文档库 最新最全的文档下载
当前位置:文档库 › 热源塔热泵在夏热冬冷地区的应用

热源塔热泵在夏热冬冷地区的应用

热源塔热泵在夏热冬冷地区的应用
热源塔热泵在夏热冬冷地区的应用

太阳能次生源热源塔热泵技术在夏热冬冷地区的应用

湖南大学土木工程学院热源塔热泵研究中心刘秋克李念平成剑林

湖南秋克热源塔热泵科技工程有限公司殷浪刘博城蔡继辉

摘要在研究国内外冷却塔采热热泵技术不适应我国南方夏热冬冷气候条件下运行的基础上,由国内QIUKE科技以6项中国发明专利和1项美国发明专利重新定位,以吸收和提升低温位热源为单位的设计制造定义为“太阳能次生源热源塔热泵”简称(热源塔热泵)。2008年初我国南方遭受了五十年一遇的冰冻期,热源塔热泵经受了恶劣气候环境下严峻考验,供暖温度超过28℃。热源塔热泵堪称为百年空调重大突破,在全球属于发展初期应用较少,但确已顽强的生命力崛起被人类逐渐步接受。热源塔热泵在夏热冬冷地区与其它热泵空调和化石能源空调相比较,具有效率更高、使用限制条件比较少的特点。

关键词热源塔热泵、地源热泵、冷热源、太阳能次生源、可再生能源

引言

对于我国夏热冬冷地区舒适性空调,一般应满足夏季制冷和冬季供暖两种功能。在传统的建筑物中因气候因素和经济发展等原因,一般只需考虑夏季制冷问题。但随着人们生活水平的提高和促进工作和生产效率的提高,对空调的舒适度要求较高,需要满足建筑物冬季供暖的场所需求倍增。对于冬季供暖有需求的建筑物,如果设计仅仅考虑空调冷源问题,而不重视空调热源的选择采用电辅和化石能源,将造成冬季空调能源消耗过大,从而造成全年空调能耗偏高和终端用户高排碳污染环境。

在传统空调热源方案中,通常需分别设置冷源(制冷机)和热源(锅炉或电辅热)。由于用高温位的化石能源去生产中位热能,其存在能源效率很低和环境污染问题,所以空调热源的来源方式应逐步的由传统化石能源锅炉转化为应用太阳能次生源作为热泵的热源,能源效率高更加环保。

本文结合技术的起源和基本原理与工程实例,介绍一种在夏热冬冷地区综合经济性能比较突出的空调冷(热)源系统——太阳能次生源热源塔热泵空调技术。

1、能源来自太阳能次生源太阳能次生源广义的解释,太阳能以辐射能形式加热了地球表面,地球吸收了太阳能后所产生的一系列热能存储与释能及质的转换,形成可再生利用的新能源均为太阳能次生源。能够用于建筑物冷热空调的太阳能次生源包括:地源热泵所用的热源、空气源热泵所用的热源和制冷所用的蒸发冷却(太阳能辐射给地球的热量反射给空气所形成的干湿球差才存在液体蒸发现象)等。其他例如风能、海洋能、气候变化等等都是来自太阳能次生源。

2、热源塔定义的起源以热源塔定位用作吸收低温位冷(热)源技术的起源可追溯到日本20世纪80年代,采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,日本取名为采热塔/加热塔,国内暖通会议取名为冷却塔采热,有的厂家也称之为能源塔。由于是冷却塔结构没有改变,存在溶液随时被稀释导致运行的不稳定和设备腐蚀及立体空间污染问题,在此基础上QIUKE科技重新定位确立正确的研发方向,以吸收低温位热源为单位的设计制造,定义为“热源塔”,2005年在全国科技网上招标。

2.1开式冷却塔即时吸收热源存在的问题采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,在工程实际应用中设备严重腐蚀、水质环境污染、立体空间环境空气污染严重。

2.1.1冷却塔取热效率低,冷却塔是以汽化蒸发潜热能为主构造的换热设备,用于冬季吸收显热能时即使放大冷却塔容量吨位来配置,显然也是换热面积不足传热温差大,溶液温度低导致热泵蒸发温度低,热泵供热性能下降。加之采用的热泵大温差传热,蒸发温度低,需要高浓度的氯盐类作为循环介质,曝气循环溶解氧增加加速氯盐对设备的腐蚀性。

2.1.2溶液浓度高不可再生利用,在低温高湿气候期持续时间长达90天,需要将稀释后溶液排放掉补充原液维持浓度,造成了河道水环境污染。氯盐类溶液飘雾污染腐蚀周围环境的钢结构。

2.2闭式热源塔即时吸收热源高效以吸收低温位热源为计量单位的设计制造设备,参照国标水源热泵标准中冷源词汇,热源塔应是以冬季吸收空气中低温位热源为主的设计,定义为“热源塔”。

2.2.1高能效负压蒸发冷却,夏季在“高温高湿”气候条件下,空气接近饱和状态,冷却塔的蒸发效率很低,制冷机冷凝余热只能变为与空气之间显热交换,冷却水出水温度高,藻类繁殖污染水质,制冷机效率低。在相同的气象条件下闭式热源塔具有负压值汽化蒸发功能,冷却水出水温度低制冷机能效高。

2.2.2高性能无环境影响供热,冬季在“低温高湿”气候条件下,闭式热源塔以封闭式结构内置循环溶液小温差传热即时吸收空气中低温位热能,对环境无任何污染。环境空气温度零度以上为无霜期运行,相当于减小传统空气源热泵90%以上的结霜几率;环境空气负温度以下配置负温度凝结水浓缩分离器、蓄热能、地源等防霜和融霜装置实现热泵环境空气负温度状态下无霜运行。

3、定义热源塔热泵国内QIUKE科技考虑到仅凭小温差热源塔是难以提高吸收太阳能次生源的综合高效,应用6项中国发明专利和1项美国发明专利重新定义,以吸收和提升低温位热源为单位的匹配设计制造定义为“太阳能次生源热源塔热泵”简称(热源塔热泵)。热源塔热泵是将闭式热源塔与低热源热泵(性能要求高于地源热泵)以小温差传热高性能定位,进行合理的设备之间匹配,充分利用具有无限能量的太阳能次生能源可再生能源替代建筑物终端化石能源空调,实现空调领域的动车组。

3.1热源塔热泵组成由闭式热源塔+低热源热泵+负温度凝结水分离器组成,保障了在空气温度0℃,相对湿度100%的低温高湿状态下,热源塔热泵供热的高性能,且对环境无任何污染。

3.2热源塔热泵特点夏季为高效负压蒸发冷制冷机;冬季为宽带小温差气候能热泵。热源塔热泵是将夏热冬冷地区普遍应用的水冷却制冷+锅炉和空气源热泵+电辅热融为一体,改变其原有设备低效率的大温差传热设计配置,省去了锅炉和电辅热,实现了冷暖空调热水三联供,一机三用。彻底改变了传统空调领域300—2000KW水冷却制冷机无法实现热泵化的技术难题。节能减碳和综合经济性能指标高于夏热冬冷地区传统空调系统的30—60%,是有效地利用太阳能次生能源的可再生能源技术。

3.3补偿地源热泵出现的问题

3.3.1补偿水源热泵,在我国北方夏热冬寒地区,地下水资源匮乏热泵热源不足,热源塔热泵可利用热源塔吸收太阳能次生源补偿水源热泵热源的不足。在我国南方夏热冬冷地区,地下水资源匮乏夏季制冷冷却水量不足,热源塔热泵可利用热源塔实现负压蒸发冷却补偿水源热泵的冷源。

3.3.2平衡土壤源热泵,在我国北方夏热冬寒地区,土壤源蓄热不足,热源塔热泵可利用过渡季节吸收太阳次生源进行土壤源补偿蓄热,调节土壤源温度场的平衡。冬季气候温和期热源塔热泵吸收太阳能次生源独立供热,可有效地减少土壤源热泵储热容积和占地面积。在我国南方夏热冬冷地区,热源塔热泵可利用太阳能次生源负压蒸发冷调节土壤源温度场的热堆积问题,实现系统的稳定运行。

3.4减少我国对化石能源依赖

3.4.1在我国长江流域以南的夏热冬冷地区,应用热源塔热泵与传统锅炉供热配合,进行节能减碳改造互补利用,可减少供热期间90% 以上或完全对化石能源的依赖。

3.4.2在我国北方黄河流域夏热冬冷与冬寒的过度地区,应用热源塔热泵与传统锅炉供热配合,进行节能减碳改造互补利用,可减少供热期间60% 以上对化石能源的依赖。

3.4.3在我国东北地区及华北夏热冬寒地区,应用热源塔热泵与传统锅炉供热空调配合,进行节能减碳改造互补利用,可减少供热期间30—40% 对化石能源的依赖。

3.4.4减缓全球性化石能源消费,热源塔热泵高效吸收太阳能次生源,在低纬度地区可完全替代化石能源。热源塔热泵多功能高效,制冷负压蒸发冷高效节能,可提高热带雨林气候制冷机能效30%;在高纬度地区热源塔热泵可减少锅炉对化石能源的依赖时间达30%以上。

4、热源塔热泵工程应用

第二代冷却塔替代热源塔产品项目

4.1湖南湘西示范项目天丰宾馆改造前,宾馆冷暖空调热水三联供系统为燃油锅炉+空气源热泵,锅炉冒黑烟污染环境,热泵风冷却效率低,年总能耗高达70万元(见图4.1);年排碳300吨/年,终端排碳大于200吨/年。改造后,为热源塔热泵三联供系统,年能耗约36.0万元/年,电力排碳约109吨/年,减

碳约200吨/年,终端排碳为零(见图4.2)。

图4.1 2005年改造前图4.2 2006年改造后

4.2浙江舟山示范项目普陀大酒店改造前酒店冷暖空调热水三联供系统为单冷机+燃油锅炉系统,年总能耗高达260多万元以上,单冷机+燃油锅炉燃系统年排碳约1200吨/年,终端排碳大于900吨/年(见图4.3);改造后,为热源塔热泵三联供系统,年能耗约132.0万元/年,排碳约500吨/年,减碳约700吨/年,终端排碳为零(见图4.4)。

图4.3 2006年改造前图4.4 2007年改造后第三代闭式热源塔热泵产品项目

4.3 湖南湘西示范项目金煌大酒店改造前酒店冷暖空调热水三联供系统为燃煤锅炉+空气源热泵,由于燃煤锅炉排放二氧化硫与湿空气混合生成酸雾腐蚀设备和污染环境,夏季空气源热泵热风冷却效率低,年总能耗约36万元以上,年排碳约500吨/年,终端排碳及氮氧化物等有害物质大于400吨/年(见图4.5);改造后,为热源塔热泵三联供系统,年能耗约30.0万元/年,电力排碳约90吨/年,减碳约400吨/年,终端排碳为零(见图4.6)。

图4.5 2006年改造前图4.6 2007年改造后第四代闭式热源塔热泵

4.4 广州荔湾区芳村花园(见图4.7),项目主要为园区6000住户全

年提供生活热水,最高日用量为1140m3/d;夏季为商业楼提供3800KW冷

空调,同时进行热回收。闭式热源塔具有体积小高效换热,对比传统塔减

少50%的占地面积和使用功率,降低了系统冷(热)源初投资。

第四代闭式热源塔热泵为成套装置产品,全年封闭式循环热泵机组换

热器没有生物粘泥热阻和结垢腐蚀问题。冬季为立式内置溶液无霜吸收气

候能源;夏季为内置溶液水蒸发冷却。图4.72010年广州芳村花园第五代闭式热源塔热泵

4.5中山大学附属第六医院医技综合楼(见图4.8),项目总建筑面积

约为145000平方米(1000张床位)为急救住院的医技综合楼。

本项目采用10台QKBR360闭式热源塔模块,冬季空气温度最低为

3℃,低温位热源吸收能力不低于4800KW,满足热泵热源需求;夏季最

大总冷却能力可达1600吨,满足9300KW制冷机的负荷冷却。

本项目闭式热源塔热泵为成套装置产品改进技术,重点突出了噪音控

制,应用了热源塔专利技术消声装置。图4.8 2010年广州医技大楼

5、应用情况和展望

太阳能次生源热源塔热泵具有良好的耐气候条件性、热源来源稳定清洁再生性、减少化石能源空调排碳性。在全球-5℃以上地区达到50%应用量和-5℃以下地区达到25%应用量,可实现减少化石能源排碳量约20亿吨/年。其中在亚热带季风气候、温带海洋性气候和地中海气候条件下,太阳能次生源热源塔热泵达到50%的应用量,年可节约空调运行费用约1000亿美金,年节约标准煤约35175万吨,减少化石能源排碳量约91308万吨,等效森林面积约608.46万公顷/年。其中在温带大陆性气候条件下,太阳能次生源热源塔热泵与太阳能跨季节蓄热达到25%的应用量(全球-5℃以上地区5倍的面积),年可节约空调运行费用约1233亿美金,年节约标准煤约43968万吨,减少化石能源排碳量约114135万吨,等效森林面积约760.59万公顷/年。

在我国实现50% 的更新率替代化石能源空调市场需求量大于250亿元;年减碳量大于二亿吨到2020年达到中国向哥本哈根世界气候峰会承诺年减碳15亿吨的15 % 左右。

参考文献:

[1] 建设部《建设科技》期刊“热源塔热泵低热能再生技术在我国南方的应用”作者刘秋克

[2] 中能源《地源热泵》期刊“热源塔热泵技术在南方应用”作者刘秋克

[3] GB50189-2005 公共建筑节能设计标准中国建筑工业出版社

[4] GB-T2589-2008综合能耗计算通则中国建筑工业出版社

说明:

本文章是应“中国建筑设计研究院”“中国建筑节能减排产业联盟”“亚太建筑科技信息研究院”邀请拟稿,因此供行业同仁分享。

湖南大学土木工程学院热源塔热泵研究中心

刘秋克

2012年7月25日

地源热泵工作原理 供暖、制冷

地源热泵工作原理地源热泵原理图 舒适100网2010-7-9 12:00:38 .shushi100. 地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面我们通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。

地源热泵原理图 地源热泵工作原理 地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图

新农居太阳能+地源热泵供暖制冷可行性方案

新农居太阳能+地源热泵供暖制冷 可行性方案 一、项目概况 随着国家经济和社会发展第十一个五年计划纲要的提出,国家加大了对农村基础设施建设的力度,为了解决新农居的供暖及制冷及生活热水要求,特进行农居利用新能源进行供暖制冷的示范。 本工程为房山区新农村农居太阳能+热泵供暖制冷及生活热水示范项目,建筑面积150平方米,采用太阳能+热泵的形式供暖制冷及提供生活热水。 二、建设工程主要内容 太阳能热泵供暖制冷示范项目主要建设内容包括以下几个部分: 1、太阳能集热器采购安装; 2、地源热泵机组采购安装; 3、热泵室外换热系统安装; 4、系统所需水箱的制安; 通过以上几个部分的整体建设,最终实现新农居利用新能源实现供暖制冷并提供生活热水的。洗浴热水全部由太阳能系统提供,太阳能集热器设置在屋顶。当太阳能系统不能满足使用需求时,冬季由电加热作为辅助热源,春夏秋由热泵作为辅助能源来满足使用需求,以达到全天24小时供应生活热水的目的。

太阳能工程系统运行方案设计 一、设计思路及原则 北京XX实业公司秉承优先利用太阳能源、保证系统全天候供水的原则,多年来对公司太阳能工程系统及控制思路进行了最优化的整体设计,达到了较高的人性化管理。通过数百个大中型全天候太阳热水系统工程实践的检验,其合理性及先进性均得到了行业及用户的肯定。 二、设计理念及关键技术 在九阳全天候太阳热水系统设计过程中,始终贯穿着如下理念: (1)保证全天候24小时供应热水; (2)最低限度使用常规能源,运行费用达到最低; (3)优先利用太阳能(环保); (4)全面利用太阳能(不浪费); (5)北方地区应保证设备和系统永远不冻; (6)全自动运行、无人值守; (7)少维护、寿命长、安全可靠; (8)与建筑物易结合,整体效果协调、美观。 为了实现上述目标,经过多年探索,在系统设计安装中我们采用了如下关键

热源塔热泵技术

热源塔热泵技术 1、热源塔热泵系统原理 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品。热源塔利用低于冰点载体介质(乙二醇溶液)能高效地提取冰点以下的湿球水体显热能,通过热源塔热泵机组输入少量高品位能源,实现冰点以下低温位热能向高温位转移。对建筑物进行供热和制冷以及提供热水的技术。 热源塔热泵空调系统是针对中国南方地区冬季气侯、气象条件的特殊因素,阴雨联绵,潮湿阴冷,空气湿度大,传统风冷热泵在冬季供热时结霜严重,融霜耗电大,热泵效率低,达不到舒式的供热温度,而采用矿物燃料为辅助供热时即不卫生又污染环境,开发的国际领先的热泵空调工程技术。热源塔是按照供热负荷能力设计的换热面积,满足高效提取冰点以下低温位能可再生能源要求。 说明:南方地区在整个冬季基本多处于无日照寒湿阴冷气侯环境。阴雨天夜间空气湿度越大,风冷热泵供热效果越差(室内空气温度低湿度高,人体散失潜热量多而感到阴冷);相反,阴雨天夜间空气湿度越大,热源塔热泵供热效果相对越好(室内空气温度高湿度低,人体散失潜热量少而感到暖和),主要是湿球温度与干球温度相差很小,湿球所含显热高的缘故。 热源塔热泵水—水区域空调系统供热工艺原理图 1.热源塔 2.热源泵 3.换向站 4.热泵机组 5.换向站 6.末端设备 7.变频负荷泵 8.溶液池 9.膨胀水箱

热源塔热泵混合空调系统供热工艺原理图 1.热源塔 2.住宅区总热源泵 3.网点区热源泵 2、热源塔热泵系统特点 冷热源单项节能25%~30% 冬季,由于充分利用了南方气候、气象条件的特殊因素,阴雨联绵,潮湿阴冷,湿球温度高储藏的巨大能量的特点,热源塔提取低品位能性能稳定,整个冬季机组的性能系数COP可在3.0~4.0范围内变化。 夏季,由于热源塔是按照冬季提取显热负荷能力设计的,转化为冷却塔后有足够地蒸发面积可承受瞬间高峰空调余热负荷,冷却水温低效率最高、节能,机组的能效比EER 可在4.2~4.5范围内变化。 相比南方风冷热泵中央空调可节能25%~30%;同南方土壤源热泵空调相比节能效果相同。热源塔提取低品位能不受能量储藏的限制,可为宾馆酒店提供充足生活热水——低品位能来源。 综合设计节能50%~60% 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品,空调节能工程设计主要有:冷(热)源优化设计节能、按商用空调使用功能优化区域控制节能、按户式空调使用功能优化单元个性控制节能、变水流量或变制冷剂流量设计节能、按负荷变化模块化机组节能、按使用功能单元个性化热源塔热源塔单体机及多联体机节能。 经湖南业主实际测算空调系统采用热源塔热泵综合节能技术,比传统空调综合节能率达

地源热泵在浙江地区的适用性分析

地源热泵在浙江地区的适用性分析 作者:佟娜娜王启善朱正勇林小微 2012年06月18日来源:热泵资讯字体:(大中小)点 击:2869 摘要:地源热泵是近几年业内人士十分关注的一项被称为节能环保、可再生能源利用技术,本文主要对地埋管地源热泵空调系统应用于夏热冬冷的浙江地区的适用性、成功案例以及应注意的一些技术问题进行分析和探讨。 关键词:地源热泵;节能;适用性;热平衡 1. 引言 地源热泵由于在系统设备中不需要燃烧原料,所以没有CO2、SO X、粉尘等污染物的排放,属绿色环保型空调系统。尤其是在当今环境污染与能源危机成为人类面对并必须给予解决的社会背景下,以环保和节能为主要目标的绿色建筑及相应的供暖空调系统应运产生,而地源热泵技术正是满足这些要求的有代表性的低能耗新型空调系统。 2. 地源热泵技术简介 地源热泵系统是以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。其为典型的可再生能源利用技术,与常规的水冷式冷水机组加锅炉供冷供热方式相比,地源热泵系统夏季可减少向大气的排热量,减缓城市的“热岛”效应;冬季除使用少量电能以外,不使用一次化石能源,可减少污染物的排放和一次能源的长途运输成本。工程运行实例表明,地源热泵空调系统可减少一次能源消耗40%~50%。 3. 国内外发展状况简介 国外对地源热泵的研究较早,最早可以追溯到 1912年瑞士的一个专利。而该技术的提出始于英美两国。美国在1946年进行的12个地下盘管研究项目,这些系统测试了地下埋管的参数。1954年美国人发明了世界上第一台地源热泵。近十年来,地源热泵在欧美工业发达国家取得了快速发展,已成为一项成熟的应用技术。到2000 年底,美国有超过40 万台地源热泵系统在家庭、学校和商业建筑中使用。 我国具有较好的热泵科研成果与应用基础,早在 20世纪50年代天津大学开展了热泵的研究,1965年研制成功国内第一台水冷式热泵机组。我国政府十分重视热泵技术和浅层地热能资源的开发利用工作。到2004年底,北京已有200多个单位总计420×104m2的建筑面积利用地源热泵系统进行供暖或供冷。

地源热泵系统与传统供热对比分析

一、什么是地源热泵 我们先来简单的认识一下什么的地源热泵,地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方。通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环。 二、一般比较: 地源热泵中央空调和传统中央空调相比,最大的特点就在于它的节能性,这也是很多用户不顾高额初投资选择地源热泵中央空调的原因,地源热泵除了节能外,还有很多的优点,我们可以通过与传统中央空调的对比来分析地源热泵到底具有哪些优势,为什么如此深受用户青睐。 地源热泵中央空调与传统中央空调对比:环境保护 从土壤源热泵的整个运行原理来看,土壤源热泵系统实际是真正意义的绿色环保空调,不管是冬季还是夏季的运行,都不会对建筑外大气环境造成不良影响。而普通中央空调系统,将废热气或水蒸气排向室外环境,无一例外的都对环境造成了极大的污染。以地球表 面浅层地热资源作为冷热源,利用清洁的、近乎无限可再生的能源,符合可持续发展的战略要求。地源热泵中央空调与传统中央空调对比:运行效率 对于普通中央空调系统,不管是采用风冷热泵机组还是采用冷却塔的冷水机组,无一例外的要受外界天气条件的限制,即空调区越需要供冷或供热时,主机的供冷量或供热量就越不足,即运行效率下降,这在夏热冬冷地区的使用就受到了影响。而土壤源热泵机组与外界的换热是通过大地,而大地的温度很稳定,不受外界空气的变化而影响运行效率,因此,土壤源热泵的运行效率是最高的。 地源热泵中央空调与传统中央空调对比:经济方面 地源热泵系统还可以集采暖、空调制冷和提供生活热水于一体。一套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而减少使用成本,十分经济。 地源热泵中央空调与传统中央空调对比:运行费用 地源热泵系统在运行中的节能特点也是显而易见的:通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量,其制冷、制热系数可达4以上,与传统的空气源热泵相比,要高出40%,其运行费用为普通中央空调的50%~60%。达到相同的制冷制热效率,土壤源热泵主机的输入功率较小,即为业主提供了较低运行费的空调系统,在全年时间使用空调的场所,这种效果尤为明显。锅炉只能将70%~90%的燃料内能为热量,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量。 地源热泵中央空调与传统中央空调对比:主机设置 对于普通中央空调系统,若设置风冷热泵机组进行冷热空调,则风冷热泵主机的设置必须要与外界通风良好,要么设置于屋顶,要么设置于地面,这对别墅空调受限就更严重。而土壤源热泵主机的设置就非常灵活,可以设置在建筑物的任何位置,而不受考虑位置设置的限制。若设置冷水机组+锅炉进行冷热空调,冷却塔和锅炉的位置就更受限制。因此,就主机的设置而言,地源热泵系统的主机设置是非常灵活的。. 地源热泵中央空调与传统中央空调对比:系统简单 一机多用,节约设备用房,应用范围广。地源热泵可供暖、空调,还可用于生活热水供应系统,一套系统可替代锅炉加空调的两套系统,因此一机多用,节省了建筑空间及设备的初投资,机组紧凑,节省设备用房空间,由此而产生的经济效益相当可观。 地源热泵中央空调与传统中央空调对比:无需除霜 大地土壤温度一年四季相对保持恒定,冬季也能保持在15℃以上,埋地换热器不会结霜,可

地源热泵供暖实施方案

地源热泵供暖方案

————————————————————————————————作者:————————————————————————————————日期:

静海时运花园地源热泵供暖方案 某中学地源热泵技术 供暖方案

第一部分地源热泵项目设计

一、项目概况及设计依据 该总建筑面积约22916平方米,节能建筑,其中教学楼分别为2872㎡和2761㎡各一栋,综合教学楼3916㎡,专业教室2545㎡,学生公寓两栋计8722㎡,餐厅2100㎡,其中学生餐厅暂不考虑供暖,机组选用KLSH-160D两台,按照供热需求调剂使用以便节能;地源侧循环泵和用户端循环泵分别按照机组配置;水泵的启用模式与机组启用模式相同,可降低运行费用。地源热泵水源水系统来自室外地下埋管系统,其水系统在闭式PE管路中循环,无须自地下提取地下水。 设计依据 1、甲方提出的设计任务及相关专业提供的条件图; 2、《采暖通风与空气调节设计规范》(GB50019-2003) 3、《地源热泵系统工程技术规范》(GB50366-2005) 4、《民用建筑电气设计规范》JGJ16-2008 5、《民用建筑电气设计手册》 6、《智能建筑设计规范》GB/T50314-2000 7、《智能建筑弱电工程设计施工图集》GBBT-471 8、《建筑电气工程施工质量及验收规范》GB50303-2002 9、《建筑电气通用图集》92DQ1 10、暖通专业要求及暖通专业条件图 二、方案考虑原则 1、在条件允许的情况下,满足建筑物冬季采暖要求; 2、在保证安全可靠的情况下,尽量节省投资费用;

地源热泵——供暖空调的绿色技术

地源热泵——供暖空调的绿色技术 出处:作者:张峰珠节能网2005年08月03日 摘要:地源热泵系统是一种节能、环保、高效的能源利用技术,它充分发挥了浅层岩体的储冷储热作用,实现对建筑物的供暖和制冷,是一种典型的绿色技术。本文对地源热泵技术进行了阐述,介绍了地源热泵的原理及发展历史,分析了其形式及优点,对其与常规空调技术的技术特点及投资和运行费用进行了比较,分析了制约其发展的主要问题,并提出了地源热泵技术在中国的发展前景和展望。 关键词:地源热泵供暖空调冷热源绿色技术 近年来随着资源和环境的问题日益严重,在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为暖通空调行业需要面对的一个重要问题。地源热泵空调系统通过吸收大地(包括土壤、井水、湖泊等)的冷热量,冬季从大地吸收热量,夏季从大地吸收冷量,再由热泵机组向建筑物供冷供热而实现节能,是一种利用可再生能源的高效节能、无污染的既可供暖又可制冷的新型空调系统。 在中国,煤作为主要能源, 煤炭在我国能源体系中占主导地位,长期以来,煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,尽管近年来,比例略有下降,但仍保持在65%以上,并再次呈现出上升的迹象。2002年煤炭在我国能源生产结构、消费结构中的比例分别由2001年的68.6%和65.3%上升为70.7%和66.1%【1】。特别在冬季,在国内的农村和部分城市几乎全部靠煤取暖。煤是各种能源中污染环境最严重的能源,只有减少城市地区煤的使用,城市大气污染问题是才可能得到解决。现在各地都在采取措施控制燃煤的数量,选用电采暖、燃油或者燃气采暖等措施,但都存在运行费用高、资源不足和排放CO2这些问题。受能源、特别是一次性能源与环保条件的限制,传统的燃油、燃煤中央空调方式将逐步受到制约。从降低运行费用、节省能源、减少排放CO2排放量来看,地源热泵技术是一个不错的选择。 地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。 地源热泵(ground source heat pumps, GSHP)系统包括三种不同的系统:以利用土壤作为冷热源的土壤源热泵,也有资料文献成为地下耦合热泵系统(ground-coupled heat pump systems, GCHPs)或者叫地下热交换器热泵系统(ground heat exchanger, GHPs);以利用地下水为冷热源的地下水热泵系统(ground water heat pumps, GWHPs);以利用地表水为冷热源的地表水热泵系统(surface-water heat pumps, SWHPs)。 1.地源热泵的工作原理 系统通过地源热泵将环境中的热能提取出来对建筑物供暖或者将建筑物中的热能释放到环境中去而实现对建筑物的制冷,夏季可以将富余的热能存于地层中以备冬用;同样,冬季可以将富余的冷能贮存于地层以备夏用。这样,通过利用地层自身的特点实现对建筑物、环境的能量交换。

热源塔热泵在夏热冬冷地区的应用

太阳能次生源热源塔热泵技术在夏热冬冷地区的应用 湖南大学土木工程学院热源塔热泵研究中心刘秋克李念平成剑林 湖南秋克热源塔热泵科技工程有限公司殷浪刘博城蔡继辉 摘要在研究国内外冷却塔采热热泵技术不适应我国南方夏热冬冷气候条件下运行的基础上,由国内QIUKE科技以6项中国发明专利和1项美国发明专利重新定位,以吸收和提升低温位热源为单位的设计制造定义为“太阳能次生源热源塔热泵”简称(热源塔热泵)。2008年初我国南方遭受了五十年一遇的冰冻期,热源塔热泵经受了恶劣气候环境下严峻考验,供暖温度超过28℃。热源塔热泵堪称为百年空调重大突破,在全球属于发展初期应用较少,但确已顽强的生命力崛起被人类逐渐步接受。热源塔热泵在夏热冬冷地区与其它热泵空调和化石能源空调相比较,具有效率更高、使用限制条件比较少的特点。 关键词热源塔热泵、地源热泵、冷热源、太阳能次生源、可再生能源 引言 对于我国夏热冬冷地区舒适性空调,一般应满足夏季制冷和冬季供暖两种功能。在传统的建筑物中因气候因素和经济发展等原因,一般只需考虑夏季制冷问题。但随着人们生活水平的提高和促进工作和生产效率的提高,对空调的舒适度要求较高,需要满足建筑物冬季供暖的场所需求倍增。对于冬季供暖有需求的建筑物,如果设计仅仅考虑空调冷源问题,而不重视空调热源的选择采用电辅和化石能源,将造成冬季空调能源消耗过大,从而造成全年空调能耗偏高和终端用户高排碳污染环境。 在传统空调热源方案中,通常需分别设置冷源(制冷机)和热源(锅炉或电辅热)。由于用高温位的化石能源去生产中位热能,其存在能源效率很低和环境污染问题,所以空调热源的来源方式应逐步的由传统化石能源锅炉转化为应用太阳能次生源作为热泵的热源,能源效率高更加环保。 本文结合技术的起源和基本原理与工程实例,介绍一种在夏热冬冷地区综合经济性能比较突出的空调冷(热)源系统——太阳能次生源热源塔热泵空调技术。 1、能源来自太阳能次生源太阳能次生源广义的解释,太阳能以辐射能形式加热了地球表面,地球吸收了太阳能后所产生的一系列热能存储与释能及质的转换,形成可再生利用的新能源均为太阳能次生源。能够用于建筑物冷热空调的太阳能次生源包括:地源热泵所用的热源、空气源热泵所用的热源和制冷所用的蒸发冷却(太阳能辐射给地球的热量反射给空气所形成的干湿球差才存在液体蒸发现象)等。其他例如风能、海洋能、气候变化等等都是来自太阳能次生源。 2、热源塔定义的起源以热源塔定位用作吸收低温位冷(热)源技术的起源可追溯到日本20世纪80年代,采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,日本取名为采热塔/加热塔,国内暖通会议取名为冷却塔采热,有的厂家也称之为能源塔。由于是冷却塔结构没有改变,存在溶液随时被稀释导致运行的不稳定和设备腐蚀及立体空间污染问题,在此基础上QIUKE科技重新定位确立正确的研发方向,以吸收低温位热源为单位的设计制造,定义为“热源塔”,2005年在全国科技网上招标。 2.1开式冷却塔即时吸收热源存在的问题采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,在工程实际应用中设备严重腐蚀、水质环境污染、立体空间环境空气污染严重。 2.1.1冷却塔取热效率低,冷却塔是以汽化蒸发潜热能为主构造的换热设备,用于冬季吸收显热能时即使放大冷却塔容量吨位来配置,显然也是换热面积不足传热温差大,溶液温度低导致热泵蒸发温度低,热泵供热性能下降。加之采用的热泵大温差传热,蒸发温度低,需要高浓度的氯盐类作为循环介质,曝气循环溶解氧增加加速氯盐对设备的腐蚀性。 2.1.2溶液浓度高不可再生利用,在低温高湿气候期持续时间长达90天,需要将稀释后溶液排放掉补充原液维持浓度,造成了河道水环境污染。氯盐类溶液飘雾污染腐蚀周围环境的钢结构。

地源热泵冷热平衡问题

地源热泵冷热平衡问题研究 0 引言 地源热泵与一般的空调系统相比具有显著的节能效果,这主要是由于其较高的蒸发温度和较低的冷凝温度,从而可以很大程度地提高机组运行的 COP。同时,由于地源热泵系统不直接向空气中排放热(冷)量,因此它还是一种较为清洁的空调方式。 由于我国大部分地区都是夏热冬冷地区,也就是冬季需要供热,夏季需要供冷,所以我们只是单纯地把地下作为一个热量储备设备,夏季把热量储存到地下以备冬季来用,冬季储存冷量供夏季制冷。但是,一般来说冬夏冷热负荷很难达到绝对的平衡,在长三角地区这种现象尤其明显。如果出现严重的冷热不平衡的情况(极端情况就是单冷或单暖地区),就会导致地下温度逐步地升高或者降低(长时间运行)。一般情况土壤温度降低 1℃,会使制取同样热量的能耗增加3%~4%[1],因此,维持地源热泵地下埋管换热器系统的吸、排热平衡是地源热泵系统正常、高效运行的可靠保证。为推广地源热泵这种节能环保的空调系统在长三角地区的应用,本文提出了一种地源热泵系统全年冷热量平衡的方式。 系统介绍 地源热泵热回收系统 对于宾馆一类的建筑全年使用空调的同时还有生活卫生热水的要求,这一类建筑比较适合采用地源热泵机组。该类建筑可以在夏季提供空调冷量,过渡季节空调采用全新风,冬季提供空调热量,同时全年利用地源热泵机组提供生活热水。目前在夏季供冷的同时提供热量的方案比较少,这里采用在地源热泵主机地源侧增加热回收的方式来解决该矛盾。图 1 为这种热量回收方式的原理图:当主机需要制冷时,阀门V1 关闭,V2 开启;当主机制热时,阀门 V1 开启,V2关闭。

图 1 热回收方式原理图 1.2 运行方案 在夏季时,地源热泵主机蒸发器侧与空调用冷端进行换热,地源热泵主机冷凝器侧与地埋管换热器侧以及建筑物内其他需用热(如生活热水)的热用户相接,热量只有一部分被土壤吸收;在冬季运行时,空调侧需要热量与地源热泵机组的冷凝器侧相接,同时建筑物内还有其他需要供热的部分热用户,地埋管换热器侧与蒸发器侧相接,向地下排放冷量;过渡季节建筑物内只有热用户需要提供热量,此时地源热泵主机冷凝器侧与热用户相连接,地埋管换热器侧与地源热泵主机蒸发器侧相连接,向地下释冷。 1.3 能量守恒关系 夏季:空调制冷需要向地源侧排出热量,生活热水需要吸收热量,在夏季主要是利用余热回收来提供生活热水。根据文献[2]可以得到以下的平衡关系。当热回收能满足热水要求时:111r f Q EER EER Q Q -+? = (1) 当热回收不能满足热水要求时: (2) 式中:Qf 为向地源放热量,kWh ;Q1 为处理空调负荷总 的 冷 量 ,kWh ;

地源热泵采暖供冷原理

地源热泵工作原理 地源热泵工作原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。 地源热泵制冷原理及供冷原理 地源热泵系统在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器(风机盘管),以13℃以下的冷风的形式为房供冷。 地源热泵制热原理及供热原理 地源热泵系统在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过四通阀将冷媒流动方向换向。由室外地能换热系统吸收地下水或土壤里的热量,通过水源热泵机组系统内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/空气热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下的热量不断转移至室内的过程中,以室内采暖空调末端系统向室内供暖。 地源热泵技术包含了抽地下水方式、埋管方式、抽取湖水或江河水方式等,抽取湖水或江河水方式造价最低,埋管方式最贵,但最好。 只要有足够的场可地埋设管道(地下冷热交换装置)或政府允许抽取地下水的就应该优先考虑选择地源热泵中央空调。地源热泵中央空调如此节能是应为地源热泵技术借助了地下的能量,地下的能量还是来至于太阳能。

热源塔热泵系统的原理及其应用

热源塔热泵的原理及其应用 摘要:热源塔空调系统,是针对中国南方地区冬季潮湿阴冷,空气湿度大,传统空调风冷热泵在冬季供热时严重结霜,融霜耗电大,热泵效率低,而采用燃油、燃气、煤为主供取热时,其能耗高又污染环境,在这种背景下开发地具有国际领先水平的热泵空调设备及系统工程技术。本文介绍了热源塔热泵系统的原理、特点及热源塔热泵系统的选择和应用。 关键字:热源塔;热泵机组;低温高湿 0.背景 在我国南方地区,尤其在冬季,该区域没有北方的集中供暖,较多采用电加热或电热辅助以及燃油、燃气锅炉等方式供暖,高品位能源消耗较大。同时,由于特殊的气候条件,形成了冬季室外空气“低温高湿”的特点,使得目前此区域内较常使用的空气源热泵系统室外换热器难以维持在干工况运行且结霜严重,各项性能系数大大降低。针对此地区气候特点,结合空气源热泵及水冷机组用冷却塔的优点,为改善室外换热器湿工况运行的不利条件,同时利用冬季湿空气显热及水蒸气相变潜热并推迟室外侧翅片表面结霜时间,开发出了一套名为热源塔热泵的新型热泵系统。 1.热源塔热泵系统的原理 热源塔是利用水和空气的接触,冬季制热是按照供热负荷能力设计的换热面积,利用冰点低于零度的载体介质,高效提取低温环境下的相对湿度较高的空气中的低品位热能,通过向热源塔热泵机组输入少量高品位能源,实现低温环境下低品位热能向高品位转移,对建筑物进行供热以及提供热水。夏季制冷,通过蒸发作用来散去空调中产生的废热的一种设备。 1.1 热源塔的构成和分类 从构造上看,热源塔主要由围护构架、旋流风动系统、低温高效换热器、汽液分离系统、凝结水分离系统、低温防霜系统(如图1所示)组成。其中,围护构架包括塔体框架、顶部的出风筒,侧壁的围护板及进风栅;旋流风动系统由位于风筒内部的变速电动机控制装置和斜射旋流风机组成;低温高效换热器由围护构架内部的高效肋片、换热管、进液口及出液口构成;低温高效换热器上方设有由斜流折射分离器和斜射旋流分离器构成的汽液分离系统;低温高效换热器下方设有由接水盘、凝结水控制装置和溶液控制阀构成的凝结水分离系统;还设有由溶液池、喷淋泵控制装置、喷淋器构成的低温防霜系统。当空气经低温高效换热器表面逆向流通时,形成传热面与空气之间的显热与潜热交换,获得低于环境温度2~3℃的溶液作为热源塔热泵的低品位热源。消噪汽液分离器可有效地分离负压条件下产生的水分和降低风机运行时产生的噪声。 热源塔的核心技术是溶液浓缩装置。冬季阴雨连绵期间,热源塔防冻液膜直接与空气进行显热与潜热交换的同时,凝结了空气中的水分,使防冻溶液浓度降低,冰点上升。而浓缩装置的作用是将稀释的防冻液浓缩,使冰点下降。

于中央空调冷热源方案选择要点1

关于空调冷热源方案选择的若干要点 中央空调系统一直是整个项目中的能耗大户,空调冷热源方案的选择是一个直接关系到空调工程项目的成败和经济效益优劣的重要问题。近年来,随着科学技术的迅速发展以及对节能和环保要求的不断提高,暖通空调领域中新的设计方案大量涌现,同一个设计项目,往往可以有几种、十几种不同的冷热源设计方案可以选择,如何对冷热源方案进行科学的比较和优选,是一个涉及面广、影响因素多的复杂技术工作。需从可行性、经济性、调节性、安全性及环境影响等方面进行综合技术经济分析。 1、可行性问题: 能够满足使用要求,这是方案可行性应考虑的主要问题。冷热源设计方案应符合国家和当地政府有关法规和规范的要求,包括有关环境保护的要求;设计方案应能满足有关方面的要求(如供电、供气、供水、供热等),并应特别顾及这些条件的长期、变化情况。例如采用水源热泵设计方案时应考虑当地地质情况、地下水资源的现状和变化趋势、冬季热负荷和夏季冷负荷不平衡所产生的热(冷)蓄积效应等问题。 2、经济性比较问题: 经济性比较是目前空调冷热源方案比较中考虑最多的一个问题。初投资费用是投资方最为关注的一个参数,空调冷热源设计方案的初投资费用不仅包括各种设备、管道、材料的投资,而且应包括各种相关收费(如热力入网费、用电设备增容费、天然气的气源费等),相应的安装、调试费用,相关的工程管理等各种收费,相关水处理和配电与控制投资,机房土建投资与相应室外管线的费用。 运行费用是空调冷热源设计方案技术经济性比较必须考虑的重要参数。运行费用包括能耗费、人工费和维保费。在计算过程中应注意不同地区、不同时期、不同时段各种能源的价格可能不同。 在设计方案经济性比较时应综合考虑初投资、运行费用以及设备的使用寿命。对于同时有供暖和空调要求的项目,应考虑冬季和夏季设备综合利用问题,进行冬夏季综合经济性比较。 3、调节性和可操作性问题 空调系统冷热源的装机容量通常是按接近全年最不利的气象条件确定的,因此冷热源机组应有较好的调节性能,以适应全年负荷的变化。 4、空调冷热源方案比较案例 空调冷热源方案有多种组合方式,作为空调冷热源的能源有电力、天然气、城市热力等;空调设备有电制冷机组、热泵机组、燃气直燃机、燃气锅炉、市政热网等。不同的能源、不同的设备对投资成本、运行费用和环境影响是不一样的。常用的冷热源形式有离心式冷水机组+城市热网、离心式冷水机组+燃气锅炉、溴化锂直燃机组、地(水)源热泵机组、热源塔热泵、风冷热泵机组六种方案。下列表格对六种方案进行比较分析。 为便于分析比较,本案例预设项目的建筑面积10万m2,空调冷负荷指标100W/m2,热负荷指标70W/m2,即空调总冷负荷为10000KW,总热负荷为7000KW。空调设备的用电量和用气量按设备能效系数(KW/kwh和KW/Nm3)折算。年运行费用按冬季采暖150天,夏季空调90天,每天运行10小时进行计算。初投资费用中只比较不同方案的主要设备费用,辅助设备、管道材料安装调试费以及其他土建机房投资费用等认为基本相同,不在比较范围内。

新农居太阳能+地源热泵供暖制冷可行性方案

新农居太阳能+地源热泵供暖制冷 令狐采学 可行性方案 一、项目概况 随着国家经济和社会发展第十一个五年计划纲要的提出,国家加大了对农村基础设施建设的力度,为了解决新农居的供暖及制冷及生活热水要求,特进行农居利用新能源进行供暖制冷的示范。 本工程为房山区新农村农居太阳能+热泵供暖制冷及生活热水示范项目,建筑面积150平方米,采用太阳能+热泵的形式供暖制冷及提供生活热水。 二、建设工程主要内容 太阳能热泵供暖制冷示范项目主要建设内容包括以下几个部分: 1、太阳能集热器采购安装; 2、地源热泵机组采购安装; 3、热泵室外换热系统安装; 4、系统所需水箱的制安; 通过以上几个部分的整体建设,最终实现新农居利用新能源实现供暖制冷并提供生活热水的。洗浴热水全部由太阳能系统提供,太阳能集热器设置在屋顶。当太阳能系统不能满足使

用需求时,冬季由电加热作为辅助热源,春夏秋由热泵作为辅助能源来满足使用需求,以达到全天24小时供应生活热水的目的。 太阳能工程系统运行方案设计 一、设计思路及原则 北京XX实业公司秉承优先利用太阳能源、保证系统全天候供水的原则,多年来对公司太阳能工程系统及控制思路进行了最优化的整体设计,达到了较高的人性化管理。通过数百个大中型全天候太阳热水系统工程实践的检验,其合理性及先进性均得到了行业及用户的肯定。 二、设计理念及关键技术 在九阳全天候太阳热水系统设计过程中,始终贯穿着如下理念: (1)保证全天候24小时供应热水; (2)最低限度使用常规能源,运行费用达到最低; (3)优先利用太阳能(环保); (4)全面利用太阳能(不浪费); (5)北方地区应保证设备和系统永远不冻; (6)全自动运行、无人值守; (7)少维护、寿命长、安全可靠; (8)与建筑物易结合,整体效果协调、美观。 为了实现上述目标,经过多年探索,在系统设计安装中我们采用了如下关键技术:

中央空调热泵冷热源实际工程案例分析

中央空调热泵冷热源实际工程案例分析 一、工程概况 该大酒店位于城市发展的商业中心。该大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210m2。地下建筑面积:3160m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。单位面积冷指标为70.4W/m2。单位面积热指标为58.5W/ m2。热水负荷为5000KW/天。 二、不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬,才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100 元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之间(四川地源热泵示范工程)。采用混合源地源热泵机组及冷(热)源地源埋管系统的初投资为710.00万元左右(详见表1)。

2.2空气源热泵冷(热)源与初投资 系统性能酷暑制冷,空气源热泵的制冷效率与室外气候有直接的关系,随室外温度的升高而降低,机组消耗功率随室外环境温度的升高而增加。空气温度3 5℃,出水温度7℃,空气源热泵制冷能效比EER值在2.5左右。隆冬供热,南方地区受特定地质与气候条件因素影响,成为冷暖气流对峙区“低温高湿”,空气中低品位“潜热”含量高,空气源热泵因构造缺陷,不能有效地利用低品位热源,持续期累计约50天左右(-5~2℃温度有近10天左右,2~5℃温度有近40天左右)。当空气源热泵迎面风速为2M/S时,室外空气干球温度在0~5℃,相对湿度>80%时结霜最为严重,此时平均每小时化一次霜,按现代技术不停机旁通换向化霜程序,一次化霜的时间不少于8分钟左右(包括室内反向取热)。空气源热泵在0~5℃条件下处于无霜至结满霜与半结霜状态下运行,供热性能下降35~4 0%;化霜减少的供热量达15~20%左右。因此,在最恶劣工况条件下空气源热泵机组的实际供热输出量,只有标准工况供热量的50%左右,供热性能系数CO P平均只有1.5左右。 系统初投资冬季酒店供热需求量为2500KW,选择空气源热泵方案,容量应按实际供热能力确定为: Q=Q0?δ+RQ0为设定的标准供热量、δ为实际供热系数、R为辅助热源; Q0=3800KWδ=0.53R=500KWQ=Q0?δ+R=3800*0.53+500=2514KW 设计采用标准制冷量为3800KW空气源热泵机组加500KW辅助电加热装置,能够满足制热最不利工况下供热。根据涡旋压缩机构造不适应空气源热泵结霜后,长期处在高压差下运行,容易损坏等因素,应采用螺杆压缩机组,空气源热泵主机方案初投资为716.00万元左右(详见表1)。 2.3热源塔热泵冷(热)源与初投资 2.3.1热源塔热泵原理 热源塔热泵定义为:夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空

地源热泵供热供冷技术推广应用

地源热泵供热供冷技术推广应用 项目简介: 本项目通过技术攻关,研究适合于宾馆、酒店、学校等各类建筑的地源热泵供热制冷技术;探索宾馆酒店业供热、供冷替代方案,对热泵系统进行优化匹配;通过技术推广应用,建立包括热泵供暖、制冷空调、供生活热水于一体的综合利用示范点,通过示范工程使热泵供热制冷技术在广东地区得到广泛的推广应用。 结合南方地区特有的气候特征,地源热泵除了用于建筑物的空调外,特别适合于宾馆酒店的热水供给。广东地区地处亚热带,气候炎热,全年平均气温在23℃左右,是我国三大经济发达地区之一。商业繁荣,流动人员多,各种商业建筑、宾馆酒店林立,位于全国前茅,因此,给地源热泵的推广应用提供了一个巨大的潜在市场。 由于全球气候变暖,广东地区的电力负荷也受到了很大的冲击。2003年7、8月份的用电负荷比2002年同期高出近20%,而用电负荷的1/3则来自空调用电。目前广州市每百户拥有空调数量已超过160台,空调耗电量明显高于其它城市,且有日益增长的趋势。目前,广东地区民用住宅等建筑的空调和生活热水多采用的是“户式风冷空调+热水器(燃气、电)”。随着居民生活水平的提高,这种传统的模式无疑会大大增加广东地区的用电负荷,导致电力紧张。为此,广东地区有必要开展建筑以及相关设备节能方面的工作。 广东地区酒店宾馆业制冷空调和供热的现状是普遍采用“制冷机+燃油锅炉”的模式。有关资料表明,广州市酒店供热每月大约消耗燃油1500吨,由此引起的环境污染问题、热岛效应等已影响到城市居民的生活质量。为此,广州市在“九五”期间曾提出餐娱业“油改气”的供热方案,但由于燃气价格居高不下,“油改气”的运行成本大约提高了2倍以上,因此,到目前为止,无法落到实处。但酒店宾馆燃油锅炉供热系统的改造是势在必行,并已列入广州市“十五”的重大项目之一,改造投入的资金将超过5亿元人民币。 因此,在广东地区应用地源热泵技术具有很好的前景。对于一般的民用住宅、学校、医院等建筑,利用该技术替代传统的“户式风冷空调+热水器(燃气、电)”模式,可以节约用电20%,可以缓解广州地区用电紧张的压力;对于宾馆酒店等建筑,利用该技术替代“制冷机+燃油锅炉”,可以节能40%,每月可以减少向大气排放5000吨的CO2气体、60吨的SO2气体,这对于改善整个地区的城市大气环境具有相当重要的意义。 主要技术性能及指标: 本项目在技术上的创新性主要体现在: (1)地源热泵系统在提供宾馆酒店所需的生活热水的同时,可产生空调用的冷冻水,其耗电与产生同样制冷量的制冷机组相当,无需增加用户的电力负荷,因此,完全节省为提供生活热水所需的燃油量,节约大量运行费用,经济效益显著; (2)地源热泵系统产生的热量来自于地源能和建筑物室内排放的废热能,而这部分废热能主要来源于太阳能和建筑物内设备与人体排放的热量,因此,地源热泵系统主要是充分利用了可再生能源; (3)热泵系统在运行过程中无有害物质排放,同时由于减少了油的燃烧向环境排放的热量和制冷系统向环境排放的热量,因此,可降低建筑物对环境热污染造成的热岛效应。

热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析 桐庐好的大酒店有限公司方国明 内容摘要 冷(热)源来源经济与否直接关系建筑物空调的初投资与综合运行费用。本文以实际设计方案为例,对不同制冷机冷源与热泵热源来源方案进行了综合性经济分析、比较,从而得出结论:用“热源塔热泵”系统可实现冷暖空调卫生热水三联供,的确是一个经济合理的方案。 热源塔热泵夏季为高效水蒸发冷却热回收制冷机,可以向酒店提供免费卫生热水和桑拿热水;过度季节提供卫生热水时产生的冷量可满足、餐厅、娱乐及多功能厅冷负荷;冬季热泵的低品位热源来自高效宽带无霜热源塔系统,可有效地保障热泵供暖及卫生热水所需要的低品位热 源。 在无锅炉等辅助热源条件下,热源塔热泵经受住南方五十年一遇的冰冻期考验,室内供暖温度达到30℃。系统运行可靠维修量小,比混合源地源热泵冷(热)源减少60%左右的初投资,年减少综合经济费用11.6%。这种无需设计锅炉、水源和地埋管等辅助热源系统的热泵,初投资经济合理,室内外机械设备综合占地面积都比较小、节能效果明显,以及对周围环境影响符合国家环保标准的空调冷(热)源来源方式,值得和大家交流探讨。 关键词:热源塔、冷(热)源、热源塔热泵 1. 工程概况 桐庐大酒店位于城市发展的商业中心——杭州市桐庐县城区。桐庐大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210 m2。地下建筑面积:3160 m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。 单位面积冷指标为70.4W/ m2。单位面积热指标为58.5W/ m2。热水负荷为500KW。 2. 不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬, 才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之

清洁能源供暖方式的简介及优劣

清洁能源供暖方式的简介及优劣 一、地源热泵 (一)供暖方式 地下土壤中蕴含着丰富的温度资源,夏季地下土壤的温度低于地上空间的温度,冬季地下土壤的温度高于地上空间的温度。地温热泵供暖技术就是利用这种季节性温度差,通过专门装置在冬季将地下土壤的高温资源转提取上来,并通过地上室内采暖末端,为室内供暖。采用地源热泵供暖非常节能,通常地源热泵消耗1KW的能量,用户可以得到4KW以上的热量。 (二)优势 1. 高效节能: 与锅炉(电、燃料)供热系统相比,地源热泵系统的转换效率最高可达4.7 。而锅炉供热只能将90沖上的电能或70?90%勺燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3 以上的电能,比燃料锅炉节省1/2 以上的能量,运行费用为各种采暖设备的30-70%由于土壤的温度全年稳定在10C —20C 之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。夏季高温差的散热和冬季低温差的取热,使得土-- 气型地源热泵系统换热效率很高。因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。 2. 绿色环保 地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。 3. 分户计费

实现机组独立计费,分户计表,方便业主对整个系统的管理。 4. 使用寿命长 家用空调设计寿命8 年,燃气锅炉为10年;地源热泵机组为50 年,水循环和风管系统60 年以上,地耦管路系统为70 年,它比所有各种空调系统和采暖设备的寿命都要长。 5. 节省建筑空间、控制设备简单 地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。 6. 系统可靠性强 每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。机组的运行工况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜除霜之虑。 7. 同时供暖制冷 地源热泵系统可做到同时有的房间或区域制冷,有的房间或区域供暖,这对大型商业建筑尤其重要。采用传统中央空调系统只有使用造价极其昂贵的四管空调系统才能做到,而土-- 气型地源热泵不需增加任何设备便可做到。 8. 维护费用低廉 地源热泵系统不带有室外安装的设备,不设冷却塔、屋顶风机,没有室外设备安装维护费用。压缩机工作稳定,不会出现传统设备中制冷剂压力过高或过低的现象。其维护费用大大低于传统中央空调。 9. 远程中央控制智能化 远程控制智能化软件可以利用中央计算机控制整个系统,能够随人流变化而自动调整地热泵制冷或供暖,实现节能最大化,运行费用最小化。还可设置显示和打印设备,

相关文档