的关系造成了困难。而且,就目前来说 GWAS难以检测的部分可能主要集中在最小等位基因频(minor allele frequency ,MAF)介于 0 . 5 % ~ 5 %之间的少见变异, 或者MAF< 0 . 5 %的罕见变异,现有的基因分型芯片较难有效地发现这些遗传变异

但是,由于复杂性状很大程度上是由数量性状的微效多基因决定的,SNP位点可能通过影响基因表达量对这些数量性状产生轻微的作用,它们在RNA的转录或翻译效率上发挥作用,可能在基因表达上产生短暂的或依赖时空的多种影响,刺激调节基因的转录表达或影响其RNA剪接方式。因此,在找寻相关变异时应同时注意到编码区和调控区位点变异的重要性。其次,等位基因结构 (数量、类型、作用大小和易感性变异频率)在不同性状中可能具有不同的特征。

在GWAS研究后要确定一个基因型-表型因果关系还有许多困难,由于连锁不平衡的原因,相邻的SNP之间会有连锁现象发生。同样,在测序时同样存在连锁不平衡现象,而且即使测序的费用降到非常低的水平,要想如GWAS研究一般地获得大量样本的基因组数据还是非常困难的。

*llumina宣布HiSeq X Ten测序系统将会于1月份重磅回归,该技术的早期运用还需要等待一段时间,然而GEN预测了Illumina X Ten在2015年可能会实现的6大应用。Illumina X Ten的测序功能非常强大,一台机器一年能完成18000个人类基因组测序,尽管大规模基因组测序还会面临一系列挑战,但是现在可以将这些顾虑暂时搁置,思考一下科学家们可以利用该技术完成哪些有趣的工作呢?下面就是GEN预测的6大应用。

1 新生儿与儿科疾病预测

新生儿重症监护病房和儿童医院每年都会收治大量患有严重疾病的患儿,而其中很多致命的疾病都存在其遗传基础。其中有一些是已知的遗传疾病,能够通过临床基因检测确诊。然而

还有大量的疾病无法通过基因检测查出来,却严重地影响儿童健康。目前有很多试点计划,像是NIH的“未确诊疾病计划”就是通过外显子测序来实现检测,外显子测序平均能揭示25—30%的病理性突变。

然而,全基因组测序能够发现难以捕捉的外显子区域,还能够发现结构性变异。随着X Ten system的应用,全基因组测序只是下面要做工作的第一步。它的运转速度更快,不需要杂化反应,检测范围能从单一核苷酸变异到大片段丢失。如果可行的话,患者及其父母,甚至是兄弟姐妹都可以进行全基因组测序。

2.药物试验和药物基因组学

基因研究的一个巨大前景就是实现个体化医疗:把治疗疾病具体到每个个体的基因组成上来。实现个体化医疗需要研究疾病预后和药物反应的个体基因差异,目前许多药物基因组计划正在进行,而很多都是运用SNP分析和靶向测序技术。全基因组测序能够更好地促进这些工作,因为全基因组测序能够捕获范围更广的变异。全基因组测序还能够运用到临床试验的前沿,它可以将病人按反应分成很多群体进行研究。

3.控制变异和表达数量性状基因座(eQTLs)

国际人类基因组单体型图计划(HapMap Project)的一项重要开支就是从成纤维细胞系中鉴定出基因变异,该项工作由Coriell领头。获得所有SNP基因型后,研究人员可以分析基因表达,最初是通过芯片分析,后来通过RNA-seq技术,最终将这些结果与变异联系起来。这些分析结果产生了成千上万的表达数量性状基因座(eQTLs),分析这些数据可以了解基因变异影响转录的方式。

可以想象用最先进的RNA-Seq和 WGS(全基因组测序)技术对同一样本进行分析后会得到怎样强大的数据(RNA-seq是在另外一些平台上做的,比如Hiseq2000,因为X Ten只能进行全基因组测序)。ENCODE Project Consortium和其他几个团队揭示了转录广泛发生的方式,毫无疑问,仅仅利用过去的SNP芯片分析是无法得出这些结论的。

4.罕见肿瘤研究

癌症基因组图谱(TCGA)和国际癌症基因组计划(ICGC)等工作鉴定出大量癌症类型的体细胞突变。大多数工作是通过外显子测序和全基因组测序完成的,而鉴于成本考虑,主要是外显子测序。尽管如此,这些工作极为有效地揭示出反复出现的变异和通路。

然而,这些工作主要是基于那些常见的肿瘤类型。不过随着全基因组测序的普及,那些罕见的肿瘤类型也可以通过同样的手段进行研究。通过把TCGA、ICGC和其他数据库的样本作为比对参照,我们可以获得许多罕见肿瘤的体细胞变异数据。这不仅可以帮助那些患罕见瘤的

病人,而且可以帮助深入理解生物学中的特异性。

全基因组测序是研究这些罕见肿瘤的极为有效的工具,基于我们对这些肿瘤了解甚少,通过全基因组测序可以捕获到所有的变异,在一次测序中小到可以获知单核苷酸位点的变异,大到染色体重排。将全基因测序大规模应用在肿瘤研究中,也是理所当然了。

5.家族性疾病基因组学研究

这一点和第一条应用(新生儿与儿科疾病预测)看起来可能很相似,但其实是另一种研究,需要挖掘受家族性遗传疾病影响的多谱系病因。家族性研究和病例对照研究比起来可能有点过时,但是目前这种研究方法重又回到研究者视线,其中非常重要的一点原因就是在具有不同等位基因的一个家族内部研究变异,而不是在毫不相关的个体之间进行研究。

然而,全基因组测序和病例研究相比成本过高,在一个家谱中,研究者可以运用连锁分析,但是仍然需要通过测序来确定造成疾病的特定变异。这时候全基因组测序的优势就会体现出来,它使得研究者可以了解连锁区域的非编码和结构变异,而不是单纯的探究基因变异。这一点非常重要,随便问一个基因研究人员,他会告诉你在研究区域内的大量相关峰值都和已知的基因无关。这样的例子可谓是数不胜数。

6.研究表型丰富的大规模群组

那些表型广泛的群组样本通常非常需要基因型研究,过去通常是利用SNP分析和外显子测序的方法进行研究,随着群体参与研究样本和表型数量的增长,研究群组会扩大。这时候对复杂多样的表型进行大规模的、纵向的研究对确认潜在基因非常重要。

HiSeq X Ten问世后,全基因组测序对于一个样本数量为10000的群组来说仍然成本过高,然而对于一个样本量为200、500或1000的预实验来说还是简易可行的,并且能够发现在大规模群组中可以复制的结果。研究人员可以挑选出具有最广泛表型(生物标记物、临床数据。RNA-seq、健康记录)的小样本,然后结合全基因组测序研究它们之间的关联。

除了以上提出的研究领域之外,X Ten system还可以在很多领域大有可为,需要研究者继续挖掘。(来源:生物谷)

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

《电路原理》作业及答案

第一章“电路模型和电路定律”练习题 1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联?(2)ui乘积表示什么功率? (3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率? i u- + 元件 i u- + 元件 (a)(b) 题1-1图 1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i的约束方程(即VCR)。 i u- + 10kΩi u- + 10Ωi u- + 10V - + (a)(b)(c) i u- + 5V + -i u- + 10mA i u- + 10mA (d)(e)(f) 题1-4图 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。

15V + - 5Ω 2A 15V +-5Ω 2A 15V + - 5Ω2A (a ) (b ) (c ) 题1-5图 1-16 电路如题1-16图所示,试求每个元件发出或吸收的功率。 0.5A 2U +- 2ΩU + - I 2Ω1 2V + - 2I 1 1Ω (a ) (b ) 题1-16图 A I 2

1-20 试求题1-20图所示电路中控制量u 1及电压u 。 ++2V - u 1 - +- u u 1 + - 题1-20图

第二章“电阻电路的等效变换”练习题 2-1电路如题2-1图所示,已知u S=100V,R1=2kΩ,R2=8kΩ。试求以下3种情况下的电压 u 2 和电流 i2、i3:(1)R3=8kΩ;(2)R3=∞(R3处开路);(3)R3=0(R3处短路)。 u S + - R 2 R 3 R 1 i 2 i 3 u 2 + - 题2-1图

电路原理讲解分析

电源电路 一、电源电路的功能和组成: 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

( 2 )全波整流 全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图 2 ( b )。负载 R L 上得到的是脉动的全波整流电流,输出电压比半波整流电路高。 ( 3 )全波桥式整流 用 4 个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器,见图2 ( c )。负载上的电流波形和输出电压值与全波整流电路相同。 ( 4 )倍压整流 用多个二极管和电容器可以获得较高的直流电压。图 2 ( d )是一个二倍压整流电路。当 U2 为负半周时 VD1 导通, C1 被充电, C1 上最高电压可接近1.4U2 ;当 U2 正半周时 VD2 导通, C1 上的电压和 U2 叠加在一起对 C2 充电,使 C2 上电压接近 2.8U2 ,是 C1 上电压的 2 倍,所以叫倍压整流电路。 三、滤波电路 整流后得到的是脉动直流电,如果加上滤波电路滤除脉动直流电中的交流成分,就可得到平滑的直流电。 ( 1 )电容滤波

电路理论模拟题

《电路理论》模拟题(补) 一. 单项选择题 1.电流与电压为关联参考方向是指( )。 A .电流参考方向与电压降参考方向一致 B. 电流参考方向与电压升参考方向一致 C. 电流实际方向与电压升实际方向一致 D .电流实际方向与电压降实际方向一致 2.应用叠加定理时,理想电压源不作用时视为( )。 A .短路 B.开路 C.电阻 D.理想电压源 3.应用叠加定理时,理想电流源不作用时视为( )。 A.短路 B.开路 C.电阻 D.理想电流源 4.直流电路中,( )。 A.感抗为0,容抗为无穷大 B.感抗为无穷大,容抗为0 C.感抗和容抗均为0 D.感抗和容抗均为无穷大 5.电路的最大几何尺寸d 与电路的最高频率对应的波长呈( )时,视为集中参数电路? A.d<0.01 B.d>0.01 C.d<0.02 D.d>0.02 6.如图1-1所示,i=2A ,u=30V ,则元件的功率大小和对此二端电路的描述正确的是( )。 图1-1 A.P=15W,吸收功率 B.P=60W,吸收功率 C.P=15W,放出功率 D.P=60W,放出功率 7.如图1-2所示,已知A I A I A I A I 3,1,2,44321-==-==。图中电流5I 的数值为( )。 A.4A B.-4A C.8A D.-8A 图1-2

R是() 。 8.如图1-3所示,a,b间的等效电阻 ab A.12 B.24 C.3 D.6 图1-3 9.如图1-4(a)中,Ra=Rb=Rc=R,现将其等效变换为(b)图联接电路,则(b)中的Rab,Rbc,Rca 分别为()。 图1-4 A.R,2R,3R B.3R,2R,R C.3R,3R,3R D.R,R,R 10.电阻与电感元件并联,它们的电流有效值分别为3A 和4A,则它们总的电流有效值为( )。 A.7A B.6A C.5A D.4A 11.关于理想电感元件的伏安关系,下列各式正确的有( )。 A.u=ωLi B. u=Li C.u=jωLi D.u=Ldi/dt 12.在正弦交流电路中提高感性负载功率因数的方法是()。 A.负载串联电感 B.负载串联电容 C.负载并联电感 D.负载并联电容 13.任意一个相量乘以j相当于该相量()。 A.逆时针旋转90度 B.顺时针旋转90度 C.逆时针旋转60度 D.顺时针旋转60度 14.三相对称电源星型联结,相、线电压的关系为()。 A.线电压是相电压的3倍,且线电压滞后对应相电压30°

PFC电路原理与分析

引言 追求高品质的电力供需,一直是全球各国所想要达到的目标,然而,大量的兴建电厂,并非解决问题的唯一途径,一方面提高电力供给的能量,一方面提高电气产品的功率因数(Power factor)或效率,才能有效解决问题。有很多电气产品,因其内部阻抗的特性,使得其功率因数非常低,为提高电气产品的功率因数,必须在电源输入端加装功率因数修正电路(Power factor correction circuit),但是加装电路势必增加制造成本,这些费用到最后一定会转嫁给消费者,因此厂商在节省成本的考量之下,通常会以低价为重而不愿意让客户多花这些环保金,大多数的消费者,也因为不了解功率因数修正电路的重要性,只以为兴建电厂才是解决电力不足问题的唯一方案,这是大多数发展中国家电力供应的一大问题所在。 功率因数的意义 电力公司经由输配电系统送至用户端的电力(市电)是电压100-110V/60Hz或200-240V/50Hz的交流电,而电气产品的负载阻抗有三种状况,包括电阻性、电容性、和电感性等,其中只有电阻性负载会消耗功率而产生光或热等能源转换,而容性或感性负载只会储存能量,并不会造成能量的消耗。在纯阻性负载状况下,其电压和电流是同相位的,而在电容性负载下,电流的相位是超前电压的,在电感性负载下电压又是超前电流相位的。这超前或滞后的相位角度直接影响了负载对能量的消耗和储存状况,因此定义了实功功率的计算公式: P=VICosθ θ为V和I和夹角,Cosθ的值介于0-1之间,此值直接影响了电流对负载作实功的状况,称之为功率因数(Power Factor,简称PF)。 为了满足消费者的需要,电力公司必须提供S=VI的功率,而消费者实际上只使用了P的功率值,有一部分能量做了虚功,消耗在无功功率上。PF值越大,则消耗的无功功率越小,电力公司需要提供的S值也越小,将可以少建很多电厂。 功率因数修正器的结构 功率因数修正器的主要作用是让电压与电流的相位相同且使负载近似于电阻性,因此在电路设计上有很多种方法。其中依使用元件来分类,可分为被动式和主动式功因修正器两种。被动式功因修正器在最好状况下PF值也只能达到70%,在严格的功因要求规范下并不适用。若要在全电压范围内(90V~265Vac)且轻重载情况下都能达到80%以上PF值,则主动式功因修正器是必要的选择。主动式功因修正器多为升压式电路结构(Boost Topology), 如图一所示,图二为电感作用波形,输入电压要求为90V~265Vac,在Vd点则为127V~375V直流电压,由升压电路把输出电压V o升到400V的直流,其工作过程如下:

电路原理 模拟试题.pdf

电路原理——模拟试题 一、单项选择题(每题2分,共50分) 1、在进行电路分析时,关于电压和电流的参考方向,以下说法中正确的是(B)。 (A)电压和电流的参考方向均必须根据规定进行设定 (B)电压和电流的参考方向均可以任意设定 (C)电压的参考方向可以任意设定,但电流的参考方向必须根据规定进行设定 (D)电流的参考方向可以任意设定,但电压的参考方向必须根据规定进行设定 2、在图1-1所示电感元件中,电压与电流的正确关系式为(D)。 (A)(B)(C)(D) 3、对图1-2所示电流源元件,以下描述中正确的是( A ) (A)i恒为10mA、u不能确定(B)i恒为10mA、u为0 (C)i不能确定、u为∞(D)u、i均不能确定 4、在图1-3所示电路中,已知电流,,则电流I2为(D)。 (A)-3A (B)3A (C)-1A (D)1A 图1-1 图1-2 图1-3 5、关于理想变压器的作用,以下说法中正确的是(D)。 (A)只能对电压进行变换(B)只能对电流进行变换 (C)只能对阻抗进行变换(D)可同时对电压、电流、阻抗进行变换

6、理想运算放大器的输入电阻R i是(A)。 (A)无穷大(B)零(C)约几百千欧(D)约几十千欧 7、在图1-4所示电路中,各电阻值和U S值均已知。欲用支路电流法求解流过电阻R G的电流I G,需列出独立的电流方程数和电压方程数分别为( B )。 (A)4和3 (B)3和3 (C)3和4 (D)4和4 8、在图1-5所示电路中,当L S1单独作用时,电阻R L中的电流I L=1A,那么当L S1和L S2共同作用时, I L应是( C )。 (A)3A (B)2A (C)1.5A (D)1A 图1-4 图1-5 9、图1-6所示电路中,当R1减少时,电压I2将(C)。 (A)减少(B)增加(C)不变(D)无法确定 10、图1-7所示电路中,电压U AB=20V,当电流源I S单独作用时,电压U AB将( C )。 (A)变大(B)变小(C)不变(D)为零 图1-6 图1-7 11、电路如图1-8所示。在开关S闭合接通后,当电阻取值为、、、时得到4条曲线如图所示,则电阻所对应的是( A )。 (A)曲线1 (B)曲线2 (C)曲线3 (D)曲线4

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

电路原理课程题库(有详细答案)

《电路原理》课程题库 一、填空题 1、RLC串联电路发生谐振时,电路中的(电流)将达到其最大值。 2、正弦量的三要素分别是振幅、角频率和(初相位) 3、角频率ω与频率f的关系式是ω=(2πf)。 4、电感元件是一种储能元件,可将输入的电能转化为(磁场)能量储存起来。 5、RLC串联谐振电路中,已知总电压U=10V,电流I=5A,容抗X C =3Ω,则感抗X L =(3Ω),电阻R=(2Ω)。 6、在线性电路中,元件的(功率)不能用迭加原理计算。 7、表示正弦量的复数称(相量)。 8、电路中a、b两点的电位分别为V a=-2V、V b=5V,则a、b两点间的电压U ab=(-7V),其电压方向为(a指向b)。 ) 9、对只有两个节点的电路求解,用(节点电压法)最为简便。 10、RLC串联电路发生谐振的条件是:(感抗=容抗)。 11、(受控源)是用来反映电路中某处的电压或电流能控制另一处电压或电流的现象。 12、某段磁路的(磁场强度)和磁路长度的乘积称为该段磁路的磁压。 13、正弦交流电的表示方法通常有解析法、曲线法、矢量法和(符号)法四种。 14、一段导线电阻为R,如果将它从中间对折,并为一段新的导线,则新电阻值为(R/4)Ω。

15、由运算放大器组成的积分器电路,在性能上象是(低通滤波器)。 16、集成运算放大器属于(模拟)集成电路,其实质是一个高增益的多级直流放大器。 17、为了提高电源的利用率,感性负载电路中应并联适当的(无功)补偿设备,以提高功率因数。 18、RLC串联电路发生谐振时,若电容两端电压为100V,电阻两端电压为10V,则电感两端电压为(100V),品质因数Q为(10)。 ' 19、部分电路欧姆定律的表达式是(I=U/R)。 20、高压系统发生短路后,可以认为短路电流的相位比电压(滞 后)90°。 21、电路通常有(通路)、(断路)和(短路)三种状态。 22、运算放大器的(输入失调)电压和(输入失调)电流随(温度)改变而发生的漂移叫温度漂移。 23、对称三相交流电路的总功率等于单相功率的(3)倍。 24、当电源内阻为R0时,负载R1获得最大输出功率的条件是(R1=R0)。 25、场效应管是电压控制器件,其输入阻抗(很高)。 26、在电感电阻串联的交流电路中电压(超前)电流一个角。 27、正弦交流电的“三要素”分别为最大值、频率和(初相位)。 28、有三个电容器的电容量分别是C1、C2和C3,已知C1> C2> C3,将它们并联在适当的电源上,则它们所带电荷量的大小关系是(Q1>Q2>Q)。 ;

全基因组关联分析(GWAS)解决方案

全基因组关联分析(GWAS)解决方案 ※ 概述 全基因组关联研究(Genome-wide association study,GWAS)是用来检测全基因组范围的遗传变异与 可观测的性状之间的遗传关联的一种策略。2005年,Science杂志报道了第一篇GWAS研究——年龄相关性黄 斑变性,之后陆续出现了有关冠心病、肥胖、2型糖尿病、甘油三酯、精神分裂症等的研究报道。截至2010年 底,单是在人类上就有1212篇GWAS文章被发表,涉及210个性状。GWAS主要基于共变法的思想,该方法是 人类进行科学思维和实践的最重要工具之一;统计学研究也表明,GWAS很长时期内都将处于蓬勃发展期(如 下图所示)。 基因型数据和表型数据的获得,随着诸多新技术的发展变得日益海量、廉价、快捷、准确和全面:如 Affymetrix和Illumina公司的SNP基因分型芯片已经可以达到2M的标记密度;便携式电子器械将产生海量的表型 数据;新一代测序技术的迅猛发展,将催生更高通量、更多类别的基因型,以及不同类别的高通量表型。基于 此,我们推出GWAS的完整解决方案,协助您一起探索生物奥秘。 ※ 实验技术流程 ※ 基于芯片的GWAS Affymetrix公司针对人类全基因组SNP检测推出多个版本检测芯片,2007年5月份,Affymetrix公司发布了 人全基因组SNP 6.0芯片,包含90多万个用于单核苷酸多态性(SNP)检测探针和更多数量的用于拷贝数变化(CNV)检测的非多态性探针。因此这种芯片可检测超过180万个位点基因组序列变异,即可用于全基因组 SNP分析,又可用于CNV分析,真正实现了一种芯片两种用途,方便研究者挖掘基因组序列变异信息。 Illumina激光共聚焦微珠芯片平台为全世界的科研用户提供了最为先进的SNP(单核苷酸多态性)研究平 台。Illumina的SNP芯片有两类,一类是基于infinium技术的全基因组SNP检测芯片(Infinium? Whole Genome Genotyping),适用于全基因组SNP分型研究及基因拷贝数变化研究,一张芯片检测几十万标签SNP位点,提 供大规模疾病基因扫描(Hap660,1M)。另一类是基于GoldenGate?特定SNP位点检测芯片,根据研究需要挑选SNP位点制作成芯片(48-1536位点),是复杂疾病基因定位的最佳工具。 罗氏NimbleGen根据人类基因组序列信息设计的2.1M超高密度CGH芯片,可以在1.1Kb分辨率下完成全基 因组检测,可有效检测人基因组中低至约5kb大小的拷贝数变异。

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

全基因组关联分析

全基因组关联分析(Genome-wide association study,GWAS) 是一种对全基因组范围内的常见遗传变异: 单核苷酸多态性(Single nucleotide polymorphism , SNP) 进行总体关联分析的方法, 即在全基因组范围内选择遗传变异进行基因分型, 比较病例和对照间每个变异频率的异差, 计算变异与疾病的关联强度, 选出最相关的变异进行验证并最终确认与疾病相关。 单核苷酸多态性(英语:Single Nucleotide Polymorphism,简称SNP,读作/snip/)指的是由单个核苷酸—A,T,C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。 在后GWAS时代,利用已有的GWAS数据在多个人群间进行meta分析已经成为一种常用的分析手 段,这不仅可以进一步扩大样本量,更重要的是提高了统计效能。GWAS meta分 析已经成功应该用在多种复杂疾病的遗传学研究,发现一批新的易感基因。 全基因组关联水平(P_meta < 5.0×10-8)罕见等位基因(MAF < 5%), 基因型填补(imputation):依据已分型位点的基因型对数据缺失位点或未分型位点进行基因型预测的方法。可用于精细定位(fine-mapping),填补已确认的关联位点附近的位点,以便评价相邻SNP位点的关联证据。加快复杂性疾病易感基因的定位。 连锁与连锁不平衡(linkage disequilibrium,LD): 连锁:如果同一条染色体上2个位点的位置比较近,则这2个位点上的等位基因倾向于一起传递给下一代。 连锁不平衡:又称等位基因关联,是指同一条染色体上,两个等位基因间的非随机相关。即当位于同一条染色体上的两个等位基因同时存在的概率大于人群中因随机分布而同时出现的概率时,就称这两个位点处于LD状态。所谓的连锁不平衡是一种遗传标记的非随机性组合。比如,一个基因有两个位点,一个位点有两种基因型,那么子代应该有2的2次方,即4种基因型。但是发现子代的基因型往往会少于4种,这就是连锁不平衡现象。这是由于两个位点距离较近引起的两个位点上的等位基因经常同时出现在同一染色体上。

电路原理试卷及答案详解A(超强试题)

一、填空题(本题5个空 ,每空2分,共10分) 1、若RC串联电路对基波的阻抗为,则对二次谐波的阻抗 为。 2、电路如图1所示,各点的电位在图上已标出,则电压 。 图1 图2 3、如图2所示的电路,电压源发出的功率为。 4、电路的零状态响应是指完全依靠而产生的响应。 5、交流铁心线圈电路中的电阻R表示的是线圈电阻,当R增大时,铁心线圈 中损耗增加。 二、单项选择题(请在每小题的四个备选答案中,选出一个最佳答案;共5小题,每小题2分,共10分) 1、如图3所示的二端网络(R为正电阻),其功率 为。

A. 吸收 B. 发出 C. 不吸收也不发出 D. 无法确定 图3 图 4 图5 2、如图4所示的电路消耗的平均功率为。(下式中U、I为有效值,G为电导) A. B. C. D. 3、下列那类电路有可能发生谐振? A. 纯电阻电路 B. RL电路 C. RC电 路 D. RLC电路 4、对称三相电路(正相序)中线电压与之间的相位关系 为。 A. 超前 B. 滞后 C.超前 D. 滞后 5、如图5所示的电路,,,则。

A. B. C. D. 三、作图题(本题2小题,每小题5分,共10分) 1、将图6所示的电路化简为最简的电压源形式。(要有适当的化简过程) 图6 2、画出图7所示电路换路后的运算电路模型。(设电路原已稳定,在时换路) 四、简单计算题(本题4小题,每小题5分,共20分) 1、用节点电压法求图7所示电路的电压U。(只列方程,不需求解)

图7 2、某二端网络端口处的电压和电流的表达式分别为, ,则电路中电压、电流的有效值和电路所消耗的平均功率。 3、已知某二端口网络的Z参数矩阵为,求该网络的传输参数矩阵,并回答该网络是否有受控源。 4、对于图8所示含有耦合电感元件的电路,设 ,试求副边开路时的开路电压。 图8 五、综合计算题(本题4小题,共50分)

基于全基因组关联分析的基因(环境)交互作用统计学方法进展

万方数据

万方数据

708 图lMDR基本步骤示意图 划分为不同的分类,也就是图中的单元格。单元格中左侧直方图表示病例,右侧直方图表示对照。 第4步:在n维的每个多因子分类(单元格)中,计算病例数和对照数的比值,若病例数与对照数之比达到或超过某个阈值(例如≥1),则标为高危,反之则为低危。这样就把n维的结构降低到一维两水平。 第5步:多因子分类的集合中包含了MDR模型中各因子的组合。在所有的两因子组合中,选择错分最小的那个MDR模型,该两位点模型在所有模型中将具有最小的预测误差。 第6步:通过十重交叉验证评估模型的预测误差,一以及单元格分配时的相对误差。也就是说,模型拟合9/10的数据(训练样本),其预测误差将通过剩下1/10的数据(检验样本)来衡量。选择预测误差最小的模型作为最终的模型,取lO次检验的预测误差平均值,作为模型相对预测误差的无偏估计。由于数据分组的方式对交叉验证的结果影响较大,因此,十重交叉验证过程将重复进行10次,对n个因子可能的集合将重复进行10×10次的交叉验证。 通过十重交叉验证,在一定程度上可以避免因数据转换的偶然性,使I类错误增大而产生假阳性结果的影响。预测误差是衡量MDR模型在独立检验的亚组中预测危险状态的指标,通过十重交叉验证的亚组中每一个的预测误差的平均值来计算。根据交叉验证的预测误差的平均值,选择最佳的Tl因子模型,并根据不同的因子数重复以上过程。最终筛选出最有可能存在交互作用的基因。 MDR的优势在于不需要考虑疾病的遗传模型,它利用计算机运算速度快的优势,对多个基因进行随机组合,按照上述方法找出存在交互作用的基因位点。但当主效应存在时,用MDR方法很难得到最终模型,且同样受遗传异质性的影响;它只是一种数据挖掘方法,不是严格意义上的统计方法,还无法判断它的I类错误和检验功效。 MDR分析软件包可在http://www.epistasis.org/mdr.html免费下载。 4基于复合LD的交互作用分析法 吴学森等Ⅲ’提出基于复合LD的交互作用的分析法。该方法以病例一对照试验设计为基础,基于LD计算方法,构建完全有别于以上方法的一种新型基因间交互作用的统计分析方法:(1)用两个位点(基因)单倍型的外显率(只。)与等位基因的边际外显率的乘积(Pa?P。)的偏差(6.口=PA。一只?P8),分别定义病例组和对照组两个位点交互作用的度量.进而综合两组交互作用度量构造检验交互作用的统计量;(2)对于基因一环境交互作用模型的构建,则将环境(分类型变量)变量视为“虚拟位点”(例如E=l表示环境暴露。E=0表示即非暴露),则同样依据上述方法构建其模型。4.1基因型数据的联合概率分布及其表达对于基因之间、基因与环境之间的交互作用统计量的构建,无论是二阶或高阶情形,均至少涉及两个变量。在本研究中,均以病例一对照试验设计为基础,个体的基因数据一律用其基因型表示。无论是病例组还是对照组,均设两个位点的等位基因分别为A,a;B,b,则它们的联合基因型分布可表述为表3的形式: 则.配子的LD系数为:6.。=%一PAP。;非配子的LD系数为:乳口=九日一只-匕,其中,P.e=尸竺+PAB舳+碟+P竺;JD∥。=P竺+P竺+P::+形:。但是,当计算病例组或对照组的6.。时,需要知道双杂合子的概率P苫、P::。然而。当它们的相未知时,则无法确定其值,只能进行单倍型推断。由于单倍型推断总是存在误差,这给后面构造的检验交互作 用的统计量带来很多不确  万方数据

电路原理试题库试卷六复习课程

电路原理试题库试卷 六

电路试题库试卷 试卷号:B120012 校名___________ 系名___________ 专业___________ 姓名___________ 学号___________ 日期___________ (请考生注意:本试卷共 页) 一、单项选择题:在下列各题中,有四个备选答案,请将其中唯一正确的答案填入题干的括号中。 (本大题共9小题,总计32分) 1、(本小题2分) 如图所示, 特性曲线a 与b 所表征的元件分别应为 A. 线性电阻与理想电压源 B. 实际电源与短路, 即R =0 C. 实际电源与开路, 即R →∞ D. 两个不同数值的线性电阻 答( ) i 2、(本小题2分)

已知图示电容元件C 的初始电压()u 01=V ,则在t ≥0时电容电压()u t 与电容电流()i t 的关系式为 A. ()u t =()110 - ?C i t ξξd B. ()u t =()-- ?11 C i t ξξd C. ()u t =()-+?110C i t ξξd D. ()u t =()110 +?C i t ξξd 答( ) C () u t + - 3、(本小题2分) 图示电路中N 为含源线性电阻网络,当I S =4 A 时,I =3 A ;当I S =0时,I =5 A ;则当 I S =-2 A 时, I 应为 I S 2Ω A. 2 A B. 6 A C. 4 A D. -3 A 答( ) 4、(本小题3分) 若负载所取的功率P 为72kW ,负载的功率因数角为?4.41(电感性,滞后),则其视在功率为 A. 54kVA B. 96kVA C. 47.6kVA D. 108.9kVA

2019上“电路原理”作业(四大题共16小题)

2019上“电路原理”作业(四大题共16小题) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、简答题(8小题) 1、在进行电路分析时,为何要指定电压或电流的参考方向?何谓关联参考方向何谓非关联参考方向在图1-1中,电压和电流的参考方向为关联参考方向还是非关联参考方向?在这种参考方向体系下,ui乘积表示吸收还是发出功率?如果u>0、i<0,则元件实际发出还是吸收功率? 图1-1 答: 1、一旦决定了电流参考方向,每个元件上的电压降方向就确定了,不可随意设置,否则在逻辑上就是错误的,所以先要指定电厂、电流的方向。 2、所谓关联参考方向是指流过元件的电流参考方向是从元件的高电位端指向低电位端,即是关联参考方向,否则是非关联参考方向。 3、非关联——同一元件上的电压、电流的参考方向相反,称为非关联参考方向。 4、发出功率——非关联方向,调换电流i的参考方向之后,乘积p = ui < 0,表示元件发出功率。 5、吸收功率——非关联方向下,调换电流i的参考方向之后,u > 0,i > 0,功率p为正值下,元件实际吸收功率; 2、分别说明图1-2、1-3所示的电路模型是理想电压源还是理想电流源?分别简述理想电压源和理想电流源的特点,并分别写出理想电压源和理想电流源的VCR(即u和i的约束方程)。 图1-2 图1-3 答: 1、图1-2是理想电压源;1-3所示的电路模型是理想电流源 2、理想电压源电源内阻为0;理想电流源内阻无穷大 3、图1-2中理想电压源与外部电路无关,故u = 10V 图1-3中理想电流源与外部电路无关,故i=-10×10-3A=-10-2A

怎样看电路原理图

谈谈怎样看电路原理图 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理 ,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功 ,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信 号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之 间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。 电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功 能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具 体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路 中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削 波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置 性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如: 三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下 它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选 频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上 能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似, 但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、 峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方 法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。

最新电磁炉工作原理及电磁炉电路图分析学习资料

电磁炉工作原理及电磁炉电路图分析 电磁炉工作原理及电磁炉电路图分析(一) 一.电磁加热原理 电磁炉是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz 的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿( 导磁又导电材料) 底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。 二、电磁炉电路工作原理分析 2.1 常用元器件简介 2.1.1 LM339 集成电路 LM339 内置四个翻转电压为6mV 的电压比较器, 当电压比较器输入端电压正向时(+ 输入端电压高于- 入输端电压), 置于LM339 内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(- 输入端电压高于+ 输入端电压), 置于LM339 内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低, 此时输出端为0V 。 2.1.2 IGBT 绝缘双栅极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。 IGBT的特点: 1.电流密度大, 是MOSFET的数十倍。 2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。 3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。 4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。 5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。 目前458 系列因应不同机种采了不同规格的IGBT, 它们的参数如下: (1) SGW25N120---- 西门子公司出品, 耐压1200V, 电流容量25 ℃时46A,100 ℃时25A, 内部不带阻尼二极管, 所以应用时须配套6A/1200V 以上的快速恢复二极管(D11) 使用, 该IGBT 配套10A/1200/1500V 以上的快速恢复

GWAS原理剖析资料

全基因组关联分析(Genome-wide Association Study)是利用高通量基因分型技术,分析数以万计的单核苷酸多态性(SNPs)以及这些SNPs与临床表型和可测性状的相关性。简单地理解全基因组关联分析,GW AS就是标记辅助选择在全基因组范围上的应用,在全基因组层面上开展大样本的、多中心的、重复验证的技术,并对相关基因与复杂性状进行关联研究,从而全面地揭示出不同复杂性状的遗传机制和基础。GW AS是一项开创性的研究方法,因为它可以在以前很难达到的分辨率水平上对成千上万无关样本的全基因组进行研究,且不受与疾病有关的先验性假设的限制,GWAS在全基因组范围、零假设性较候选基因研究都迈出了重要的一步,而且随着高通量测序成本的降低,GW AS在人类疾病以及畜禽经济性状的研究上都表现出巨大的优势。 GW AS的优势除了可以一次性检测到数以万计的SNPs信息,从而提高试验效率以及检验功效以外,其还有其他两个显著的优势,主要表现在:(1)对未知信息的基因进行定位探索。传统的QTL定位仅仅限于对已知的候选基因进行分析探索,而GW AS是对全基因组的范围内的所有位点进行关联分析,因此其拥有更广泛的关联信息,相比候选基因分析GW AS 更有可能找到与性状真正关联的候选基因,因此不再受到预先假设的候选基因的限制。(2)对于GWAS在研究不同的复杂性状之前,不需要像以往的研究一样“盲目地”预设一些假定条件,而是通过在病理和对照组中,有目的地比较全基因组范围内所有SNPs的等位基因频率或者通过家系进行传递不平衡检验(TDT,Transmission disequilibrium test),从而找出与复杂性状显著相关的序列变异。到目前为止,利用全基因组关联分析研究已经挖掘出众多与各种复杂性状相关联的基因和染色体区域,在这些被新鉴定出的位点和区域中,只有小部分结果位于以前对这些性状研究的区域之中或者附近,绝大多数位于以前从未被研究过的区域,GW AS的研究结果表明以前没有被纳入研究的未知区域有可能对于复杂性状也是十分

相关文档