文档库 最新最全的文档下载
当前位置:文档库 › A2SEA新一代海上风电安装船提升系统安装实例

A2SEA新一代海上风电安装船提升系统安装实例

A2SEA新一代海上风电安装船提升系统安装实例
A2SEA新一代海上风电安装船提升系统安装实例

A2SEA新一代海上风电安装船提升系统安装实例A2SEA系列风电安装船由中远船务(启东)海洋工程有限公司设计建造,

目前已经成功交付两艘,分别为:“Sea Installer”,“Sea Challenger”。该系列风电安装船是当代世界最先进、自动化程度高、集大型风车构件运输、起重和安装功能于一体的海洋工程专业特种船舶。其中每艘船都配备了由GuSto MSC提供的9000C型液压提升系统,此系统为全船的核心系统,其安装调试过程复杂,且周期长,基本贯穿整个项目的建造过程,因此对整个项目有着到关重要的影响。

标签:风电安装船;提升系统;围井;安装程序

1 A2SEA风电安装船简介

(1)总长132.41米,型宽39米,型深9米,设计作业水深为30米,设计作业环境温度为-20度至+35度。(2)由四条圆形桩腿组成,每条桩腿长度为82.5米,直径4.5米。每条桩腿分别配备一套提升装置,每两套提升装置配备一台液压动力单元(HPU)。

2 提升系统主要技术参数(每个围井)

(1)该系统设计使用年限为20年,可完成3650次提升作业。(2)基本技术参数:有效提升容量:5300T;预压载容量:9000T;承载容量:9000T。(3)平台提升速度:0.4m/min;平台下降速度:0.5m/min;桩腿升降速度:0.67m/min。

3 提升系统安装程序(每个围井)

3.1 每个围井的提升系统的主要安装流程

下导向分段以及围井分段制作与合拢;提升装置部件组装;提升部件上船安装;上导向分段制作与合拢;下导向分段现场机加工;提升油缸连接;提升装置对中调整;液压动力装置(HPU)及其它部件安装。以下将对主要的安装程序进行简要地描述。

3.2 下导向分段以及围井分段制作与合拢

(1)下导向分段制作完成后,与主船体结构进行合拢。(2)下导向分段合拢完成后,将围井分段(分上下围井两部分)与主船体进行合拢。

3.3 提升装置部件组装

3.3.1 每套提升装置的主要部件及数量如下:导向框架(Guide Frame Segment),4只;中间导向框架(Intermediate Frame Segment),2只;提升油缸(Lifting Cylinder),8只;测量油缸(Measurement Cylinder),4只;连接轭(Yoke),

超大型自航自升式海上风电安装船关键设计与建造技术-上海船舶运输

2018年国家科技进步奖提名项目公示 一、项目名称:超大型自航自升式海上风电安装船关键设计与建造技术 二、提名者及提名意见 提名者:交通运输部 提名意见: 该提名从我国海洋开发、新能源开发的国家发展战略出发,针对我国海上风电场建设安装的专用重大装备的先进设计与制造技术缺乏现状,开展产、学、研联合科技攻关。创新性的设计出了世界上第一台超大型自航自升式海上风电安装船,集海上风电机组的装载运输、重型起重、动态定位等功能于一身,是船舶与海工平台的综合体,是一种全新的超大型海洋工程技术装备。 项目针对海上风电安装特点,结合风电安装船应用海况条件,通过总体和结构性能研究,掌握了风电安装船设计成套技术,研发并建造了八边形桩腿和圆形桩腿两种新式超大型海上风电安装船。突破了超大型风电安装船总体、结构等设计关键技术,完成了45m水深范围内作业的超大型自航自升式海上风电安装船船型设计和两型4艘船舶的建造;首次实现了超大型海上风电安装船平地高效建造,攻克了海上风电专用装备整体建造关键技术,比同类国际产品建造周期缩短了3个月;针对100mm的E690超厚超强板焊接工艺及变形控制技术难题,首次采用了桩腿建造高精度控制技术,实现了桩腿一体化成型及100%无余量免加工建造;突破了自升式风电安装船提升控制技术,液压升降系统为桩腿提供最大6×7500吨及4×9000吨预压载力,可提升船体重量20000吨以上。 提名项目对实现国家海上新能源开发的发展战略,突破我国风电安装船设计建造核心关键技术,形成具有自主品牌的系列海上作业平台产品,促进海工装备业可持续发展、打造中国沿海海上风电产业基地和加快推进我国海上风电场建设具有重要意义。产品填补国内空白,其整体技术居于国际先进水平,具有自主知识产权。 申报材料内容真实,材料完整,附件齐全,完成人员排序合理。 提名该项目为国家科学技术进步奖二等奖。 三、项目简介 本成果属于交通运输行业中的船舶、舰船工程和机械制造工艺与设备交叉学科领域。 我国经济运行成本较高,GDP能耗是世界上最高的国家之一,加上日益突出的生态环境问题,风力发电等清洁能源开发刻不容缓,国家已将“绿色GDP”和海洋开发、新能源开发提升至国家发展战略高度。但由于海上风电场建设的专用装备还基本处于空白,导致我国风电资源开发仍主要集中在陆地及沿海滩涂,10-45米水深区域风电开发能力尚未获得有效突破,其根本原因是:没有掌握海上风电安装重大装备的先进设计与制造技术。 本成果的完成单位从2007年开始,依托国家重点新产品计划、江苏省重大科技成果转化项目基金、江苏省科技支撑计划项目基金和企业自筹研发等项目,深入系统地研究了超大型自航自升式海上风电安装船研制的成套关键技术。 主要技术创新如下: 创新点1:突破陆上风机安装和海上浮吊起重传统设计思路,结合应用海况条件,通过海上风电安装船总体和结构性能研究,研发了八边形6根桩腿和圆形4根桩腿两种新船型,该船型集装载运输、自航自升、重型起重、动态定位、海上作业等多种功能于一身,是世界上最先进的海上风电安装和运输作业的高效专业装备,可以适应任何海域的近海风电场建设。 创新点2:采用了大型模块化建造、液压传动控制、提升自锁限位等全功能制造综合集成技术,首次实现了超大型海上风电安装船平地高效建造,攻克了海上风电专用装备整体建造关键技术,比同类国际产品建造周期缩短了3个月。 创新点3:首创桩腿变形控制和总成建造技术,发明了一整套超高超厚强度钢焊接工艺,解决了100mm厚的E690超厚超强板焊接工艺及变形控制,创造性的设计了自转式吊柱、超大吨位吊梁、自锁限位装置等工装,实现桩腿一次性切割无修正工艺、一次成型并安装到位,完成了桩腿总成建造。桩腿直线度公差控制在±5mm范围内,桩腿对角导轨板平行度控制在±2mm范围内,整条桩腿制作精度完全达到设计和使用要求。 创新点4:突破了自升式风电安装船提升控制核心技术,独立研发的液压桩腿升降系统为每根方型壳式桩腿提供世界最强的7500KN(千牛)预压载力,可提升船体重量20000吨。提升控制系统通过直观的操作界面,可实现整船的提升控制。整船插桩试验方法、桩靴设计及冲桩系统研究,验证了桩腿及其系统设计及建造的创新。

海上风电导管架安装专项方案

珠海桂山海上风电场一期导管架安装专项方案 编制: 复核: 审批: 中铁大桥局股份有限公司 2014年9月

目录 1、工程概况 (1) 1.1工程位置及项目规模 (1) 1.2 导管架设计概况 (1) 2、自然环境 (2) 2.1地质及地貌 (2) 2.2 气象条件 (4) 2.3 特征气象参数 (4) 2.4 潮汐 (4) 2.5 波浪 (5) 2.6 海流 (6) 3、导管架安装方案 (6) 3.1 总体安装方案 (6) 3.2 施工步骤 (6) 3.3 构件进场检查 (6) 3.4 导管架安装 (6) 3.5 牺牲阳极接地电缆安装 (7) 3.6 施工重难点及控制措施 (7) 4、施工设备及劳动力组织 (7) 4.1 施工设备 (7) 4.2 劳动力组织 (8) 5、施工周期分析 (8) 6、HSE保证措施 (8) 6.1 职业健康保证措施 (8) 6.2 特种作业安全保证措施 (10) 6.3 环境保证措施 (12) 6.4 施工安全保证措施 (14) 7、附图 (14)

1、工程概况 1.1工程位置及项目规模 珠海桂山海上风电场场址位于珠江河口的伶仃洋水域,处于珠海市万山区青洲、三角岛、大碌岛、细碌岛、大头洲岛与赤滩岛之间的海域。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-6.0m~12.0m,属于近海风电场。在三角岛上设置110kV升压站,风机电能通过8条35kV集电海缆汇集到三角岛升压站,再通过2回110kV送出海缆,接入220kV吉大站,实现与珠海电网的联网,并在珠海陆域设一集控中心。同时兴建三角岛-桂山岛、三角岛-东澳岛-大万山岛的35kV海底电缆,实现三个海岛的微网与珠海电网联网。 本工程风电场共安装17个风电机组,主要施工内容为:钢管桩沉桩、导管架安装、防腐、灌浆、钢管桩嵌岩、风机整体运输安装、零星工程。 图1-1 风机总体布置图 1.2 导管架设计概况 导管架下部与4根钢桩对接后,通过灌浆进行连接,顶面通过法兰与风机连接,

一文带你看懂风电安装船

海上风机安装基本都是由自升式起重平台和浮式起重船两类船舶完成的,船舶可以具备自航能力也可以是非自航。单独或联合采用何种方式安装取决于水深、起重能力和船舶的可用性。其中联合安装比较典型的方式是由平甲板驳船装载风机部件或者单基桩拖到现场,再由自升式平台或起重船从平板驳船上吊起部件完成安装或打桩。早期的安装船都是借用或由其他海洋工程船舶改造的,但随着风机的大型化,小型船舶无法满足起重高度和起重能力的要求。 近年来欧洲多家海洋工程公司相继建造和改造了多条专门用于海上风机安装的工程船舶。安装船舶的大型化也是一个趋势,专门的风车安装船一次最多可以装载10 台风机。 以下按照船型和适用的工作海域将海上风车安装船舶作分类比较。风电安装船类型 1起重船 起重船通常具备自航能力,船上配备起重机,可以运输和安装风车和基础。 起重船除在过浅区域需考虑吃水外其余区域不受水深限制,且多为自航,在不同风机位置间的转移速度快,操纵性好,使用费率很低,船源充足,不存在船期安排问题。 但起重船极其依赖天气和波浪条件,对控制工期非常不利,现已较少使用。但在深海(大于35m) 条件下由于无法使用自升式平台/ 船舶进行安装,故仍须使用起重船。 与近海小型起重船相比,双体船船型具有稳性好、运载量大、承受风

浪能力强的优点,目前也开始应用在海上风机安装中。 2自升式起重平台 自升式平台配备了起重吊机和4~8 个桩腿,在到达现场之后桩腿插入海底支撑并固定驳船,通过液压升降装置可以调整驳船完全或部分露出水面,形成不受波浪影响的稳定平台。在平台上起重吊机完成对风机的吊装。 驳船的面积决定一次性可以运输的设备的数量,自升平台没有自航设备,甲板宽大而开阔、易于装载风机。对于单桩式基础的安装,只需在平台上配备打桩机即可。 由于不具备自航能力,自升平台需由拖船拖行,导致其在现场不同风机点之间转场时间较长,操纵不便,且需要平静海况。自升式起重平台是目前海上风电安装的主力。 3自航自升式风机安装船 随着风机的不断大型化以及离岸化,起重能力和起重高度的限制以及海况的复杂化使得传统的起重安装船舶无法满足需求。在这种情况下,出现了兼具自升式平台和浮式船舶的优点,专门为风机安装而设计与建造的自航自升式安装船。 与之前的安装船舶相比,自航自升式安装船具备了一定的航速和操纵性,可以一次性运载更多的风机,减少了对本地港口的依赖。船舶配备专门用于风机安装的大型吊车和打桩设备,具有可以提供稳定工作平台的自升装置,可以在相对恶劣的天气海况下工作,且安装速度较快。4桩腿固定型风车安装船

核电与海上风电安装技术分析

核电与海上风电安装技术分析 发表时间:2019-06-18T14:53:36.820Z 来源:《科技研究》2019年4期作者:柳华泳 [导读] 本文针对核电以及海上风电的安装技术展开分析和研究,希望能够为我国的能源事业带来参考。 (中节能(阳江)风力发电有限公司 529500) 摘要:海上风电以及核电是当前较为先进的能源开发技术。但是由于受到各种思环境条件的限制和制约,在核电以及海上风电设备安装都需要极高技术水平,如果安装不当就会造成极其严重的后果,甚至给社会带来巨大的损失和危害。因此本文针对核电以及海上风电的安装技术展开分析和研究,希望能够为我国的能源事业带来参考。 关键词:核电;海上风电;安装技术 随着人类社会的快速发展,世界各国都对能源问题更加重视。为了能够实现经济的可持续发展,人们在能源产业上正朝着低碳环保的方向发展。同时对可再生能源的研究和探索更加迫切。在未来的能源事业的发展上,如风电、核电、太阳能以及海洋能源等将会成为可再生能源中的主体。因此海上风电以及核电将成为未来能源市场的重要发展方向。 一、海上风电安装方式 海上风电安装的前期准备 在海上风电安装工程中,需要严格按照相关方案对安装地点进行环境勘察,采集详细的施工环境数据。首先需要对海上风电安装地址的地形条件以及海底实情况进行勘察。其中包括海上风电安装所涉及的海洋面积、海水深度、距海岸距离、安装阶段海上风向以及风力情况。此外需要考察海底地基情况,通常海上风电的安装位置需要避免选择较为复杂的海底情况。其次需要对海上风电安装位置的地质成分进行勘察,其中主要包括对海底地质年代、地质形成类型以及海底岩石分布状态和特征进行分析。通常海底地基成分包括淤泥、粘土、砂石、粗砂等。同时还要对海底岩石土壤进行物理力学方面的测试分析,根据海底地基的力学示数设计地基桩。再次,需要对安装海域的地震情况进行勘察,参照我国地震参数划分数据进行分析,海上风电安装需要做好地震防护措施。避免地震对风电安装造成不必要的影响[1]。此外需要对安装位置海域的水文情况以及海水的腐蚀能力进行检测。根据海水的实际腐蚀能力需要对安装材料予以限制,同时还需要考虑在安装过程中是否会出现涌水情况发生。最后还要对风电安装位置的海洋流向进行勘察,其中包括海洋在夏季以及冬季不同时期的涨潮情况,记录好涨潮过程做中施工海域的水位变化。 (二)海上风电风机安装方法 1、吊船自升式散装 吊船自升式安装主要设置有液压动力升降腿柱,因此在安装过程中可以将船体整体升至水平面之上,这种安装方案可以有效的减少海上风浪等情况对吊装施工的影响。此外,船体还具有全角度旋转安装吊车,同时安装船上可以容纳四到五个风机,船体吃水度为2.5米到5米,所以适合在水深40m左右的海域进行施工作业,当前自升式安装船的液压升降柱通常进行加长设计因此可以在更深的海域施工。这种安装方式主要可以避免海上各种突发情况对风电安装的影响,保证施工工期的准确性,施工效率高,而且不需要其他船只,因此能够有效的降低安装成本。但同时这种安装方式也有一定的不足之处,首先这种自升式吊船的制造成本较高,船只制造时间通常可以达到三年左右,一次性投入成本较多。此外由于升降柱的长度限制只适合在水深较浅的海域使用,不适合进行远洋作业。综合考虑自升式吊船安装是当前较为普遍的海上风电安装方式[2]。 稳定桩浮吊船安装方式 这种安装吊船的甲板没有自升式吊船的面积大,通常只能安装三台左右的风机设备,但船体的升降柱可以通过浮力进行操作,施工时船体并不离开水面。通过船体的定位桩可以有效的降低船只受海上风浪的影响,因此可以进一步的提升船只的安装效率,这种安装方式由于甲板小,因此在安装风机较多时需要反复操作,在风浪较大时也要及时撤离。所以这种安装方式通常只用于海上风电安装的过渡阶段。 普通浮吊船安装方式 对于一般的近海海域进行风电安装很少使用动力定位,而是选择锚定位的方法,但是这种锚定位在造价上过于高昂。这种安装方式与自升式吊船比较接近,但是这种锚定位是通过抛锚的方式进行船体固定,但是自升式吊船是通过升降柱来固定船体。这就需要在安装过程中为吊船设置自航装备或者使用其他船只进行辅助工作。锚定位安装方式在风浪较大的情况下无法进行施工,因此受到海上因素的影响较为严重,很难保证能够按时完成施工。 普通浮整体吊装方式 整体安装相比于散装有着一定的优势,可以在安装过程中一次安装两到三台风机。但是这种整体安装方式会受吊高影响,需要使用大型浮吊设备。根据实际需要的浮吊能力通常在长距离运载时选择驳船进行安装。安装过程中浮吊设备可以一直停留在海上,风机则通过滑行的方式运上驳船,这种施工方法能够有效降低吊浮的安装成本。而由于这种工安装方式的大部分安装工作都是在陆上完成只需要在海上进行最后的安装,因此安装所需的费用也比较低。在海面条件合适的情况下一天就可以安装完成。而且这种安装方法可以在水位较深的海域进行施工,是其他散装方法无法相比的。然而这种方法也存在着一定的不足,需要有专业的安装码头负责风机的组装,对于安装位置有着一定程度的制约。 (三)风电机组的布置方法 对风电机组的布置过程中应当满足设计集约化的原则,实现节约使用海洋资源的观念,在设计风电安装的用海面积规划时,应当将风电电机的经济要求以及安全性要求考虑进去。在海岛上安装风电机组需要节约使用岛屿面积,设计方案符合海岛开发应用规范。风电机组的布置需要与地底线管、船只航线以及船只抛锚位置有一定距离,同时需要考虑到海上气候条件以及水文因素的影响[3]。 二、核电设备安装分析 (一)核岛设备安装分析 核电站的核岛设备主要分布在各个厂房内,其中包括了核岛的反应堆、辅助厂房、废弃物处理厂房等。安装流程主要包括了设计安装计划、安装设备就位、初次灌浆找平,机械找精、二次灌浆、最后保护设备。一般情况下安装过程中会对设备造成刮伤碰撞等问题,因此

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

【CN110042818A】海上风电安装平台【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910156512.X (22)申请日 2019.03.01 (71)申请人 武汉船用机械有限责任公司 地址 430084 湖北省武汉市青山区武东街 九号 (72)发明人 朱正都 徐兵 徐潇  (74)专利代理机构 北京三高永信知识产权代理 有限责任公司 11138 代理人 徐立 (51)Int.Cl. E02B 17/00(2006.01) E02B 17/08(2006.01) (54)发明名称 海上风电安装平台 (57)摘要 本发明公开了一种海上风电安装平台,属于 海洋风电领域。除平台、齿轮齿条升降系统与桁 架桩腿外,海上风电安装平台还包括沉垫、圆桩 腿及连接组件,圆桩腿与桁架桩腿连接,沉垫与 圆桩腿相固定,且圆桩腿一端与沉垫背离所述桁 架桩腿的一个表面之间的距离大于沉垫在圆桩 腿的轴向上的厚度。可以通过圆桩腿上的圆锥凸 起顺利插入海底,实现平台位置的良好固定,而 箱式结构的沉垫贴合海底,圆桩腿与沉垫分别对 沿圆桩腿的径向与轴向的作用力有良好的抗性, 对平行进行良好的支撑,增加海上风电安装平台 的工作稳定性。通过连接组件连接桁架桩腿与圆 桩腿,桁架桩腿的轴线与圆桩腿的轴线重合,也 能够保证圆桩腿与桁架桩腿之间的连接稳定,保 证海上风电安装的工作稳定。权利要求书1页 说明书4页 附图3页CN 110042818 A 2019.07.23 C N 110042818 A

权 利 要 求 书1/1页CN 110042818 A 1.一种海上风电安装平台,所述海上风电安装平台包括平台(1)、齿轮齿条升降系统 (2)与多个桁架桩腿(3),所述多个桁架桩腿(3)可拆卸连接在所述平台(1)上,所述齿轮齿条升降系统(2)用于控制所述平台(1)沿所述桁架桩腿(3)的轴向进行升降,所述齿轮齿条升降系统(2)至少包括多个升降齿条(21),所述多个升降齿条(21)沿所述桁架桩腿(3)的轴向设置在所述多个桁架桩腿(3)上, 其特征在于,所述海上风电安装平台还包括沉垫(4)、多个圆桩腿(5)及连接组件(6),所述沉垫(4)为箱式结构,所述沉垫(4)上设置有多个圆孔(41),所述圆孔(41)的轴线垂直所述沉垫(4)背离所述桁架桩腿(3)的一个表面(42),每个所述圆孔(41)内均同轴固定有一个所述圆桩腿(5),所述连接组件(6)用于连接所述桁架桩腿(3)的一端与所述圆桩腿(5)的一端,所述桁架桩腿(3)的轴线与所述圆桩腿(5)的轴线重合,所述圆桩腿(5)的另一端的端面与所述沉垫(4)背离所述桁架桩腿(3)的一个表面(42)之间的距离(A)大于所述沉垫(4)在所述圆桩腿(5)的轴向上的厚度(B),所述圆桩腿(5)的另一端同轴设置有圆锥凸起(7)。 2.根据权利要求1所述的海上风电安装平台,其特征在于,所述连接组件(6)包括两个齿条楔块(61)与连接单元(62),所述连接单元(62)用于连接所述两个齿条楔块(61)与所述圆桩腿(5),所述两个齿条楔块(61)分别设置在每个所述升降齿条(21)的两侧,每个所述齿条楔块(61)上均设置有与所述升降齿条(21)相啮合的齿。 3.根据权利要求2所述的海上风电安装平台,其特征在于,所述连接单元(62)包括弧形板(621)、双耳板(622)及连接销(623),所述弧形板(621)同轴设置在所述圆桩腿(5)上,所述双耳板(622)设置在所述弧形板(621)上,所述连接销(623)用于连接所述双耳板(622)与所述齿条楔块(61)。 4.根据权利要求3所述的海上风电安装平台,其特征在于,所述双耳板(622)与所述弧形板(621)之间设置有支撑板(624)。 5.根据权利要求3所述的海上风电安装平台,其特征在于,每个所述齿条楔块(61)均包括固定板(611)与止动板(612),所述固定板(611)与所述止动板(612)相互垂直,所述固定板(611)通过所述连接销(623)与所述双耳板(622)连接,所述止动板(612)上设置有与所述升降齿条(21)相啮合的齿,所述止动板(612)平行所述升降齿条(21)的轴线。 6.根据权利要求5所述的海上风电安装平台,其特征在于,所述连接单元(62)还包括压板(626),所述压板(626)与所述两个齿条楔块(61)的止动板(612)连接,所述压板(626)与所述升降止动板(612)朝向所述圆桩腿(5)的一个表面(42)相抵。 7.根据权利要求3所述的海上风电安装平台,其特征在于,齿条楔块(61)的材料为18Cr2Ni4W钢。 8.根据权利要求1~6任一项所述的海上风电安装平台,其特征在于,所述沉垫(4)的内部设置有支撑筋板(43)。 9.根据权利要求1~6任一项所述的海上风电安装平台,其特征在于,所述圆桩腿(5)的另一端的端面与所述沉垫(4)背离所述桁架桩腿(3)的一个表面(42)之间的距离(A)为6~11m。 10.根据权利要求1~6任一项所述的海上风电安装平台,其特征在于,所述圆锥凸起(7)的高度(H)与所述圆锥凸起(7)的直径(D)相等。 2

西门子海上风电安装介绍_Offshore Solutions_US

Answers for energy.

Sustainable profit Offshore wind power – firmly established as a viable source of renewable energy

Due to higher, more consistent wind speeds at sea, offshore wind turbines can generate substantially more energy than onshore wind turbines. Offshore wind farms may reach capacity factors in the range of 50%. Even considering the planning constraints relating to shipping lanes, fishing, bird migration, and the like, the world has abundant space for offshore projects. Offshore wind power has its challenges, however. Conditions during installation, operation, and maintenance may be harsh, and the product requirements are high. It takes a special supplier to provide stable, long-term offshore partnerships.When it comes to offshore wind power, no supplier can match Siemens in terms of experience and reliability. Siemens has a proven track record for delivering offshore projects on budget. From the world’s first offshore wind farm almost 20 years ago to today’s largest offshore wind farms, all projects have been deliv-ered on time and on budget. All projects operate with high availability. Optimized processes across the complete project life cycle make Siemens a stable, reliable, and trustworthy business partner.

超大型自航自升式海上风电安装船关键设计与建造技术

超大型自航自升式海上风电安装船关键设计与建造技术 (一)项目名称:超大型自航自升式海上风电安装船关键设计与建造技术 (二)推荐单位:中国航海学会 (三)项目简介: 本成果属于交通运输行业中的船舶、舰船工程和机械制造工艺与设备交叉学科领域。 我国经济运行成本较高,GDP能耗是世界上最高的国家之一,加上日益突出的生态环境问题,风力发电等清洁能源开发刻不容缓,国家已将“绿色GDP”和海洋开发、新能源开发提升至国家发展战略高度。但由于海上风电场建设的专用装备还基本处于空白,导致我国风电资源开发仍主要集中在陆地及沿海滩涂,10-45米水深区域风电开发能力尚未获得有效突破,其根本原因是:没有掌握海上风电安装重大装备的先进设计与制造技术。 本成果的完成单位从2007年开始,依托国家重点新产品计划、江苏省重大科技成果转化项目基金、江苏省科技支撑计划项目基金和企业自筹研发等项目,深入系统地研究了超大型自航自升式海上风电安装船研制的成套关键技术。 主要技术创新如下: 创新点1:突破陆上风机安装和海上浮吊起重传统设计思路,结合应用海况条件,通过海上风电安装船总体和结构性能研究,研发了八边形6根桩腿和圆形4根桩腿两种新船型,该船型集装载运输、自航自升、重型起重、动态定位、海上作业等多种功能于一身,是世界上最先进的海上风电安装和运输作业的高效专业装备,可以适应任何海域的近海风电场建设。 创新点2:采用了大型模块化建造、液压传动控制、提升自锁限位等全功能制造综合集成技术,首次实现了超大型海上风电安装船平地高效建造,攻克了海上风电专用装备整体建造关键技术,比同类国际产品建造周期缩短了3个月。 创新点3:首创桩腿变形控制和总成建造技术,发明了一整套超高超厚强度钢焊接工艺,解决了100mm厚的E690超厚超强板焊接工艺及变形控制,创造性的设计了自转式吊柱、超大吨位吊梁、自锁限位装置等工装,实现桩腿一次性切割无修正工艺、一次成型并安装到位,完成了桩腿总成建造。桩腿直线度公差控制在±5mm范围内,桩腿对范围内,整条桩腿制作精度完全达到设计和使用要求。 角导轨板平行度控制在±2mm 创新点4:突破了自升式风电安装船提升控制核心技术,独立研发的液压桩腿升降系统为每根方型壳式桩腿提供世界最强的7500KN(千牛)预压载力,可提升 船体重量20000吨。提升控制系统通过直观的操作界面,可实现整船的提升控制。整船插桩试验方法、桩靴设计及冲桩系统研究,验证了桩腿及其系统设计及建造的创新。 该项目获得多项自主知识产权,共申请发明专利41件,已获授权22件;申请并已获授权实用新型专利4件。编写企业标准20个,发表论文14篇,2012年本 装备获得国家科技部重点新产品及江苏省首台套重大装备认定。。 本项目从近海风电能源开发的国家能源发展战略出发,针对海上风电安装专用装

国内外海上风电安装船关键技术及市场研究报告

中国重大机械装备网- 目录: 第一章海上风电安装船产业概述 第一节风电安装船 一、定义 二、产品结构 三、产品功能及应用 四、其他辅助设备 五、典型风机安装船介绍 第二节海上风电安装船方案选择 第三节海上风电安装船在我国国民经济中的地位及重要意义第四节海上风电安装船生命周期分析 第二章国内外海上风电安装船制造行业发展外部环境分析第一节国外海上风电安装船制造行业外部环境分析 第二节国内海上风电安装船制造行业外部环境分析 一、宏观经济环境分析 二、行业政策环境分析 三、行业发展的有利因素和不利因素 第三章国内外海上风电发展状况分析 第一节海上风电场发展状况分析 一、海上风电场发展现状分析 二、海上风电场的未来发展分析 三、2011-2020年海上风机的发展预测 四、中国正在筹建的海上风电场项目 五、2011-2020年中国海上风电发展目标 第二节世界海上风电项目的发展现状 一、运营项目 二、在建项目 第三节海上风电机组的结构及安装方式 一、风机的主要结构 二、海上风机运输安装基本过程 三、海上分体安装 四、海上整体安装 第四节海上风电机组运输、安装和维护船方案 一、设计要求 二、主要要素和总布置图 三、运输能力 四、起重能力 五、桩腿和提升系统 第五节国内外近海风电场施工状况分析 第六节近海风电专用安装船分析 一、迅速成长的近海风电市场 二、风电机组运输、安装与维护的专用设备

三、世界近海风电安装船发展现状 四、计划中的新专用安装船 第四章国内外海上风电安装技术水平分析 第一节海洋环境的复杂性对风机的安装和维护都提出更高要求 第二节国外重点国家及地区海上风电安装技术水平调研分析 第三节中国海上风电安装技术状况调研分析 一、中国海上风电安装技术水平 二、中国海上风电安装面临的主要技术难题 三、中国海上风电安装技术壁垒 第四节国内外海上风电安装技术对比分析 第五章国内外海上风电安装船关键技术调研分析 第一节国外重点国家及地区海上风电安装船关键技术水平调研分析 第二节海上风电安装船功能设计与考量 一、风机安装船设计考量 二、未来海上风电场水深预测 三、未来海上风电风机主流机型预测 四、桩基形式的变化预测 五、未来项目面临的主要挑战(项目规模) 六、海上安装作业所需功能 七、德劳第一、第二、第三代方案介绍及企业技术服务 第三节海上风电安装船关键技术 一、爬升系统 二、齿轮箱 三、锁紧装置 四、桩腿 五、动力定位系统 六、重吊 七、直升机平台 第四节ABB为数艘风电安装船提供推进系统 第五节瓦锡兰公司为风电安装船(WTIV)提供整套船舶电力系统 第六节国内海上风电安装船技术开发水平调研分析 一、国内海上风电安装船技术水平调研分析 二、国内海上风电安装船研发面临的主要技术问题 三、国内外海上风电安装船技术对比分析 四、上海航盛船舶设计公司设计的海上风电专用安装平台方案获得冠军 第七节中船重工第712研究所成功中标海上风电安装船电力推进系统项目第六章国内外海上风电安装船市场发展状况分析预测 第一节海上风电安装船市场发展状况分析 一、市场规模 二、市场结构 三、供需状况 四、2011-2015年市场供需规模预测 第二节国内海上风电安装船市场发展状况分析 一、市场规模

海上风电机组的概念设计

海上风电机组的概念设计 目前,海上风力发电机组的主流机型是2.3~5MW双馈或半直驱机型,已交付或已有订单的机型主要如下表所示: 公司名称机组型号已交付使用正在安装已有订单丹麦vestas V90 /3MW 257台260台(含V112)西门子公司SWT-2.3 311台90台 西门子公司SWT-3.6 151台593台 德国REpower 5M 8台351台 德国Multibrid M5000 27台245台德国Enercon E-126/6MW 8台 GE公司GE 3.6sl 7台130台 华锐公司3MW 34台 德国BARD VM5MW 5台80台 德国Nordex 2MW 8台 德国Nordex 2.5MW 11台 芬兰WinWind 3MW 10台 由上表可见丹麦vestas的V90 /3MW,西门子公司的SWT-3.6,德国REpower的5M,德国Multibrid 的M5000,GE公司的GE 3.6sl和德国BARD公司的VM5MW机组被市场认可,由此可见3MW以上风电机组是最近几 年海上风力发电机 组的主力机型。 V90 /3MW机 组是vestas在2002 年5月开始试制 的,右图为V90 /3MW的示意图。 V90 /3MW机 组是首台采用紧凑

型结构的风力发电机组,可以认为是取消了低速轴。2009年9月vestas又研制出了V112-3.0MW离岸型风力发电机组,这是V90-3.0MW的改进型,其安全等级为IECS,适于在平均风速9.5m/s的海上使用,这种机组采用三级增速齿轮箱,永磁同步发电机,短低速轴。该机型应该是维斯塔斯准备大批量生产的产品,下图为V112-3.0MW的外形图。 V112-3.0MW机组计划安装在英国沃尔尼第二海上风力发电场,2011年年底交付使用。V112-3.0MW技术参数如下表所示: 序号部件单位数值 1 机组数据 1.1 制造厂家/型号V112-3.0MW 1.2 额定功率kW 3000 1.3 轮毂高度(推荐方案)m 84.94/119 1.4 切入风速m/s 3 1.5 额定风速m/s 12 1.6 切出风速(10分钟平均值)m/s 25 1.7 极端(生存)风速(3秒最大值)m/s 59.5(IECIIA)5 2.5(IECIIIA) 1.8 预期寿命y 20 2 风轮

A2SEA新一代海上风电安装船提升系统安装实例

A2SEA新一代海上风电安装船提升系统安装实例A2SEA系列风电安装船由中远船务(启东)海洋工程有限公司设计建造, 目前已经成功交付两艘,分别为:“Sea Installer”,“Sea Challenger”。该系列风电安装船是当代世界最先进、自动化程度高、集大型风车构件运输、起重和安装功能于一体的海洋工程专业特种船舶。其中每艘船都配备了由GuSto MSC提供的9000C型液压提升系统,此系统为全船的核心系统,其安装调试过程复杂,且周期长,基本贯穿整个项目的建造过程,因此对整个项目有着到关重要的影响。 标签:风电安装船;提升系统;围井;安装程序 1 A2SEA风电安装船简介 (1)总长132.41米,型宽39米,型深9米,设计作业水深为30米,设计作业环境温度为-20度至+35度。(2)由四条圆形桩腿组成,每条桩腿长度为82.5米,直径4.5米。每条桩腿分别配备一套提升装置,每两套提升装置配备一台液压动力单元(HPU)。 2 提升系统主要技术参数(每个围井) (1)该系统设计使用年限为20年,可完成3650次提升作业。(2)基本技术参数:有效提升容量:5300T;预压载容量:9000T;承载容量:9000T。(3)平台提升速度:0.4m/min;平台下降速度:0.5m/min;桩腿升降速度:0.67m/min。 3 提升系统安装程序(每个围井) 3.1 每个围井的提升系统的主要安装流程 下导向分段以及围井分段制作与合拢;提升装置部件组装;提升部件上船安装;上导向分段制作与合拢;下导向分段现场机加工;提升油缸连接;提升装置对中调整;液压动力装置(HPU)及其它部件安装。以下将对主要的安装程序进行简要地描述。 3.2 下导向分段以及围井分段制作与合拢 (1)下导向分段制作完成后,与主船体结构进行合拢。(2)下导向分段合拢完成后,将围井分段(分上下围井两部分)与主船体进行合拢。 3.3 提升装置部件组装 3.3.1 每套提升装置的主要部件及数量如下:导向框架(Guide Frame Segment),4只;中间导向框架(Intermediate Frame Segment),2只;提升油缸(Lifting Cylinder),8只;测量油缸(Measurement Cylinder),4只;连接轭(Yoke),

自升式海上风电安装平台插桩深度计算方法

NA V AL ARCHITECTURE AND OCEAN ENGINEERING 船舶与海洋工程2018年第34卷第2期(总第120期) DOI:10.14056/https://www.wendangku.net/doc/6a12089603.html,ki.naoe.2018.02.001 自升式海上风电安装平台插桩深度计算方法 王徽华 (江苏龙源振华海洋工程有限公司,江苏南通 226014) 摘要:鉴于目前海上风机的安装主要借助自升式风电安装平台,为保证自升式风电安装平台吊装的安全性,开展平台插桩入泥深度的计算方法研究。考虑到相邻土层的影响,提出海底多层土极限承载能力的计算方法,并将其与实际施工记录及有限元分析结果相对比,验证该方法的准确性,为海上风电装备的施工提供参考。 关键词:自升式海上风电安装平台;入泥深度;多层土;穿刺 中图分类号:TU473.1; U674.38 文献标志码:A 文章编号:2095-4069 (2018) 02-0001-04 Calculation of Leg Penetration Depth for Jack-up Offshore Wind Turbine Installation Platform WANG Hui-hua (Jiangsu Longyuan Zhenhua Marine Engineering Co., Ltd., Nantong 226014, China) Abstract: Considering the fact that majority of offshore wind turbines are installed by jack-up platforms, studies are carried out on the calculation method of platform leg mud penetration depth to ensure the safety of jack-up wind turbine installation platform. Then the method for calculation of the ultimate bearing capacity of multi-layered soil at sea bottom is proposed, taking into account the influence of the surrounding soil layers. The accuracy of the method is validated through the comparison between construction data and finite element result. The method provides reference for the installation operation of offshore wind turbines. Key words:jack-up offshore wind turbine installation platform; leg penetration depth; multi-layered soil; punch-through 0引言 随着环保要求日益严苛,风能作为一种绿色能源越来越受到重视。由于海上的风况远远优于陆地,当前风力发电正逐步由陆地延伸到海上,海上风能的开发和利用已成为世界新能源发展的亮点。风电安装船作为建设海上风电场的关键装备,其开发利用也得到关注和重视。自升式风电安装船是一种全新的海洋工程船,主要用于运输和吊装海上风电设备。该船将运输船、海上作业平台、起重船及生活供给船的各项功能融为一体,可独立完成海上风电设备的运输和安装作业,因此在海洋风电安装领域得到广泛应用。该船通过将桩腿插入海底来支撑船体结构进行海上风机的吊装,桩腿入泥深度直接影响平台的吊装性能,因此开展自升式海上风电安装平台的入泥深度研究意义重大。 当前相关研究人员已针对海底土层承载力的计算开展较多工作。袁凡凡等[1]开展层状地基土的承载力计算,在迈耶霍夫和汉纳成层土地基极限承载力计算的基础上进行改进,提出多层土的极限承载力计算。杨军[2]采用数值模拟的方法开展自升式平台插拔桩土体数值模拟研究,得到入泥深度和拔桩力。张兆德等[3] 收稿日期:2016-06-16 基金项目:国家自然科学基金(51509113) 作者简介:王徽华,男,工程师,1982年生。2005年毕业于重庆大学机械设计制造及自动化专业,现从事海上风电安装工作。

大型海上风电关键技术与装备

国家重大产业技术开发专项 大型海上风电关键技术与装备 (3MW以上海上风力发电机组研发与产业化) 一、申报单位概况 上海电气风电设备有限公司由上海电气集团股份有限公司控股,是大型风力发电机组设计、制造、销售、技术咨询、售后服务的新能源专业公司。 公司成立于2006年9月,总部位于上海紫竹高科技园区,生产基地分别位于上海闵行经济技术开发区和天津北辰科技园区。 通过技术引进并消化吸收,1.25MW风力发电机组已形成批量生产,08年将完成300MW的生产;通过与国际知名风机设计公司合作,联合设计的2MW机组今年将完成小批量生产。依靠上海电气人力资源优势和产业优势,一支结构合理、专业搭配齐全的风电工程技术团队业已形成。目前公司现有员工200余人(08年底将有400人),其中本科以上84人、硕士20人、博士1人,上海电气的风电产业正处于高速发展之中。 二、申报项目名称及主要内容 申报项目名称:3MW以上海上风力发电机组研发与产业化 主要内容:开发研制具有完全知识产权的3MW以上大型海上风力发电机组,并实现技术产业化生产,主要内容为: 1.研制海上3MW以上双馈式变速恒频海上风电机组的总体设计技术;包括气动 设计、结构设计和载荷计算; 2.大型海上风力发电机组系统集成技术;分部件接口技术; 3.海上风电机组控制策略的研究和应用; 4.海上风电机组机群远程监控技术的研究和应用; 5.大型海上风力发电机组的塔架基础设计技术研究; 6.海上风电机组在线监测、预警及故障诊断技术; 7.海上风电灾害预防及预防控制技术; 8.海上风电机组在特殊的海上气候、环境条件下,基础塔架、防腐、防潮、抗 台风等的技术解决方案和材料开发利用;

海上风机安装船介绍

海上风机安装船介绍 定义 在海上无论是风机还是基础的安装都需要有相应能力的运输工具将其运送到风电场址,并配备适合各种安装方法的起重设备和定位设备。 简介 海上风机安装船 在海上无论是风机还是基础的安装都需要有相应能力的运输工具将其运送到风电场址,并配备适合各种安装方法的起重设备和定位设备。 海上风机安装基本都是由自升式起重平台和浮式起重船两类船舶完成的,船舶可以具备自航能力也可以是非自航。单独或联合采用何种方式安装取决于水深、起重能力和船舶的可用性。其中联合安装比较典型的方式是由平甲板驳船装载风机部件或者单基桩拖到现场,再由自升式平台或起重船从平板驳船上吊起部件完成安装或打桩。早期的安装船都是借用或由其他海洋工程船舶改造的,但随着风机的大型化,小型船舶无法满足起重高度和起重能力的要求。近年来欧洲多家海洋工程公司相继建造和改造了多条专门用于海上风机安装的工程船舶。安装船舶的大型化也是一个趋势,专门的风车安装船一次最多可以装载10台风机。 分类 以下按照船型和适用的工作海域将海上风车安装船舶作分类比较。

起重船 起重船通常具备自航能力,船上配备起重机,可以运输和安装风车和基础。起重船除在过浅区域需考虑吃水外其余区域不受水深限制,且多为自航,在不同风机位置间的转移速度快,操纵性好,使用费率很低,船源充足,不存在船期安排问题。但起重船极其依赖天气和波浪条件,对控制工期非常不利,现已较少使用。但在深海(大于35m)条件下由于无法使用自升式平台/船舶进行安装,故仍须使用起重船。与近海小型起重船相比,双体船船型具有稳性好、运载量大、承受风浪能力强的优点,目前也开始应用在海上风机安装中。在荷兰EgmondaanZee风电场的建设中,主要由应用于海上桥梁架设的双体起重船Svanen完成了单基桩的打桩工作。该船尺度为102.75m×71.8m×6m,起重高度高于甲板76m,起重能力8700t。 自升式起重平台 自升式平台配备了起重吊机和4~8个桩腿,在到达现场之后桩腿插入海底支撑并固定驳船,通过液压升降装置可以调整驳船完全或部分露出水面,形成不受波浪影响的稳定平台。在平台上起重吊机完成对风机的吊装。驳船的面积决定一次性可以运输的设备的数量,自升平台没有自航设备,甲板宽大而开阔、易于装载风机。对于单桩式基础的安装,只需在平台上配备打桩机即可。由于不具备自航能力,自升平台需由拖船拖行,导致其在现场不同风机点之间转场时间较长,操纵不便,且需要平静海况。自升式起重平台是目前海上风电安装的主力。 自航自升式风机安装船 随着风机的不断大型化以及离岸化,起重能力和起重高度的限制以及海况的复杂化使得传统的起重安装船舶无法满足需求。在这种情况下,出现了兼具自升式平台和浮式船舶的优点,专门为风机安装而设计与建造的自航自升式安装船。与之前的安装船舶相比,自航自升式安装船具备了一定的航速和操纵性,可以一次性运载更多的风机,减少了对本地港口的依赖。船舶配备专门用于风机安装的大型吊车和打桩设备,具有可以提供稳定工作平台的自升装置,可以在相对恶劣的天气海况下工作,且安装速度较快。英国MPI公司的五月花号(MayflowerResolution)是世界上第一艘专门为海上风力发电机的安装而建造的特种船舶。船舶尺度130.5m×38m×8m,可以一次性运载10台3.5MW的风机,允许的风机塔架最大高度和叶片最大直径均为100m,航速10.5kn,配备艏侧推动力定位装置,有6个桩腿,可在3~35m水深作业,作业时船体提升高于水面一定高度,其最高起吊高度为85m,最大起重能力在25.5m半径时为300t,在78m半径时为50t。在英国NorthHoyle,KenithFlats等诸多风电场五月花号均实施了安装作业。 桩腿固定型风车安装船 桩腿固定型风车安装船是自航自升式风车安装船与起重船之间的一种折中方案。其通常由常规船舶改建而成,尺度小于专门建造的安装船,桩腿为改建中安装。在作业工程中船体依然依靠自身浮力漂浮在水中,桩腿只起到稳定船体的作用。

相关文档
相关文档 最新文档