文档库 最新最全的文档下载
当前位置:文档库 › 储层预测与烃类检测配套技术

储层预测与烃类检测配套技术

地震储层预测技术

地震储层预测技术 3.地震储层预测技术 地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资料为参考,波阻抗反演和属性分析为主要技术来进行的,因此,波阻抗反演的效果和属性参数的运用成为储层预测的关键。 3.1 波阻抗反演 基于自激自收的地震褶积模型,声波阻抗己成为储层预测的关键参数。近年来波阻抗反演技术发展十分迅速,各种商业化波阻抗反演软件己有几‘十种,但目前国内比较流行的反演软件也就10种左右,如Jason反演,ISRS反演等。叠后波阻抗反演可以分为递推直接反演和迭代约束反演两大类,以迭代反演为主流发展方向。在生产中也用得较为普遍。迭代波阻抗反演的关键技术组成有地震子波提取、地质模型建立和反演的优化算法等,而模型的建立和优化算法往往依赖于资料的品质和地质特征,对于不同的地震地质条件可能有不同的最佳反演优化算法。目前应用于波阻抗反演的主要算法有全局优化反演技术,随机逆反演,稀疏脉冲谱技术等。近年来发展了模拟退火和遗传算法,在特定的地质和地震数据下效果非常明显。

尽管有了测井资料的约束和地质资料的参考,但是波阻抗反演的多解性还是非常普遍,这是由于测井资料的辐射半径过小和介质横向变化所造成的。解决预测精度和多解性问题需要有多学科综合应用的知识。特别是将层序地层学理论和波阻抗反演联合起来将会大大提高预测质量,这也是今后声波阻抗反演的一个主要方向。 与叠后声波阻抗形成对比的是叠前弹性波阻抗反演。Connolly(l999)基于Zoepprittz公式和声波阻抗的原理,建立了弹性波阻抗反演技术,其处理模式与AVO类似,均在叠前CMP道集上完成。Whitcombe等(2002)对弹性波阻抗进行了修正,提出了扩展弹性波阻抗的概念,在此基础上建立了流体识别与预测因子,对于油气储层的预测和流体性质有很好的描述。王保丽等从Gray公式出发,通过弹性波阻抗反演原理,直接从地震数据中提取拉梅常数等弹性参数,更适合于流体预测。马劲风研究了广义弹性波阻抗反演理论与算法。王仰华等则提出了射线波阻抗的概念,在实现上更加容易。与常规波阻抗反演相此,弹性波阻抗能更确切地反映出地层岩性的变化,消除了由于叠加过程中的平均效应而损失的岩性信息,更适合于储层描述和油气预测,近年来的应用趋势有所上升。 3.2地震属性分析 地震属性技术是储层预测的重要手段。目前,包括时间、振幅、频率、相位和吸收衰减等方面的地震属性已多达60多种。加上几何方面、统计

烃类测试题

烃类测试题 一、命名下列化合物或根据名称写出结构式。 1. CH 3CH 2CHCCH 2CH 2CH 2CH 3 2CH 3 CH 3 CH 3 2、2,3-二甲基-4-乙基辛烷 3.(CH 3)3C C C CH 2CH 2CH 3 二、写出下列反应的主要产物(共10题,每题2分,共20分) 4.5. CH 3CH 2CH 2Br + HC CNa A H 2 Li n dlar 催化剂 B 5、CH4+Cl2 光照 6. CH 2 CH CH 3 + Cl 2 高温 三、选择题(共11题,每题2分,共22分) 1.CH 3CH =CHCH 3与CH 3CH 2CH =CH 2 是什么异构体?( ) A : 碳架异构; B :位置异构; C:官能团异构; D:互变异构; 2. 丙烯与HBr 加成,有过氧化物存在时,其主要产物是( ) A : CH 3CH 2CH 2Br B :CH 3CH 2BrCH 3 C :CH 2BrCH=CH 2 D : B ,C 各一半 3.下列烷烃沸点最高的是( ) A . 2,2-二甲基丙烷 B . 2-甲基丁烷 C . 正戊烷 D . 正丁烷

4.下列烷基自由基最稳定的是 ( )。 A.CH 3. .. B.(C 2H 5)3C . C.(C 2H 5)2CH D.C 2H 5CH 2 5、C 4H 10O的同分异构体有几种( ) A、3种 B、4种 C、5种 D、6种 6. 2-甲基丁烷和氯气发生取代反应时,能生成一氯代物异构体的数目是 ( )。 A . 2种 B . 3种 C . 4种 D.5种 7.下列物质中具有顺反异构体的是( ) A.CH 3C CHCH 2CH 3 B.CH 2 C Cl CH 3C. CH 3CH 2C CCH 2CH 3Br Br D. C C CH 3CH CH(CH 3)2 Cl CH 3 CH3CH 3 8.在室温时,下列物质分别与硝酸银的氨溶液作用能立即产生沉淀的是( C ) A.乙烯 B. 1,3-己二烯 C. 1,3-己二炔 D. 2,4-己二炔 9.下列化合物的化学活泼型顺序是 ( A ) ①丙烯 ②环丙烷 ③环丁烷 ④丁烷 A. ①>②>③>④ B. ②>①>③>④ C. ①>②>④>③ D. ①>②>③=④ 10、SP 2杂化轨道的几何形状为( ) A. 四面体 B. 平面形 C. 直线形 D.正四面体形 分子中伯、仲、叔、季碳原子 的比例是( ) A. 5:2:1:1 B. 2:4:2:1 C. 5:1:2:1 D. 4:3:1:1 11、CH 3 -CH-CH 2 -C-CH 2 CH 3 CH 3 CH 3 CH 3

从勘探领域变化看地震储层预测技术现状和发展趋势

从勘探领域变化看地震储层预测技术现状和发展趋势 摘要:地震储层预测就是以地震信息为主要依据,综合利用其他资料作为约束,对油气储层的品质参数,如几何特征、地质特性、油藏物理特性等,进行预测的 一门专项技术。随着非常规油气勘探技术的兴起,储层预测的内涵也得到了迅速 扩展,已从储层品质预测扩展到源岩品质和工程品质预测。前,地震储层预测技 术已经成为油气勘探生产中储层预测的主导技术之一,它能较好地根据不同勘探 生产阶段的不同需要,提供不同类型、不同精度的储层预测成果,为油气勘探生 产服务。基于此,在接下来的文章中,将对勘探领域变化背景下,地震储层预测 技术现状和发展趋势进行详细分析。 关键词:勘探领域;地震储层;预测技术 引言:地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资 料为参考,波阻抗反演和属性分析为主要技术来进行的。因此,波阻抗反演的效 果和属性参数的运用成为储层预测的关键。为了更好的对其现状以及发展趋势进 行了解,在接下来的文章中,将基于勘探领域变化下,对其技术现状以及发展趋 势进行详细分析。 一、地震储层预测技术 (一)地震裂缝预测技术 裂缝预测技术的研究应用成为国内外储层及含油气预测的热门。裂缝是碳酸 盐岩、火山岩中重要的油气储集空间,也是大部分非常规油气的主要存储地方, 如页岩气、煤层气、致密砂岩气等主要以吸附和游离态储存在裂缝或孔隙中.岩 石性质、不同受力类型等因素决定了裂缝的成因、产状、密度、大小、宽度、方 向等呈现复杂多样性,这决定了裂缝预测的超难度和超复杂性。地震裂缝预测技 术的应用起步于计算岩石物理中等效介质理论的提出与应用。等效介质理论将实 验岩石物理模型微观的裂缝参数与地震波场表征的宏观介质性质有机的联系起来,在此基础上发展形成多种各向异性裂缝检测方法和技术,如多波多分量技术预测 裂缝、方位各向异性预测裂缝等.中石油将裂缝预测方法和技术的研究列为“十二五”物探技术研究主要方向之一。 (二)岩石物理分析技术 岩石物理分析技术的应用主要表现在理论岩石物理模型的实际应用、理论模 型与测井岩石物理分析的结合应用及测井岩石物理分析应用等三个方面。岩石物 理针对岩石机理的研究使其成为现今地震储层及油气预测技术发展应用的理论来源。近几年SEG每年都将岩石物理分析及应用作为专题进行讨论[1]。 二、地震储层预测技术现状 目前,由于地震技术储备跟不上勘探领域变化带来的技术需要,物探技术人 员总感到力不从心、疲于应付。地震储层预测技术的发展历程可以清晰证实这个 观点。早在二十世纪八十年代初期,勘探领域从构造转向岩性,地震勘探先后出 现了“亮点”和AVO技术、波阻抗反演技术、模式识别技术等,到了九十年代末岩 性目标的描述在地震领域已经是非常成熟的技术,此时地质上才逐步提出了岩性 地层勘探的理念。也就是说地震技术领先于勘探领域对技术的需求,所以物探人 员可以从容应对。随后在本世纪初又从波阻抗反演进一步延伸到叠前反演,岩性 地层勘探问题可以得到更好地解决。但是,近几年勘探目标很快转到了火山岩、 碳酸盐岩等复杂岩性,接着又转入了致密油气,甚至是页岩油气,勘探目标的快 速变化,使原来的地震储层预测技术的介质假设不适应勘探新领域的实际介质条

薄互层储层预测方法

第43卷第1期2004年1月 石 油 物 探 GEOPHYSICAL PROSPECTIN G FOR PETROL EUM Vol.43,No.1 Jan.,2004 文章编号:100021441(2004)0120033204 薄互层储层预测方法 陈守田1,2,孟宪禄2 (1.石油大学盆地与油藏研究中心,北京102249;2.大庆石油管理局物探公司,黑龙江大庆 163357) 摘要:针对松辽盆地葡萄花油层三角洲沉积薄互层储层的特点,研究不同微相的砂岩与测井特征、地震属性的关系,探讨利用沉积微相、波形特征定性预测砂岩储层发育带的技术。利用地震属性预测技术定量预测储层厚度结果表明,本区整个油层砂岩总厚度与地震属性有很高的相关度,厚砂层的预测符合率较高。 关键词:储层预测;薄互层;沉积微相;地震属性;相关度;波形特征 中图分类号:P631.4 文献标识码:A 松辽盆地中白垩统姚一段沉积时期,盆地古地势平坦,形成的沉积层角度非常低平。随着湖盆整体抬升,湖盆快速收缩,河流—三角洲快速推进,沿长垣向南及东西两侧的三肇凹陷和古龙凹陷分流,由大庆至肇州一带姚一段沉积厚度由60m减薄至不足20m,形成面积巨大的扇型三角洲储集砂体[1]。研究区位于三肇凹陷的卫星地区,处在葡萄花油层河流—三角洲沉积体三角洲平原向三角洲前缘过渡的相带区,主要针对该沉积体系的葡萄花油层开展储层预测研究工作。各井取心显示,葡萄花油层内部含钙质比较普遍。钙质生成于浅水湖湾、封闭沼泽长期蒸发浓缩的环境及枯水期的河道,是三角洲浅水环境中沉积常见矿物。含钙层泥岩形成于封闭的浅水中,含钙层砂岩形成于河道砂体沉积过程的枯水期或干旱期。中、下部泥岩颜色多为灰绿色、棕灰色夹紫红色薄层,中部紫红色多于下部,代表了由三角洲外前缘至三角洲内前缘湖退反旋回沉积过程,沉积环境水体浅,暴露时间增加,泥岩红色和浅色增多。钙质在泥岩层、砂岩层和过渡岩层普遍发育。 1 高钙质薄互层岩石电性、物理特征分析 区内探井在多数葡萄花油层有不同程度取心,为分析研究提供了详细的资料。我们采用描述详尽、资料全面的取心资料井作为“标准井”,如卫10井和卫11井,利用岩心描述、自然电位和双侧向测井曲线,分析沉积结构和岩石成分,建立岩石与电性、地球物理特征关系。 整体上看,油层表现较低的声波时差值,有别于油层顶底湖相泥岩,其原因就是油层的泥岩不纯,普遍含砂含钙质。 钙质胶结层在声波时差曲线上为低值“尖峰”(高速层,一般速度3800~4000m/s),在电阻率曲线上对立高电阻“尖峰”(大于15Ω?m),在SP 曲线上为低值异常。钙质砂岩具有低孔渗特点。 河道粉砂岩层在自然电位曲线上为较高幅度异常,幅度在8.5mV以上,通常呈钟形;电阻率曲线为高值,一般大于10Ω?m,形态有箱形、梯形和斜坡形,一般厚度3~5m;在声波时差曲线上高于平均值,低于纯泥岩层。钙质层和含钙层存在于河道砂层的顶底或者中间。 席状砂边滩砂层,一般厚度1~2m,在自然电位和电阻率曲线上呈刺刀状,因含钙泥较多,达30%~50%,分选差,孔隙低,声波时差与过渡岩性一致,整个油层中具有低声波时差和高阻值的特点。钙质胶结表现为较低的时差值。 过渡岩性是葡萄花油层的主力储层,电阻率中等偏低,为3~5Ω?m,个别高含砂层电阻率较高,但自然电位呈低幅度异常,厚度不一,1~5m均可见到。 2 砂岩储层预测的难点 2.1 葡萄花油层岩性组成 葡萄花油层是由不同速度、密度的钙质粉砂岩、过渡岩性、粉砂岩和泥岩组成,具有不同的波阻抗值,各岩性的速度大小见表1。 一个地震波形包含的属性信息是与之相对应 收稿日期:20030102;改回日期:20030405 作者简介:陈守田(1968—),男,高级工程师,博士,主要从事地震资料解释及石油地质综合研究工作。

储层预测中有关测井参数的分析及应用

第7卷第3期2010年6月   CHIN ESE J OURNAL OF EN GIN EERIN G GEOP H YSICS Vol 17,No 13 J une ,2010 文章编号:1672—7940(2010)03—0296—04doi :10.3969/j.issn.1672-7940.2010.03.006 储层预测中有关测井参数的分析及应用 曾 婷,桂志先,何加成,易寒婷,章雪松 (油气资源与勘探技术教育部重点实验室,长江大学地球物理与石油资源学院,湖北荆州434023) 作者简介:曾 婷(1985-),女,湖北天门人,硕士研究生,地球探测与信息技术专业,主要从事地震资料解释工作。E -mail : zt851129@https://www.wendangku.net/doc/6a4970544.html, 摘 要:根据研究区56口井,笔者对岩心、自然伽马、自然电位、声波时差、密度、中子等钻井、测井资料进行 多种统计和交会分析,研究速度、密度、波阻抗、孔隙度与深度、岩性,波阻抗与孔隙度等的关系,分析储层物性特征,并作相关交会图,建立规律关系式。经比较得出利用波阻抗进行下一步的反演工作会比较合理。根据砂岩孔隙度与波阻抗之间的函数关系,可以利用砂岩波阻抗估算砂岩孔隙度。为下一步储层预测研究提供良好的基础资料。 关键词:储层预测;岩性;波阻抗;孔隙度 中图分类号:P631文献标识码:A 收稿日期:2010-03-29 Analysis and Application of Logging Parameters in R eservoir Prediction Zeng Ting ,Gui Zhixian ,He Jiacheng ,Y i Hanting ,Zhang Xuesong (Key L aboratory of Ex ploration Technology f or Oil and Gas Resources (Yangtze Universit y ) Minist ry of Education ,J ingz hou H ubei 434023,China ) Abstract :This paper collect s various logging data of core ,nat ural gamma ,spo ntaneous po 2tential ,acoustic t ravel time ,density ,neut ron etc.and t ries to st udy t he relationship s of t he speed ,density ,wave impedance and porosity wit h t he dept h ,lit hology ,as well as t he relationship s between wave impedance and poro sity.Then it analyzes t he characteristics of t he reservoir forecast.Through comparison ,it is reasonable to go on wit h t he next inver 2sion task by using wave impedance.Based on t he relationship between sand porosity and wave impedance ,we can use t he sand wave impedance to estimate t he sand porosity.This st udy p rovides very good information for t he reservoir p redict research.K ey w ords :reservoir prediction ;lit hology ;wave impedance ;porosity 1 引 言 储层预测是综合地质、地震、测井、试井、分析化验等各种资料研究储集层的分布、岩性变化、厚 度变化、物性特征、所含流体、油气藏等等的一项 综合性研究课题[1]。其目标是发现有利储集体,提高勘探开发的整体效益。地层参数关系的分析是储层研究中一项非常关键的基础工作。在前人研究成果基础上,从本研究区特点出发,在储层预

选修5烃类测试题

宝坻一中高二年级下学期第一次月考化学试卷 一、选择题(每题只有一个选项,每小题3分,共60分) 1.下列有关物质的说法不正确的是 A.天然气的主要成份是乙烯 B.芳香烃主要来自于煤干馏后的煤焦油 C.汽油、煤油、柴油主要来自于石油的常压蒸馏 D.乙烯是石油裂解后的产物 2.用于2008年北京奥运会的国家游泳中心(水立方)采用了高分子膜材料“ETFE”,该材料是四氟乙烯(CF2=CF2)与乙烯(CH2=CH2)发生聚合反应得到的高分子材料。下列说法不正确的是 A.“ETFE”分子中可能存在“—CH2—CH2—CF2—CF2—”的连接方法 B.利用加聚反应制得“ETFE” 高分子膜是一种混合物 C.CF2=CF2和CH2=CH2均是平面型分子 D.CF2=CF2可由CH3CH3与F2两种物质直接反应制得 3.下列说法正确的是: A.键线式可以简明扼要的表示碳氢化合物,中键线式物质是1-丁烯 B.某烃完全燃烧后,生成二氧化碳和水的物质的量之比为n:(n-1),此烃可能是苯的同系物C.C4H10的分子中有两个氢原子被氯原子取代,可能的同分异构体有8种 D.甲苯与氢气完全加成后的产物的一氯化物应该具有4种同分异构体 4.下图是4个碳原子相互结合的8种有机物(氢原子没有画出)A-H。下列说法正确的是: A.有机物E的名称是甲烷 B.有机物B、C、D互为同系物 C.每个碳原子都跟两个氢原子通过共价键结合的有机物是A D.有机物C、 H互为同分异构体

5.含有2~5个碳原子的直链烷烃沸点和燃烧热的数据见下表: 根据表中数据,下列判断错误的是 A.正庚烷在常温常压下肯定不是气体 B.正烷烃的燃烧热和其所含碳原子数成线性关系 C.随碳原子数增加,烷烃沸点逐渐升高 D.随碳原子数增加,烷烃的沸点和燃烧热都成比例增加 6.实验室中,下列除去括号内杂质的有关操作正确的是 A.苯(硝基苯):加少量蒸馏水振荡,待分层后分液,苯在上层 B.乙醇(水):加新制的生石灰,蒸馏 C.CO2(HCl、水蒸气):通过盛有碱石灰的干燥管 D.乙烷(乙烯):通入氢气发生加成反应 7.下列说法正确的是 A.苯的同系物的苯乙烯,既能使溴水褪色又能使酸性高锰酸钾溶液褪色 B.苯不能使酸性KMnO4溶液褪色,说明苯环结构中不存在C—C单键和C=C双键 C.分子式为C8H10的芳香烃,苯环上的一溴取代物只有一种,该芳香烃的名称是对二甲苯D.甲苯能使酸性高锰酸钾溶液褪色,能说明侧链对苯环有影响 8.分子式为C10H14的芳香烃,苯环上有四个侧链的同分异构体数为 A.1种 B.2种 C.3种 D.4种 9.分子式为C5H10的烯烃共有(要考虑顺反异构体) A.5种B.6种C.7种D.8种 10.1.01×105Pa,150℃时,将1LC2H4、2LC2H2、2LC2H6与20LO2混合后点燃。完全反应后,当反应后的混合气体恢复到原温度和压强时,其体积为 A.10L B.15L C.20L D.25L

储层预测技术详解

4.1 LPM 储层预测技术 LPM 是斯伦贝谢公司GeoFrame 地震解释系统中最新推出的储层预测软件,利用地震属性体来指导储层参数(如砂岩厚度)在平面的展布,以此来实现储层参数的准确预测。 LPM 预测储层砂体可分两步进行:首先,它是将提取的地震属性特征参数与井孔处的砂岩厚度、有效厚度进行数据分析,将对储层预测起关键作用的地震属性特征参数优选出来,根据线性相关程度的大小,建立线性或非线性方程。线性方程的建立主要采用多元线性回归方法;非线性方程的建立主要采用神经网络方法;其次,根据建立的方程,利用网格化的地震属性体来指导储层参数(如砂岩厚度)在平面的成图。 设因变量y 与自变量x 1, x 2 ,…,x m 有线性关系,那么建立y 的m元线性回归模型: ξβββ++++=m m x x y 110 (4.1) 其中β0,β1,…,βm 为回归系数;ξ是遵从正态分布N(0,σ2)的随机误差。 在实际问题中,对y 与x 1, x 2 ,…,x m 作n 次观测,即x 1t , x 2t ,…,x mt ,即有: t mt m t t x x y ξβββ++++= 110 (4.2) 建立多元回归方程的基本方法是: (1)由观测值确定回归系数β0,β1,…,βm 的估计b 0,b 1, …,b m 得到y t 对x 1t ,x 2t ,…,x mt ;的线性回归方程: t mt m t t e x x y ++++=βββ 110 (4.3) 其中t y 表示t y 的估计;t e 是误差估计或称为残差。 (2)对回归效果进行统计检验。 (3)利用回归方程进行预报。 回归系数的最小二乘法估计 根据最小二乘法,要选择这样的回归系数b 0,b 1, …,b m 使 ∑∑∑===----=-==n t n t mt m t t t t n t t x b x b b y y y e Q 11211012 )()( (4.4) 达到极小。为此,将Q 分别对b 0,b 1, …,b m 求偏导数,并令 0=??b Q ,经化简整理可以得到b 0,b 1, …,b m ,必须满足下列正规方程组: ??? ????=+++=+++=+++my m mm m m y m m y m m S b S b S b S S b S b S b S S b S b S b S 22112222212111212111 (4.5)

地震属性油气储层预测技术及其应用

第32卷第3期2010年9月湖北大学学报(自然科学版)Jo ur nal of H ubei U niversit y(Natura l Science)V ol.32 N o.3 Sep.,2010 收稿日期:2010 01 10 基金项目:国家自然科学基金(40972104)资助作者简介:郝骞(1982 ),男,博士生文章编号:1000 2375(2010)03 0339 05 地震属性油气储层预测技术及其应用 郝骞1,张晶晶2,李鑫1,毛婉慧1,张宇航1 (1.中国地质大学资源学院,湖北武汉430074;2.西安科技大学机械工程学院,陕西西安710054) 摘要:按沿层方式对苏北盆地溱潼凹陷泰州组砂岩储层提取了20余种属性,经过优化并在最佳时窗段内 通过井-震精细标定后可识别出三角洲前缘亚相沉积,指示出三角洲朵叶向凹陷深湖区的进积分布状况.对 松辽盆地长岭断陷内营城组火山岩储层,按层间平均等分顶底时窗厚度作为约束界面的方式提取了30余种 属性,从波阻抗及地震相的识别入手仔细区分火山岩储层地震属性平面展布特征,在已获工业油流的钻井指 示下确定地震属性异常变化区域,从而有针对性圈定火山岩体储层的平面分布范围. 关键词:地震属性;储层预测;砂岩储层;火山岩储层 中图分类号:P 618.13 文献标志码:A 伴随油气勘探开发难度日渐加大,隐蔽油气藏、岩性油气藏、裂缝油气藏及断块油气藏等已经成为勘探开发主体目标,对这类油气藏的非均质性、各向异性研究也越来越重要,地震数据携带丰富的地质储层信息,用地震技术预测油气储层已经成为当前主要的勘探手段和重要的实现方法,地震属性技术就是其中的一种.地震属性信息中包含着大量的地质信息,充分利用这些信息不仅能深入认识盆地构造特征、沉积体系分布及其时空演化规律,也可直接用于油气藏的储层性质及含油气性预测. 地震属性技术始于20世纪60年代末的亮点技术,它以反射波振幅和极性的变化作为识别油气藏的特殊属性方法[1].70年代地震属性分析技术即成为地震解释的良好工具,最初的属性仅包括振幅、频率和极性,其后快速发展为几十种.80年代中期出现多属性分析;90年代初引入的多维属性分析使属性分析技术进入了一个新阶段.现今地震属性技术已在多个方面取得了进展,其范围从计算单道瞬时同相轴属性到提取复杂多道分时窗地震同相轴属性乃至建立地震属性数据体,提取的地震属性也由最初的两种增加到几百种之多[2]. 1 地震属性分析原理及方法 地震采集的地球物理场资料是现今地下地层的构造、岩性、流体等特征的综合反映.这些特征隐藏在各种地球物理原始场之中,非常微弱,甚至于根本不能识别.必须依据地质信息的综合和分解理论,采用多种特殊手段,从原始场中提取出具有确定物理意义和明确地质意义的特征分量或参数.储层预测是在一定的地质研究基础上(三维构造精细解释、沉积微相、测井多井储层评价和油藏综合研究等),对追踪的层位开时窗并提取出一定的地震参数,由已知储层预测未知储层.地震属性分析的主要目的是准确提取地震数据中的各种属性,将定量的地震属性转化为储层特征,通过地震属性分析获取相关油藏的储集物性、含油气性等信息. 地震属性技术是由叠前或叠后地震数据经过数学变换导出的几何学、运动学、动力学或统计学特征的特殊测量值[3] ,它是地震资料中可描述、定量化的特征信息,并可与原始资料相同的比例显示出来,代表原始地震资料所包含的关于油气信息中最重要的一部分. 地震属性与所预测对象之间关系复杂,在不同地区不同储层对所预测对象如砂岩体、火山岩体敏感的

储层预测和油藏描述中的一些沉积学问题

文章编号:100020550(2004)022******* ① 中国科学院资源环境领域知识创新工程重要方向项目(编号:K ZCX 32SW 2128204)资助收稿日期:2003205206 收修改稿日期:2003209203 储层预测和油藏描述中的一些沉积学问题 ① 王多云李凤杰王峰刘自亮王志坤李树同秦 红 (中国科学院兰州地质研究所 兰州730000) 摘 要 储层预测和油藏描述方法技术已经在油气资源勘探开发工程中发挥着日益重要的作用。然而,在重视其方法进步与技术创新的同时,更要注重其丰富的石油地质学内涵。特别是研究对象为岩性、地层等隐蔽油气藏时,其核心内容涉及到沉积地质学的诸多理论问题。基于此因,本文针对我国陆相盆地河流-三角洲-湖泊沉积体系中岩性油气藏的特点,对储层预测和油藏描述中一些诸如:研究对象的背景及其地质基础;油气藏的储层相构形描述;三角洲前缘储层的成因类型及其描述;小尺度岩相制图、成藏要素及目标优选以及以流动单元为对象的储层三维构形研究与油藏描述等沉积地质学的问题给予了阐述。强调储层预测和油藏描述技术离不开沉积地质学这一根本基础。关键词 储层预测,油藏描述,河流三角洲,沉积学第一作者简介王多云男 1956年出生研究员沉积学 中图分类号 P512.2 文献标识码A 1导言 目前,储层预测和油藏描述方法技术已成为油气资源勘探开发工程中必不可少的核心技术。随着易于寻找的构造型油气藏的减少,油气资源勘探已趋向岩性、地层等隐蔽油气藏方向和面对陆相中小盆地等过去未顾及的领域和地区,加之地表条件趋于恶劣(沙漠、冻土、森林、沼泽和黄土塬等)和地下情况更加复杂,使得勘探目标选择变得困难。比较准确的、精细的储层预测和油藏描述无疑能够回答勘探实践中的一些重要问题,基于此原因,重视以地球物理勘探资料为主要地下信息载体的储层预测和油藏描述技术就在情理之中了。然而,任何先进的方法技术都离不开先进理论基础的支撑,任何先进的计算技术和实现软件都离不开能够反映客观事物本质的数学模型和正确算法,储层预测和油藏描述技术如果仅仅把它视为一种技术,而忽视它的极其丰富的石油地质学内涵,有可能极大地限制其在勘探实践中的作用。事实上,针对岩性、 地层等隐蔽油气藏的储层预测和油藏描述的基础问题,很多是涉及沉积地质学的理论问题,本文拟对一些问题给予阐明。2 研究对象的背景及其地质基础众所周知,我国石油资源的80%以上蕴藏于陆相地层中,河流—三角洲—湖泊沉积体系在陆相环境中占有绝对主导地位。有两个储油相带最为重要,一是 三角洲体系中的分流河道和河口砂坝等,二是河流体系中不同类型的河道沉积物,在这两种成因储层中赋存着我国石油大约60%以上的资源和90%以上的探明储量。同时,自二十世纪九十年代以来,岩性油藏逐渐成为我国石油产区主要的勘探目标,例如松辽盆地的侏罗白垩系;东部裂谷盆地的白垩系和第三系;鄂尔多斯盆地的三叠系、侏罗系;准葛尔盆地的三叠系、侏罗系;柴达木盆地的侏罗系;塔里木盆地的三叠系、侏罗系、白垩系等等。可以预测,在未来10—20年中,我国石油资源主要来自上述盆地的河流—三角洲—湖泊沉积体系,主要的油藏类型之一是岩性油藏。因此,目前,对我国陆相盆地,特别是对西部陆相盆地的储层预测和描述研究主要是以对河流—三角洲—湖泊沉积体系研究为背景的,其储层成因大多是冲积作用为主的各种河道类型的碎屑岩类储集体。 储层和油藏是具有特定的发展演化过程及其轨迹的沉积盆地的产物,不论是单旋回演化的相对简单盆 地,还是多旋回演化的复杂叠合盆地,一套有勘探意义的生储组合是盆地演化过程中某一特定时间段的必然响应。因此,我国中新生代的陆相盆地,不论是东部裂 陷型盆地,还是中部像陕甘宁盆地那样的在稳定克拉 通上叠合的拗陷盆地以及西部准葛尔、柴达木和塔里木等受原型盆地周边造山带控制的压扭性的拗陷盆地,在每一套生储油气组合的形成期,有其特定的古地  第22卷 第2期2004年6月 沉积学报ACT A SE DI ME NT O LOGIC A SI NIC A V ol.22 N o 12Jun 12004

芳香烃类检测

芳香烃类检测 中国科学院广州化学研究所分析测试中心 卿工--189--3394--6343 芳香烃简称芳烃,为苯及其衍生物的总称,是指分子结构中含有一个或者多个苯环的烃类化合物。 从结构上看,芳香化合物一般都具有平面或接近平面的环状结构,键长趋于平均化,并有较高的 比值;从性质上看,芳香化合物的芳环一般都难以氧化、加成,而易于发生亲电取代反应,它们还具有一些特殊的光谱特征,如芳环环外氢的化学位移处于核磁共振的低场,而环内氢处于高场。上述这些特点,就是人们经常说的芳香性。具有芳香性的碳氢化合物称为芳香烃。 【芳香烃主要类型】 单环芳香烃即苯的同系物; 稠环芳香烃,如萘、蒽、菲等; 多环芳香烃,如联苯、三苯甲烷。 芳香烃类原料要来源于石油和煤焦油。芳香烃在有机化学工业里是最基本的原料。现代用的药物、炸药、染料,绝大多数是由芳香烃合成的。燃料、塑料、橡胶及糖精也用芳香烃为原料。 【相关检测产品】 苯、甲苯、二甲苯、苯乙烯、异丙苯、二乙基苯、苯酚、重芳烃 【检测方法及相关指标】 SH/T0118-1992溶剂油芳香烃含量测定法 GBZ/T160.42-2007工作场所空气有毒物质测定芳香烃类化合物 GBZ/T160.44-2004工作场所空气中多环芳香烃化合物的测定方法 GBZ/T160.47-2004工作场所空气中卤代芳香烃类化合物的测定方法 SN/T3094-2012柴油机燃料和航空燃料中的芳香烃和多环芳烃的测定超临界流体色谱法 GB/T18340.4-2010地质样品有机地球化学分析方法第4部分:石油重馏分中芳香烃族组分测定质谱法

【注意危害】 芳香烃类原料对环境有严惩危害,应特别注意对地表水、土壤、大气和饮用水的污染。 慢性中毒:常有眼痛、流泪、结膜充血;早期有头痛、失眠、记忆力减退等神经衰弱症状;重者引起中毒性肝炎,个别可发生肾脏损害。 亚急性和慢性毒性:动物亚急性毒性反应有肺、肝、肾病理组织学改变。 污染来源:氯苯可用于电子工业产品和原料的检验。用作洗涤、醋酸纤维素、人造树脂、油类、脂类的溶剂。用于生产苯胺、杀虫剂、酚及氯代硝基苯。还可用于制造油漆、橡胶助剂和快干墨水。氯苯还是制造染料、有机合成和许多农药的中间体。从事氯苯生产或使用氯苯的企业,以及在运输等过程中,由于操作和管理失误,均可构成氯苯的污染。 危险特性:易燃,遇明火、高热或氧化剂接触,有引起燃烧爆炸的危险。与过氯酸银、二甲亚砜反应剧烈。 燃烧(分解)产物:一氧化碳、二氧化碳、氯化物。 涉及地区:广东省芳香烃类检测、浙江省芳香烃类检测、福建省芳香烃类检测、海南省芳香烃类检测、云南省芳香烃类检测、广西省芳香烃类检测、贵州省芳香烃类检测、新疆省芳香烃类检测、四川省芳香烃类检测、重庆市芳香烃类检测、西藏省芳香烃类检测、湖南省芳香烃类检测、江西省芳香烃类检测、湖北省芳香烃类检测、上海市芳香烃类检测、北京市芳香烃类检测、天津市芳香烃类检测、安徽省芳香烃类检测、江苏省芳香烃类检测、甘肃省芳香烃类检测、宁夏省芳香烃类检测、内蒙古省芳香烃类检测、黑龙江省芳香烃类检测、吉林省芳香烃类检测、辽宁省芳香烃类检测、山东省芳香烃类检测、陕西省芳香烃类检测、山西省芳香烃类检测、河南省芳香烃类检测、河北省芳香烃类检测

储层精细预测技术在周青庄油田的应用

第28卷第6期石油学报V01.28No.62007年11月ACTAPETROI.EISINICANov.2007文章编号:0253-2697(2007)06—0092—05 储层精细预测技术在周青庄油田的应用 苏明军“2王西文2刘彩燕2易定红2袁克峰3 (1中国石油大学资源与信息学院北京102249}2.中国石油勘探开发研究院西北分院甘肃兰州730020 3中国石油国际海外研究中心北京100083) 摘要:周青庄油田小断裂发育,构造复杂,油气分布受构造和储层变化的控制。利用等时地层对比技术和基于小液变换的地震相干体技术,研究了断裂分布;综合测井和地震数据进行沉积相反演和沉积相控制下的相控储层预测技术,研究了储层空问晨布。应用储层精细预测技术,对周青庄油田古近系霹油组的构造和储层砂体展布规律进行了分析和预测,提出了井位都署意见.钻井后获得了高产工业油流,扩大了含油面积,增加了石油地质储量。 关键词:周青庄油田;储层特征;小波变换技术;储层预测技术;沉积相反演 中图分类号:TEl33文献标识码;A AppIicationofhigh—precisionI.eservoirspredictiontechniques inZhouqingzhuangoilfield suMin函u小。wangxiwenlljIJcaiyan2YlDinghon92YuanKe{en矿 u.&h∞z。fRe蚰“州口nai%,。r榭t{。nnrhM。kgy,chc越U戚键r“时nf P。t阳zc“矾,BP曲ingt02249.chi越; 2Normuw“Bmn曲,PP£M曲inaE_r声Zo旭£i。H。”dD日w如户mP"£RP5洲^JⅪ5£if“抛,Ld般加“730020,(冼iM;3CNPcInfPrM£坤”n£R靠Fdr曲(■n拈r,BP玎ing100083,(Mtn。) Abstract:Zhouqingzhua“golificldwascharacterizedbynumerous10calfauItsandcomplicatedstructure.Thcspatialdistr|butionofhydmcarbonaccumulationwaspredominatedbythestructurcand lateraI variation3ofreservoIrformations.Anewsetofhlgh_preci—sjo腓5ervojrpredjctjontechnjque㈣sap脚iedj力tbe州andgasp丑yz㈣ofthisoⅢjeld。ThePre拼ctiontechnlquesincJudetherec ognltiontechniqueoffaultsystembasedonintegrationoftmstratigraphiccofreIationand3DscmiccoherencecubeprocessedbywavelettransforrIlation,thesedimentaryfaclesrecognitiontechnIqueby讯tegratlonofwelIlogandseismicattnbutes。andthchighvi—tality3Dreservo打attributesouTllningbasedonhighpreci5i。nreservoirprcdictioncontrolledbysedimentarynt}lo{acies.Thestructur—alfeaturesand3Ddlstributionsofsandbedatt“butesofthePaIeogenegreservo打inZhouqi“gzhua“g0ilfieIdweredelineatedwithabovetechniques.AnewwelIplanni“gpmjectwasmade.Asaresuh,manynewwelIsa。quriedhigh—yie】dedo|lflow.Furthcrmore,pay跏eextensionwascon矗mled.andtheodreservesinpIaceincreasedby1.89miIlionLons. Keyw吖ds:Zhouqlngzhuangollflcld;reservoirproperty;wawlettransforrllationtechniqu。;reservc)irp婵dictiontechnique;secIimentary faclesinversion 周清庄油田位于黄骅坳陷歧口叫陷,横跨南、北大 港2个二级构造带,由南、北两部分组成。北部属于港西突起南翼,为断鼻构造;南部属于南大港构造带西北 斜坡的一部分。两者之间以鞍部相连。古近系髯油组是奉区主要目的层段之一,是一个多沉积体系叠置的扇三角洲前缘沉积综合体。由于研究区构造复杂,小断裂发育,储层横向变化大,油气分布受构造和储层变化的控制,制约了油田进一步开发,完钻井尚少。为此,采用了储层精细预测技术,对构造及储层空间展布规律进行研究。1储层精细预测技术研究流程 储层精细预测技术研究流程(图1)主要包括3个部分:①构造精细解释,确定构造形态及断层空间展布,为砂体的精细预测奠定基础;②精细小层对比及沉积相研究,正确认识砂体及其油层的分布规律,为储层反演奠定基础;③储层测井响应分析及相控储层反演,通过储层敏感曲线分析、曲线重构和相控反演,研究储层空间分布规律,为井位部署提供依据。 基盒项目:中国石油天然气集团公司科技攻关项日(kt均2—2—3)。岩性{fII气藏地震资料处理解释一体化研究”部分成果。 作者简介:苏明军,男,1970年2月牛,1991年毕业于中国石油大学(华东),现为中周石油勘探开发研究院西北分院高级工程师,中周石油大学(北京)在读博士研究生,主要从事沉积储集层研究。E咖ll:smjl310@126。。m万方数据

模糊综合评判方法在储层评价中的应用

模糊综合评判方法在储层评价中的应用 本文首先解释了模糊综合评判方法的相关概念,将评价目标看成是由多种因素组成的模糊集合,然后通过设定这些因素所能选取的评审等级,组成评语的模糊集合,推理出模糊综合评判方法在储层评价中的应用。之后,文章根据各个因素在评价目标中的权重分配,总结出影响模糊综合评判方法在储层评价的具体因素。 标签:模糊综合评判方法;储层评价;应用 20世纪80年代初,汪培庄提出了综合评判模型,此模型以它简单实用的特点迅速波及到国民经济和工农业生产的方方面面,广大实际工作者运用此模型取得了一个又一个的成果。与此同时,还吸引了一些理论工作者对此模型进行深化和扩展研究,出现了一批诱人的成果,诸如:多级模型、算子调整、范畴统观等等。而且,针对实际应用中模糊综合评判模型常遇到的一些问题,对其进行了改进,可采用多层次模糊综合评判模型和广义合成运算的模糊综合评判模型。 一、概念综述 对一个事物的评价,常常要涉及多个因素或者多个指标。词条与模糊综合评判法和模糊综合评判决策词条,归根结底都是模糊综合评价法。比如,要判定某项产品设计是否有价值,每个人都可从不同角度考虑:有人看是否易于投产,有人看是否有市场潜力,有人看是否有技术创新,这时就要根据这多个因素对事物作综合评价。 (一)模糊综合评价法 模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。 模糊综合评价法的显著特点主要有二,一是相互比较。以最优的评价因素值为基准,其评价值为l;其余欠优的评价因素依据欠优的程度得到响应的评价值。二是可以依据各类评价因素的特征,确定评价值与评价因素值之间的函数关系(即:隶属度函数)。确定这种函数关系(隶属度函数)有很多种方法,例如,F 统计方法,各种类型的F分布等。当然,也可以请有经验的评标专家进行评价,直接给出评价值。 (二)储层评价 储层评价是在全面认识储层、掌握其地质开发特征的基础上选取评价参数,综合运用所有的研究成果对储层做出符合实际地质条件的评价与分类,从而为油

GW接触式烃类检测技术的推广与应用

GW接触式烃类检测技术的推广与应用 GW接触式烃类气体检测技术具有异常显示响应迅速、划分显示层明显等优势,而且不受安装条件影响,可以适应液体欠平衡、气体和常规等各种钻井条件,因此该项技术为对疑难气层识别方面提供了有效的手段。为了使该项技术更好地发挥作用,提高欠平衡等特殊钻井条件下气测录井的适应性,开展该项技术的推广应用工作,使GW接触式烃类检测技术在大庆探区推广用。使GW系统适用于各种钻井环境,确保该项技术与现有手段配套,为油气水层识别提供有效的技术手段。而且,在推广过程中,建立相应的技术标准和规范,确保该项技术的生产应用。 标签:录井;GW烃类气体异常显示标准;应用 1 国内外研究现状 接触式检测仪以渗透膜(探头)为气液分离组件,通过置于现场的探头分离出的烃类气体进行测量。目前该技术国内外仅见加拿大Datalog公司的GASWIZARD系统。其渗透膜探头为金属网与有机物的复合膜,可透过各类气体,但不透过液体、固体;分析部分采用催化燃烧检测器。 1.1 渗透膜分离技术 在GW接触式检测仪中,所用渗透膜在国际上也未检索到有相关的商品信息,仅有相关的专利应用,和产品应用论文,却无相关的渗透膜制备专利,因此分析国外公司为了技术垄断,其渗透膜产品并不公开销售,技术处于保密状态。目前仅见原加拿大Datalog采用平板渗透膜的市场产品,并且有两种产品,GW 和GC-Tracer(图1)。其中GW为渗透膜探头与催化燃烧型烃检测器相连,用于全烃含量的检测。而GC-Tracer则是渗透膜探头与微热导便携式气相色谱相连,用于对样品气进行组分含量检测。 1.2 催化燃烧检测技术 催化燃烧检测器由一对元器件组成(即黑白元件),分别为检测元件和参比元件,其中检测元件的微珠含有催化剂,而参比元件的微珠上则没有催化剂。该两个元件分别做为惠斯通电桥的一臂,但产生500℃-550℃的恒定直流电压通过电桥对元件加热,只有在探测器元件上可燃气体才被氧化,增加的热量会加大电阻,产生的信号与可燃气体的浓度成比例。 根据催化燃烧检测器原理,其最大检测浓度为可燃气的100%LEL,对于甲烷,则为4.5%VOL。为检测更大的甲烷浓度,只能通过对样品气进行稀释加以解决(GW即采用该方式),否则将导致检测器的不可逆损坏(由于超过100%LEL 的可燃气浓度导致检测器的持续燃烧而烧毁)。此外由于是采用催化方法进行可燃气体检测,因此不可避免存在催化剂中毒问题。

相关文档