文档库 最新最全的文档下载
当前位置:文档库 › 太阳能辅助热源地源热泵系统初探

太阳能辅助热源地源热泵系统初探

太阳能辅助热源地源热泵系统初探
太阳能辅助热源地源热泵系统初探

太阳能补热地源热泵系统的计算

太阳能放置位置包括:(1)、30号楼楼顶(面积约400m2),楼高51m;(2)、后期30号楼前有车棚,顶部可放置,车库楼高2米,(3)、机房屋顶,机房楼高约6米。三块地方总面积可以满足1000m2的要求。

1.4.4 太阳能辅助热源计算 (1)太阳能资源分析 太阳能资源是用不枯竭的清洁可再生能源,是人类可期待的、最有希望的能源之一。我国幅员辽阔,有着丰富的太阳能资源,如下是我国太阳能资源分布图: 本项目地点位于山东省、临沂市。地理坐标为:北纬34°22′,东经117°24′。根据国家气象中心2001年公布的《中国气象辐射资料全册》公布的数据,具体参数如下:

(2)辅热与补热工作原理介绍 春夏秋补热工作原理 春夏秋三季,关闭阀门V2,V3,开启阀门V1。运行太阳能循环水泵1,使集水箱内水被太阳能集热器加热。当集水箱内水温达到65℃后,运行板式换热器一次水泵2和源侧水泵5,对土壤进行补热;当集水箱内水温低于25℃后,停止板式换热器一次水泵2和源侧水泵5,停止补热。 (3)补热定量计算 春夏秋日平均太阳辐射强度为15.759 MJ/m2。 太阳能集热器的平均集热效率,根据经验取值取0.25~0.50,取0.48。 A 太阳能集热板选型 按照民用太阳能设计规范中规定,直接系统集热器总面积按下式计算,在本项目中设太阳能在春夏秋三季内补充地埋部分所需的热量,考虑室外地埋换热器在设计过程中亦考虑了热平衡措施,太阳能补热仅需作为辅助措施,本方案中按总吸热量1084200 kW?h(3903120 MJ)的50%进行配置,则: A c =Q w f/ (nJ tηcd) 式中:A c——直接式系统集热器采光面积; Q w——年累计吸热量,MJ; n ——年累计吸热天数,本方案为120天。 J t——当地集热器采光面上年平均日太阳辐照量,15.759MJ/㎡?d;

地源热泵与太阳能热水对比

*******地源热泵和太阳能热水系 统对比 ******* *******地源热泵和太阳能热水系统对比

1.项目概况 本项目为*******易地新建建设项目,位于京杭大运河南侧,扁担河西侧,南观路北侧,时代路东侧,规划用地面积140359平方米,新建建筑面积88926平方米。 2.设计依据 2.1《民用建筑供暖通风与空气调节设计规范》GB50736-2012 2.2《民用建筑热工设计规范》GB50176-93 2.3《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001 2.4《江苏省居住建筑热环境和节能设计标准》DGJ32/J 71-2008 2.5《地源热泵系统工程技术规范》GB50366-2005 2.6《全国民用建筑工程设计技术措施暖通空调动力》 2009年版 2.7《实用供热空调设计手册》第二版 2.8《通风与空调工程施工质量验收规范》GB50243-2002 2.9建筑等其他工种提供的设计图纸及资料 3.设计参数 3.1室外气象参数(本工程参照**气象条件) 室外计算干球温度(℃)室外计算湿球温度 (℃) 室外计算相对湿 度(%) 平均风速 (m/s) 主导风向 冬季夏季夏季冬季冬季夏季冬季夏季 -5 34.6 28.6 75 3 3 C NW SE SSE

3.2室内设计参数序 号房间名称 温度 (℃) 湿度 (%) 新风量 (m3/p?h) 备注夏季冬季夏季冬季 1 教室26 18 50~60 - 17 2 办公26 20 50~60 - 30 3 体育馆26 18 50~60 - 20 4 宿舍26 20 50~60 - 30 5 会议室2 6 18 50~60 20 4.负荷分析 4.1冷热负荷计算 根据负荷计算,本工程的空调设计冷负荷约为:4000 kW,设计热负荷约为:2400 kW。 4.2宿舍生活热水负荷计算 宿舍部分(床位数:2836) 设计用水量:40L/人?日 生活热水出水温度:60℃ 冷水计算温度:5℃ 全天用水量:220X400=113440L/日 热负荷:Q=C×M×△T×ρ=113440×(60-5)×4.187× 0.983=25680MJ 餐饮部分 考虑热负荷:500MJ 总全天热负荷:25680+500=26180MJ

太阳能辅助供暖的地源热泵经济性分析 艾衍科

太阳能辅助供暖的地源热泵经济性分析艾衍科 发表时间:2018-05-21T15:58:16.423Z 来源:《基层建设》2018年第5期作者:艾衍科[导读] 摘要:近年来,太阳能辅助供暖的地源热泵经济性问题得到了业内的广泛关注,研究其相关课题有着重要意义。 山东滨州鑫诚热力有限公司山东滨州 256600 摘要:近年来,太阳能辅助供暖的地源热泵经济性问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了太阳能辅助热源热泵系统的可行性,并结合相关实践经验,分别从多个角度与方面就实际案例展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:太阳能辅助供暖;地源热泵;经济性;分析 1前言 作为一项实际要求较高的实践性工作,太阳能辅助供暖的地源热泵经济性的特殊性不言而喻。该项课题的研究,将会更好地提升对太阳能辅助供暖地源热泵经济性的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。 2概述 随着全球工业迅速崛起,经济发展十分迅速,城市化进程日益加快使得能源消耗增涨迅速,在许多国家,能源危机日益凸显。目前应用较多的矿物能源是石油、天然气和煤炭,核裂变能也在逐渐开发研究中。矿物能源推动了世界经济的发展,但其带来的环境问题却越发严重,节能减排已经是所有人都将重视的一个话题。 地源热泵系统是利用浅层地能进行供熱和制冷的一种新型能源利用技术。该系统利用地下土壤或地下水体中蕴藏的巨大蓄热或蓄冷能力,冬季:地源热泵系统将室内冷量转移至地下,同时将热量送至室内;夏季:再把室内热量转移至地下,同时再把冷量送至室内。一个年度形成一个冷热循环,实现绿色建筑的功能。 地源热泵系统具有高效节能,无环境污染,维护费用低,使用寿命长等优点;但在北方地区,如果长期使用地源热泵系统会使地下温度场得不到有效的恢复,造成地下土壤热不平衡的问题。 太阳能供热系统指利用太阳能集热器,收集太阳辐射能实现平时供热水或冬季供暖的系统。它具有节能环保,使用安全,不占空间等优点;但太阳能同时具有分散性,不稳定性和效率低等缺点。 3太阳能辅助热源热泵系统的可行性探讨 3.1太阳能作为辅助热源的可行性 我国每年接受的太阳能辐射量如果核算成煤的话差不多需要24000亿吨的煤,此外,我国整体太阳能分布比较平均。量足且均匀的特点就在大方向上确保了太阳能作为辅助热源的可行性。不过,我国在太阳能利用中也存在着缺点:能流密度低以及易受到各种因素的影响。 3.2太阳能作为辅助热源的必要性 举例来说:在我国的北方,由于冬季热负荷很大,如果系统以热负荷为目的的话,这个时候完全使用地源热泵供暖就会导致成本非常高,而产生的效率却比较低下,长期运行这种系统的话还会导致大地温度的下降。除了以上问题以外,由于这种系统COP值较低,所以会有很多设计的要求无法实现。 3.2.1并联式系统 并联式系统是把太阳能供热系统和地源热泵系统交替进行供热,在太阳能集热器收集的热量过多的时候可以把这些多余的热量转移到地下进行储存,通过这一方式提高了地热恢复的速度。另一方面,在阴天或者夜间等太阳能不能够满足供暖需求的时候可以使用地热进行供热。 一般来说这种系统使用主要是在地下水温度不低于15℃的地方,地热主要起到供热作用,而太阳能起辅助作用。在地热的存储中,我们的原则是夏热冬用、冬冷夏用。 3.2.2串联式系统 串联式系统中,太阳能集热器所收集的热量不像并联式系统一样存储于地下,而是将其存储于蓄热的水箱中,然后水箱中的热水经过换热的方法提升进到蒸发器入口介质的温度,最终保证系统的COP值。在这种系统中,冬天由于太阳能较弱,我们可以使用集热器所串接的蒸发器作为辅助热源。 3.2.3混联式系统 在这种系统中,太阳能集热器与地源热泵连接方式有很多种,举例来说:地源热泵可以有两个蒸发器,一个可以用于连接太阳能集热器,而另一个把空气源作为热源,这种方式可以有效地提升整个系统的COP值。在蓄水箱温度不低于25℃的时候,可以不间断地为建筑供暖,进而保证了电能的节约。 4案例分析 本文以某地区某层高为3.0m,建筑面积为207的工程为例。在最冷月即1月份中选择典型2天连续测得,室外逐时平均温度为-19.5,室外逐时平均热负荷为12.5kw,其中最大热负荷为14.8kw,日照时间内的南向平均辐射强度为374.1。该地区冬季室内供暖设计温度为20。如图1,图2。

热源塔热泵技术

热源塔热泵技术 1、热源塔热泵系统原理 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品。热源塔利用低于冰点载体介质(乙二醇溶液)能高效地提取冰点以下的湿球水体显热能,通过热源塔热泵机组输入少量高品位能源,实现冰点以下低温位热能向高温位转移。对建筑物进行供热和制冷以及提供热水的技术。 热源塔热泵空调系统是针对中国南方地区冬季气侯、气象条件的特殊因素,阴雨联绵,潮湿阴冷,空气湿度大,传统风冷热泵在冬季供热时结霜严重,融霜耗电大,热泵效率低,达不到舒式的供热温度,而采用矿物燃料为辅助供热时即不卫生又污染环境,开发的国际领先的热泵空调工程技术。热源塔是按照供热负荷能力设计的换热面积,满足高效提取冰点以下低温位能可再生能源要求。 说明:南方地区在整个冬季基本多处于无日照寒湿阴冷气侯环境。阴雨天夜间空气湿度越大,风冷热泵供热效果越差(室内空气温度低湿度高,人体散失潜热量多而感到阴冷);相反,阴雨天夜间空气湿度越大,热源塔热泵供热效果相对越好(室内空气温度高湿度低,人体散失潜热量少而感到暖和),主要是湿球温度与干球温度相差很小,湿球所含显热高的缘故。 热源塔热泵水—水区域空调系统供热工艺原理图 1.热源塔 2.热源泵 3.换向站 4.热泵机组 5.换向站 6.末端设备 7.变频负荷泵 8.溶液池 9.膨胀水箱

热源塔热泵混合空调系统供热工艺原理图 1.热源塔 2.住宅区总热源泵 3.网点区热源泵 2、热源塔热泵系统特点 冷热源单项节能25%~30% 冬季,由于充分利用了南方气候、气象条件的特殊因素,阴雨联绵,潮湿阴冷,湿球温度高储藏的巨大能量的特点,热源塔提取低品位能性能稳定,整个冬季机组的性能系数COP可在3.0~4.0范围内变化。 夏季,由于热源塔是按照冬季提取显热负荷能力设计的,转化为冷却塔后有足够地蒸发面积可承受瞬间高峰空调余热负荷,冷却水温低效率最高、节能,机组的能效比EER 可在4.2~4.5范围内变化。 相比南方风冷热泵中央空调可节能25%~30%;同南方土壤源热泵空调相比节能效果相同。热源塔提取低品位能不受能量储藏的限制,可为宾馆酒店提供充足生活热水——低品位能来源。 综合设计节能50%~60% 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品,空调节能工程设计主要有:冷(热)源优化设计节能、按商用空调使用功能优化区域控制节能、按户式空调使用功能优化单元个性控制节能、变水流量或变制冷剂流量设计节能、按负荷变化模块化机组节能、按使用功能单元个性化热源塔热源塔单体机及多联体机节能。 经湖南业主实际测算空调系统采用热源塔热泵综合节能技术,比传统空调综合节能率达

介绍地源热泵地下热能失衡与太阳能补热方法

介绍地源热泵地下热能失衡与太阳能补热方法中国泵业网地源热泵采暖技术其节能环保性受到广大用户的青睐。可是近年部分地源热泵项目出现了地下热量失衡的严重问题,给地源热泵推广蒙上了阴影,本文针对此问题进行探讨,为广大同仁分享一些解决办法。 1地下换热钻井施工 由于各地区地质千差万别,地下物质导热系数相差悬殊,没有统一计算方式,钻勘探井测试地质导热系数,只能计算相对较短时间内地质放热系数,几乎无法预算热泵运行多年后结果,凭借多年的施工经验及参考地源热泵成功案例非常重要。 1.1钻井间距 地埋管式换热系统国家标准及规范中指出地下换热系统中对钻井间距为4~6m,考虑到成本及占地面积,一般工程施工时钻井间距≤4m。 换热井与井之间的地质就是蓄热空间,决定地埋管换热系统取热的年限,假如在3年期间换热井之间温度短路区易发生短路现象,该系统很快进入地下温度失衡状态,造成系统能效比下降甚至无法运行。热泵在冬季长时间处在取热状态,每口井周围温度在逐渐降低,特别是地下流层不丰富甚至没有流层的地况,换热井间距大小直接影响井与井之间温度短路时间。如图1所示。

1.2钻井群形状 地下换热系统设计人员主要考虑便于管网连接及连接机房距离,大部分采暖工程在钻井施工时,把所有换热井口集中到一起,大型采暖项目需钻井数量非常庞大,地下换热井会形成井群。特别是圆形或方形井群如果井间距过小容易造成严重取热不足,井群中心呈扩散状,中心位置温度区温度很低,几年后可能低于0℃。前几年运行的地源热泵项目,部分出现井水温度过低现象,甚至机组无法运行。如图2所示。

2合格的地埋管式换热系统 根据现场情况,尽量加大换热井距离,4口井间做不对称形状,井间距需≥4m。大中型地源热泵项目,地下连接管网庞大,地下主管道间距需≥1m,以减少大量进出水主管道间热量短路现象。管网埋设深度,北京地区冻层0.8m左右,管网应埋设在低于冻层以下1m处,尽量减少主管道对地层的热损。如图3、图4 所示。

太阳能系统与地源热泵系统联合供热

太阳能系统与地源热泵系统联合供热 太阳能系统与地源热泵系统联合供热的原则是;以地源热泵系统为主,太阳能系统为辅助热源,但在运行控制上要优先采用太阳能,并加以充分利用。在供热运行模式下,北区试验区域采用的散热器采暖系统与办公区域采用的地面辐射采暖系统串联运行,以提高太阳能的利用率。 (一)太阳集热系统 北区采用140m2平板型太阳集热器,采用太阳能与建筑一体化技术,使太阳集热器与建筑完美结合。本示范工程将太阳集热器设置在建筑的南立面上,与玻璃幕墙融为一体,这样既丰富了建筑的立面效果,又起到了利用太阳能的作用。北区冬季热负荷大于夏季冷负荷,可以采用太阳能辅助供热,解决地下的热量不平衡问题,提高地源热泵系统的运行效率。 在北区,太阳能除冬季与地源热泵系统联合供热外,其它季节,在不供热时,采用季节性蓄热技术将热量储存在蓄热水池中,供冬季采暖使用。 (二)联合供热方案比较 太阳能系统与地源热泵系统联合供热的方式有两种:并联和串联方式。并联方式示意图如图1所示: 图1 太阳能系统与地源热泵系统并联供热方式 串联方式示意图如图2所示: 并联运行模式与串联运行模式相比,存在以下弊端: (1)当太阳能系统与地源热泵系统同时运行时,系统的循环水量为两者之和,太阳能系统能否直接供热,直接影响系统的循环水量,进而影响热泵机组的可靠性。 (2)在并联运行模式下,当T g温度低于50℃时,太阳能不能被直接利用,只能去加热土壤,提高热泵机组蒸发器侧的温度。而在串联模式下,当T g温度低于50℃,而 高于40℃时,可以与地源热泵机组串联运行,充分提高地源热泵机组的COP值。 基于串联运行模式的优点,本示范工程采用串联运行模式。其运行策略为:在供暖初始时,由于采用了季节性蓄热的技术,同时,在室外温度较高的情况下,采暖负荷较小,此时,经过太阳能加热后的供水温度T g较高,若温度高于50℃,则利用太阳能直接采暖;若供水温

热源塔热泵在夏热冬冷地区的应用

太阳能次生源热源塔热泵技术在夏热冬冷地区的应用 湖南大学土木工程学院热源塔热泵研究中心刘秋克李念平成剑林 湖南秋克热源塔热泵科技工程有限公司殷浪刘博城蔡继辉 摘要在研究国内外冷却塔采热热泵技术不适应我国南方夏热冬冷气候条件下运行的基础上,由国内QIUKE科技以6项中国发明专利和1项美国发明专利重新定位,以吸收和提升低温位热源为单位的设计制造定义为“太阳能次生源热源塔热泵”简称(热源塔热泵)。2008年初我国南方遭受了五十年一遇的冰冻期,热源塔热泵经受了恶劣气候环境下严峻考验,供暖温度超过28℃。热源塔热泵堪称为百年空调重大突破,在全球属于发展初期应用较少,但确已顽强的生命力崛起被人类逐渐步接受。热源塔热泵在夏热冬冷地区与其它热泵空调和化石能源空调相比较,具有效率更高、使用限制条件比较少的特点。 关键词热源塔热泵、地源热泵、冷热源、太阳能次生源、可再生能源 引言 对于我国夏热冬冷地区舒适性空调,一般应满足夏季制冷和冬季供暖两种功能。在传统的建筑物中因气候因素和经济发展等原因,一般只需考虑夏季制冷问题。但随着人们生活水平的提高和促进工作和生产效率的提高,对空调的舒适度要求较高,需要满足建筑物冬季供暖的场所需求倍增。对于冬季供暖有需求的建筑物,如果设计仅仅考虑空调冷源问题,而不重视空调热源的选择采用电辅和化石能源,将造成冬季空调能源消耗过大,从而造成全年空调能耗偏高和终端用户高排碳污染环境。 在传统空调热源方案中,通常需分别设置冷源(制冷机)和热源(锅炉或电辅热)。由于用高温位的化石能源去生产中位热能,其存在能源效率很低和环境污染问题,所以空调热源的来源方式应逐步的由传统化石能源锅炉转化为应用太阳能次生源作为热泵的热源,能源效率高更加环保。 本文结合技术的起源和基本原理与工程实例,介绍一种在夏热冬冷地区综合经济性能比较突出的空调冷(热)源系统——太阳能次生源热源塔热泵空调技术。 1、能源来自太阳能次生源太阳能次生源广义的解释,太阳能以辐射能形式加热了地球表面,地球吸收了太阳能后所产生的一系列热能存储与释能及质的转换,形成可再生利用的新能源均为太阳能次生源。能够用于建筑物冷热空调的太阳能次生源包括:地源热泵所用的热源、空气源热泵所用的热源和制冷所用的蒸发冷却(太阳能辐射给地球的热量反射给空气所形成的干湿球差才存在液体蒸发现象)等。其他例如风能、海洋能、气候变化等等都是来自太阳能次生源。 2、热源塔定义的起源以热源塔定位用作吸收低温位冷(热)源技术的起源可追溯到日本20世纪80年代,采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,日本取名为采热塔/加热塔,国内暖通会议取名为冷却塔采热,有的厂家也称之为能源塔。由于是冷却塔结构没有改变,存在溶液随时被稀释导致运行的不稳定和设备腐蚀及立体空间污染问题,在此基础上QIUKE科技重新定位确立正确的研发方向,以吸收低温位热源为单位的设计制造,定义为“热源塔”,2005年在全国科技网上招标。 2.1开式冷却塔即时吸收热源存在的问题采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,在工程实际应用中设备严重腐蚀、水质环境污染、立体空间环境空气污染严重。 2.1.1冷却塔取热效率低,冷却塔是以汽化蒸发潜热能为主构造的换热设备,用于冬季吸收显热能时即使放大冷却塔容量吨位来配置,显然也是换热面积不足传热温差大,溶液温度低导致热泵蒸发温度低,热泵供热性能下降。加之采用的热泵大温差传热,蒸发温度低,需要高浓度的氯盐类作为循环介质,曝气循环溶解氧增加加速氯盐对设备的腐蚀性。 2.1.2溶液浓度高不可再生利用,在低温高湿气候期持续时间长达90天,需要将稀释后溶液排放掉补充原液维持浓度,造成了河道水环境污染。氯盐类溶液飘雾污染腐蚀周围环境的钢结构。

太阳能系统与地源热泵系统

太阳能系统与地源热泵系统- 暖通论文 摘要:随着我国能源的紧缺和《可再生能源法》的颁布和实施,太阳能、地热能作为可再生能源,在建筑中的应用越来越受到人们的重视,但应用的范围仅限于太阳能提供生活热水,或单独利用地源热泵系统提供采暖、空调,而两者联合运行的实际工程很少,联合运行模式不合理。本文针对北京市某示范工程中应用的太阳能-地源热泵技术进行阐述,分析了太阳能系统与地源热泵系统联合运行的技术可行性及如何充分的利用太阳能提高地源热泵系统的效率,强调了可再生能源综合利用的必要性。关键词:可再生能源太阳能地源热泵综合利用 1 引言能源和环境是影响国民经济可持续发展的关键因素,能源供应形势直接关系到国家的安全和社会稳定。建筑领域消费的能源,主要是煤炭、石油和天然气等石化能源。这些能源,资源有限,不可再生,终究要枯竭,而且传统能源会对环境造成严重的污染。我国人口众多,人均资源占有量低于世界平均水平,与经济发展和人民生活消费的需求相比,能源供应的缺口很大,而且能源消费结构不合理,以煤为主的能源供给造成了严重的大气污染和温室气体排放,我国目前的CO2排放量居世界第二位。我国是“京都议定书”的签约国,目前的这种能源消费方式,已受到国际社会的高度关注,加大了我们保护环境和改变经济增长模式的压力。因此,节约能源和开发利用清洁、可再生能源的任务十分紧迫。由于能源问题对国家安全和经济发展所起的重要作用,中央提出了建设节能省地型住宅的政策方针,因此,可再生能源在建筑中的应用是建筑业技术进步和行业发展的需要。随

着2006年1月《可再生能源法》的正式颁布与实施,太阳能、地热能在建筑行业中的应用越来越受到人们的重视。地源热泵技术是可再生能源应用的主要应用方向之一,即利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,近年来在国内得到了日益广泛的应用。随着《地源热泵系统工程技术规范》的实施,地源热泵系统工程的市场更加规范化,能更好的发挥其节能、环保效益。但地源热泵系统存在土壤温度场的恢复问题,即随着地源热泵系统连续长期的运行,会从地下过多的取热或过多的散热,造成地下温度场的波动,降低机组的COP值,增加系统的能耗。太阳能技术也是可再生能源应用的主要应用方向之一。北京属于太阳能资源比较丰富的区域,太阳能年辐射总量在5600MJ/m2~6000 MJ/m2,年日照时数在2600小时~3000小时,所以太阳能技术在北京有很好的发展前景,并且太阳能在建筑中的应用是现阶段太阳能应用中最具有发展潜力的领域。太阳能是永不枯竭的清洁能源,量大,资源丰富,绿色环保。但太阳能也具有一些缺点:(1)太阳能的能流密度低。虽然到达地球表面的太阳能有102000TW,但即使在太阳能资源较丰富的沙漠地区,考虑到太阳集热系统的效率和热损失,每平米集热器面积实际采集到的年平均太阳能辐射照度不到100W,而且它因地而异,因时而变。(2)太阳能具有间歇性和不可靠性。太阳能的辐照度受气候条件等各种因素的影响不能维持常量,如果遇上连续的阴雨天气太阳能的供应就会中断。此外,太阳能是一种辐射能,具有即时性,太阳能自身不易储存,必须即时转换成其它形式能量才能利用和储存。地源热泵技术和

新农居太阳能+地源热泵供暖制冷可行性方案设计

新农居太阳能+地源热泵供暖制冷 可行性方案 一、项目概况 随着国家经济和社会发展第十一个五年计划纲要的提出,国家加大了对农村基础设施建设的力度,为了解决新农居的供暖及制冷及生活热水要求,特进行农居利用新能源进行供暖制冷的示。 本工程为房山区新农村农居太阳能+热泵供暖制冷及生活热水示项目,建筑面积150平方米,采用太阳能+热泵的形式供暖制冷及提供生活热水。 二、建设工程主要容 太阳能热泵供暖制冷示项目主要建设容包括以下几个部分: 1、太阳能集热器采购安装; 2、地源热泵机组采购安装; 3、热泵室外换热系统安装; 4、系统所需水箱的制安; 通过以上几个部分的整体建设,最终实现新农居利用新能源实现供暖制冷并提供生活热水的。洗浴热水全部由太阳能系统提供,太阳能集热器设置在屋顶。当太阳能系统不能满足使用需求时,冬季由电加热作为辅助热源,春夏秋由热泵作为辅助能源来满足使用需求,以达到全天24小时供应生活热水的目的。

太阳能工程系统运行方案设计 一、设计思路及原则 XX实业公司秉承优先利用太阳能源、保证系统全天候供水的原则,多年来对公司太阳能工程系统及控制思路进行了最优化的整体设计,达到了较高的人性化管理。通过数百个大中型全天候太阳热水系统工程实践的检验,其合理性及先进性均得到了行业及用户的肯定。 二、设计理念及关键技术 在九阳全天候太阳热水系统设计过程中,始终贯穿着如下理念: (1)保证全天候24小时供应热水; (2)最低限度使用常规能源,运行费用达到最低; (3)优先利用太阳能(环保); (4)全面利用太阳能(不浪费); (5)北方地区应保证设备和系统永远不冻; (6)全自动运行、无人值守; (7)少维护、寿命长、安全可靠; (8)与建筑物易结合,整体效果协调、美观。 为了实现上述目标,经过多年探索,在系统设计安装中我们采用了如下关键

一种新型的太阳能与地源热泵联合运行系统

一种新型的太阳能与地源热泵联合运行系统 秘文涛? 张建一 陈天及 张艳 ( 上海水产大学食品学院,上海 200090;集美大学机械工程学院,福建 厦门 361021;华东理工大学机械与动力工程学院,上海 200237) 【摘 要】 本文分析了太阳能与地源热泵的技术优点及存在的问题,针对目前常规太阳能与地源热泵联合运行系统的缺陷,构思出了一套以生态理念构建的复合式新型能源系统。进而论述了该新型能源系 统的工作方式,并阐述了该新系统的技术经济性。最后指出研究及开发中存在的问题,展望了其 应用前景。 【关键词】 太阳能;地源热泵;供热制冷;吸收式制冷 A Novelty System Combined Solar Energy with the Ground Source Heat Pump Mi Wentao Zhang Jianyi Chen Tianji Zhang Yan ( College of Food Science,Shanghai Fisheries University,Shanghai 200090,China;College of Mechanical Engineering,Jimei University,Xiamen 361020,China;College of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237,China) 【Abstract】In order to eliminate the shortcomings of the conventional Solar-Ground Source Heat Pump, a combined energy system is designed based on the fundamental of compatible environment before analyzing their respective technical advantages and existing problems for the solar energy and ground source heat pump. Then the working modes and economic analysis of the new system are illustrated. Finally its primary existing problems are pointed out and the developing prospect is also elaborated. 【Key words】Solar energy; Ground source heat pump; Heating and cooling; Absorption refrigeration 1 引言 太阳能是一种取之不尽、用之不竭的绿色能源。在太阳辐射条件良好的情况下,以太阳能作为蒸发器热源的热泵系统可以获得比空气源热泵更高的蒸发温度,其系统的供热性能系数(COP)可达4以上。此外,在太阳能吸收式制冷系统中,以太阳能为驱动热源,不仅可以减小常规能源的消耗。而且还可以减轻由于采用氟利昂等人工合成工质而引发的地球温室效应和对大气臭氧层的破坏。但是太阳能有两个严重不足:一是能流密度低;二是其强度受各种因素的影响不能维持常量,这两大缺点大大限制了太阳能的有效利用。 地源热泵是一种利用地下浅层地热资源的高效节能环保型能源利用技术。通过输入少量的高品位电能,即可实现能量从低温热源向高温热源的转移。冬季它可代替锅炉把地能中的低品位能“取”出,提高温度后,供给室内采暖;夏季则把室内的热量“取”出,释放到地能中去[1]。但是地源热泵长期运行将会使土壤温度场得不到有效恢复,蒸发温度及冷凝温度波动较大,热泵机组运行效率较低。 因此,如果能将太阳能与地源热泵构建在一起,“取长补短,合理补给”,设计出一套复合式新型供热制冷系统,那么该新型的能源供给系统不仅将具有各自所特有经济、环保的特性,还将具有明显的节能潜力。 2 太阳能与地源热泵联合运行新系统设计 2.1 设计思路 目前,常规的太阳能与地源热泵联合运行系统多设计成夏季采用地源热泵系统制冷,冬季采用太阳能热泵与地源热泵联合供热。但是在我国的南方地区,建筑物夏季所需冷负荷要远大于冬季所需热 负荷,而热泵机组又往往都是制热量大于制冷量

热源塔热泵系统的原理及其应用

热源塔热泵的原理及其应用 摘要:热源塔空调系统,是针对中国南方地区冬季潮湿阴冷,空气湿度大,传统空调风冷热泵在冬季供热时严重结霜,融霜耗电大,热泵效率低,而采用燃油、燃气、煤为主供取热时,其能耗高又污染环境,在这种背景下开发地具有国际领先水平的热泵空调设备及系统工程技术。本文介绍了热源塔热泵系统的原理、特点及热源塔热泵系统的选择和应用。 关键字:热源塔;热泵机组;低温高湿 0.背景 在我国南方地区,尤其在冬季,该区域没有北方的集中供暖,较多采用电加热或电热辅助以及燃油、燃气锅炉等方式供暖,高品位能源消耗较大。同时,由于特殊的气候条件,形成了冬季室外空气“低温高湿”的特点,使得目前此区域内较常使用的空气源热泵系统室外换热器难以维持在干工况运行且结霜严重,各项性能系数大大降低。针对此地区气候特点,结合空气源热泵及水冷机组用冷却塔的优点,为改善室外换热器湿工况运行的不利条件,同时利用冬季湿空气显热及水蒸气相变潜热并推迟室外侧翅片表面结霜时间,开发出了一套名为热源塔热泵的新型热泵系统。 1.热源塔热泵系统的原理 热源塔是利用水和空气的接触,冬季制热是按照供热负荷能力设计的换热面积,利用冰点低于零度的载体介质,高效提取低温环境下的相对湿度较高的空气中的低品位热能,通过向热源塔热泵机组输入少量高品位能源,实现低温环境下低品位热能向高品位转移,对建筑物进行供热以及提供热水。夏季制冷,通过蒸发作用来散去空调中产生的废热的一种设备。 1.1 热源塔的构成和分类 从构造上看,热源塔主要由围护构架、旋流风动系统、低温高效换热器、汽液分离系统、凝结水分离系统、低温防霜系统(如图1所示)组成。其中,围护构架包括塔体框架、顶部的出风筒,侧壁的围护板及进风栅;旋流风动系统由位于风筒内部的变速电动机控制装置和斜射旋流风机组成;低温高效换热器由围护构架内部的高效肋片、换热管、进液口及出液口构成;低温高效换热器上方设有由斜流折射分离器和斜射旋流分离器构成的汽液分离系统;低温高效换热器下方设有由接水盘、凝结水控制装置和溶液控制阀构成的凝结水分离系统;还设有由溶液池、喷淋泵控制装置、喷淋器构成的低温防霜系统。当空气经低温高效换热器表面逆向流通时,形成传热面与空气之间的显热与潜热交换,获得低于环境温度2~3℃的溶液作为热源塔热泵的低品位热源。消噪汽液分离器可有效地分离负压条件下产生的水分和降低风机运行时产生的噪声。 热源塔的核心技术是溶液浓缩装置。冬季阴雨连绵期间,热源塔防冻液膜直接与空气进行显热与潜热交换的同时,凝结了空气中的水分,使防冻溶液浓度降低,冰点上升。而浓缩装置的作用是将稀释的防冻液浓缩,使冰点下降。

于中央空调冷热源方案选择要点1

关于空调冷热源方案选择的若干要点 中央空调系统一直是整个项目中的能耗大户,空调冷热源方案的选择是一个直接关系到空调工程项目的成败和经济效益优劣的重要问题。近年来,随着科学技术的迅速发展以及对节能和环保要求的不断提高,暖通空调领域中新的设计方案大量涌现,同一个设计项目,往往可以有几种、十几种不同的冷热源设计方案可以选择,如何对冷热源方案进行科学的比较和优选,是一个涉及面广、影响因素多的复杂技术工作。需从可行性、经济性、调节性、安全性及环境影响等方面进行综合技术经济分析。 1、可行性问题: 能够满足使用要求,这是方案可行性应考虑的主要问题。冷热源设计方案应符合国家和当地政府有关法规和规范的要求,包括有关环境保护的要求;设计方案应能满足有关方面的要求(如供电、供气、供水、供热等),并应特别顾及这些条件的长期、变化情况。例如采用水源热泵设计方案时应考虑当地地质情况、地下水资源的现状和变化趋势、冬季热负荷和夏季冷负荷不平衡所产生的热(冷)蓄积效应等问题。 2、经济性比较问题: 经济性比较是目前空调冷热源方案比较中考虑最多的一个问题。初投资费用是投资方最为关注的一个参数,空调冷热源设计方案的初投资费用不仅包括各种设备、管道、材料的投资,而且应包括各种相关收费(如热力入网费、用电设备增容费、天然气的气源费等),相应的安装、调试费用,相关的工程管理等各种收费,相关水处理和配电与控制投资,机房土建投资与相应室外管线的费用。 运行费用是空调冷热源设计方案技术经济性比较必须考虑的重要参数。运行费用包括能耗费、人工费和维保费。在计算过程中应注意不同地区、不同时期、不同时段各种能源的价格可能不同。 在设计方案经济性比较时应综合考虑初投资、运行费用以及设备的使用寿命。对于同时有供暖和空调要求的项目,应考虑冬季和夏季设备综合利用问题,进行冬夏季综合经济性比较。 3、调节性和可操作性问题 空调系统冷热源的装机容量通常是按接近全年最不利的气象条件确定的,因此冷热源机组应有较好的调节性能,以适应全年负荷的变化。 4、空调冷热源方案比较案例 空调冷热源方案有多种组合方式,作为空调冷热源的能源有电力、天然气、城市热力等;空调设备有电制冷机组、热泵机组、燃气直燃机、燃气锅炉、市政热网等。不同的能源、不同的设备对投资成本、运行费用和环境影响是不一样的。常用的冷热源形式有离心式冷水机组+城市热网、离心式冷水机组+燃气锅炉、溴化锂直燃机组、地(水)源热泵机组、热源塔热泵、风冷热泵机组六种方案。下列表格对六种方案进行比较分析。 为便于分析比较,本案例预设项目的建筑面积10万m2,空调冷负荷指标100W/m2,热负荷指标70W/m2,即空调总冷负荷为10000KW,总热负荷为7000KW。空调设备的用电量和用气量按设备能效系数(KW/kwh和KW/Nm3)折算。年运行费用按冬季采暖150天,夏季空调90天,每天运行10小时进行计算。初投资费用中只比较不同方案的主要设备费用,辅助设备、管道材料安装调试费以及其他土建机房投资费用等认为基本相同,不在比较范围内。

新农居太阳能+地源热泵供暖制冷可行性方案之欧阳家百创编

新农居太阳能+地源热泵供暖制冷 欧阳家百(2021.03.07) 可行性方案 一、项目概况 随着国家经济和社会发展第十一个五年计划纲要的提出,国家加大了对农村基础设施建设的力度,为了解决新农居的供暖及制冷及生活热水要求,特进行农居利用新能源进行供暖制冷的示范。 本工程为房山区新农村农居太阳能+热泵供暖制冷及生活热水示范项目,建筑面积150平方米,采用太阳能+热泵的形式供暖制冷及提供生活热水。 二、建设工程主要内容 太阳能热泵供暖制冷示范项目主要建设内容包括以下几个部分: 1、太阳能集热器采购安装; 2、地源热泵机组采购安装; 3、热泵室外换热系统安装; 4、系统所需水箱的制安; 通过以上几个部分的整体建设,最终实现新农居利用新能源实现供暖制冷并提供生活热水的。洗浴热水全部由太阳能系统提供,太阳能集热器设置在屋顶。当太阳能系统不能满足使用需求

时,冬季由电加热作为辅助热源,春夏秋由热泵作为辅助能源来满足使用需求,以达到全天24小时供应生活热水的目的。 太阳能工程系统运行方案设计 一、设计思路及原则 北京XX实业公司秉承优先利用太阳能源、保证系统全天候供水的原则,多年来对公司太阳能工程系统及控制思路进行了最优化的整体设计,达到了较高的人性化管理。通过数百个大中型全天候太阳热水系统工程实践的检验,其合理性及先进性均得到了行业及用户的肯定。 二、设计理念及关键技术 在九阳全天候太阳热水系统设计过程中,始终贯穿着如下理念:(1)保证全天候24小时供应热水; (2)最低限度使用常规能源,运行费用达到最低; (3)优先利用太阳能(环保); (4)全面利用太阳能(不浪费); (5)北方地区应保证设备和系统永远不冻; (6)全自动运行、无人值守; (7)少维护、寿命长、安全可靠; (8)与建筑物易结合,整体效果协调、美观。 为了实现上述目标,经过多年探索,在系统设计安装中我们采用了如下关键技术: (1)排空防冻技术 要达到全天候供应热水的目的,解决太阳能系统的北方冬季

中央空调热泵冷热源实际工程案例分析

中央空调热泵冷热源实际工程案例分析 一、工程概况 该大酒店位于城市发展的商业中心。该大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210m2。地下建筑面积:3160m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。单位面积冷指标为70.4W/m2。单位面积热指标为58.5W/ m2。热水负荷为5000KW/天。 二、不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬,才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100 元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之间(四川地源热泵示范工程)。采用混合源地源热泵机组及冷(热)源地源埋管系统的初投资为710.00万元左右(详见表1)。

2.2空气源热泵冷(热)源与初投资 系统性能酷暑制冷,空气源热泵的制冷效率与室外气候有直接的关系,随室外温度的升高而降低,机组消耗功率随室外环境温度的升高而增加。空气温度3 5℃,出水温度7℃,空气源热泵制冷能效比EER值在2.5左右。隆冬供热,南方地区受特定地质与气候条件因素影响,成为冷暖气流对峙区“低温高湿”,空气中低品位“潜热”含量高,空气源热泵因构造缺陷,不能有效地利用低品位热源,持续期累计约50天左右(-5~2℃温度有近10天左右,2~5℃温度有近40天左右)。当空气源热泵迎面风速为2M/S时,室外空气干球温度在0~5℃,相对湿度>80%时结霜最为严重,此时平均每小时化一次霜,按现代技术不停机旁通换向化霜程序,一次化霜的时间不少于8分钟左右(包括室内反向取热)。空气源热泵在0~5℃条件下处于无霜至结满霜与半结霜状态下运行,供热性能下降35~4 0%;化霜减少的供热量达15~20%左右。因此,在最恶劣工况条件下空气源热泵机组的实际供热输出量,只有标准工况供热量的50%左右,供热性能系数CO P平均只有1.5左右。 系统初投资冬季酒店供热需求量为2500KW,选择空气源热泵方案,容量应按实际供热能力确定为: Q=Q0?δ+RQ0为设定的标准供热量、δ为实际供热系数、R为辅助热源; Q0=3800KWδ=0.53R=500KWQ=Q0?δ+R=3800*0.53+500=2514KW 设计采用标准制冷量为3800KW空气源热泵机组加500KW辅助电加热装置,能够满足制热最不利工况下供热。根据涡旋压缩机构造不适应空气源热泵结霜后,长期处在高压差下运行,容易损坏等因素,应采用螺杆压缩机组,空气源热泵主机方案初投资为716.00万元左右(详见表1)。 2.3热源塔热泵冷(热)源与初投资 2.3.1热源塔热泵原理 热源塔热泵定义为:夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空

太阳能—地源热泵联合运行方式

太阳能—地源热泵的联合运行方式研究 摘要:介绍了太阳能-地源热泵联合运行系统,一种新型节能、环保的供暖(供冷)系统,并分别对不同的太阳能系统和地源热泵系统连接方式进行优缺点的分析,并具体给出了几种两个系统的联合运行方式。 我们当前正面临着巨大的能源挑战,提高能源的利用率,节能减排政策加快实施,新能源和可再生能源合理、有效的研发应用,将会是我们人类实现可持续发展的有效途径。据不完全统计到2035年,世界对一次能源需求量将会上升36%,相当于使用167 t 石油[1]。近年来,大多数国家都将重心转移到可再生能源和新能源的合理开发利用,这将是未来很长一段时间内一项重要的可持续发展战略[2]。太阳能和地热能将会是人类历史中取之不尽用之不竭的新能源和可再生能源,对其合理、有效的利用将会是今后能源发展的一个重要方向. 我国地域辽阔,年日照时间大于2000h的地区占全国面积的2/3,处于利用太阳能较有利的区域内[3],但太阳能的利用还存在着一定的局限性,太阳辐射受昼夜、季节、海拔高度等自然条件的限制以及阴雨天气等随机因素的影响较大,存在着很大的不稳定性和间歇性。因此若要长期单独只用太阳能作为热源运行系统,必须靠辅助热源才可以保证系统稳定运行。 "地源热泵"的概念,最早是在912 年由瑞士的专家提出[4],它利用地下埋管换热器与大地进行热量交换,把大地作为低位热源和排热场所的热泵装置。地源热泵在连续运行时会因埋地管在土壤中的连

续取热或者放热而导致埋管周围土壤的温度的相对降低或者升高,从而引起热泵蒸发温度和冷凝温度的变化,系统的运行效率的降低;另一方面,土壤的导热系数比较小,换热强度弱,在相同的负荷情况下所需要的换热面积大,因此埋管用量多,占地面积大[5-7]。 太阳能和地源热泵系统单独应用时存在的缺陷最好的办法是结合使用两种能源,互相弥补自身不足,提高资源利用率。本文主要是对太阳能和地源热泵联合运行方式的探究。 1.系统结构和联合运行原理 太阳能-地源热泵系统如图1所示。本文主要研究的是供暖季下该系统的联合运行模式。 2.系统联合运行模式 太阳能-地源热泵系统联合运行有三种不同的运行模式:一、串联模式;二、并联模式;三、蓄热模式。 运行模式一:实现太阳能-地源热泵系统联合运行模式一的控制方式是:1、3、15、16、7、8、、9、10、11、12、13、14和水泵P1、P2开启,其他阀门和水泵关闭。可见,该模式中地埋管换热器和太阳能集热器的耦合方式为串联,载热循环流体先流经地埋管后进入太阳能集热器,然后再进入热泵机组蒸发器。夜间或阴天情况下集热器关闭,循环流体出地埋管后经集热器的旁通直接进入热泵机组蒸发器。 运行模式二:实现太阳能-地源热泵系统联合运行模式二的系统控制方式是:阀门1、2、3、4、5、6、7、8、9、10、11、12、13、

热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析 桐庐好的大酒店有限公司方国明 内容摘要 冷(热)源来源经济与否直接关系建筑物空调的初投资与综合运行费用。本文以实际设计方案为例,对不同制冷机冷源与热泵热源来源方案进行了综合性经济分析、比较,从而得出结论:用“热源塔热泵”系统可实现冷暖空调卫生热水三联供,的确是一个经济合理的方案。 热源塔热泵夏季为高效水蒸发冷却热回收制冷机,可以向酒店提供免费卫生热水和桑拿热水;过度季节提供卫生热水时产生的冷量可满足、餐厅、娱乐及多功能厅冷负荷;冬季热泵的低品位热源来自高效宽带无霜热源塔系统,可有效地保障热泵供暖及卫生热水所需要的低品位热 源。 在无锅炉等辅助热源条件下,热源塔热泵经受住南方五十年一遇的冰冻期考验,室内供暖温度达到30℃。系统运行可靠维修量小,比混合源地源热泵冷(热)源减少60%左右的初投资,年减少综合经济费用11.6%。这种无需设计锅炉、水源和地埋管等辅助热源系统的热泵,初投资经济合理,室内外机械设备综合占地面积都比较小、节能效果明显,以及对周围环境影响符合国家环保标准的空调冷(热)源来源方式,值得和大家交流探讨。 关键词:热源塔、冷(热)源、热源塔热泵 1. 工程概况 桐庐大酒店位于城市发展的商业中心——杭州市桐庐县城区。桐庐大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210 m2。地下建筑面积:3160 m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。 单位面积冷指标为70.4W/ m2。单位面积热指标为58.5W/ m2。热水负荷为500KW。 2. 不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬, 才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之

相关文档
相关文档 最新文档