文档库 最新最全的文档下载
当前位置:文档库 › 热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析
热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析

桐庐好的大酒店有限公司方国明

内容摘要

冷(热)源来源经济与否直接关系建筑物空调的初投资与综合运行费用。本文以实际设计方案为例,对不同制冷机冷源与热泵热源来源方案进行了综合性经济分析、比较,从而得出结论:用“热源塔热泵”系统可实现冷暖空调卫生热水三联供,的确是一个经济合理的方案。

热源塔热泵夏季为高效水蒸发冷却热回收制冷机,可以向酒店提供免费卫生热水和桑拿热水;过度季节提供卫生热水时产生的冷量可满足、餐厅、娱乐及多功能厅冷负荷;冬季热泵的低品位热源来自高效宽带无霜热源塔系统,可有效地保障热泵供暖及卫生热水所需要的低品位热

源。

在无锅炉等辅助热源条件下,热源塔热泵经受住南方五十年一遇的冰冻期考验,室内供暖温度达到30℃。系统运行可靠维修量小,比混合源地源热泵冷(热)源减少60%左右的初投资,年减少综合经济费用11.6%。这种无需设计锅炉、水源和地埋管等辅助热源系统的热泵,初投资经济合理,室内外机械设备综合占地面积都比较小、节能效果明显,以及对周围环境影响符合国家环保标准的空调冷(热)源来源方式,值得和大家交流探讨。

关键词:热源塔、冷(热)源、热源塔热泵

1. 工程概况

桐庐大酒店位于城市发展的商业中心——杭州市桐庐县城区。桐庐大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210 m2。地下建筑面积:3160 m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。

单位面积冷指标为70.4W/ m2。单位面积热指标为58.5W/ m2。热水负荷为500KW。

2. 不同冷(热)源热泵方案初投资比较

2.1混合源地源热泵冷(热)源与初投资

系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬,

才能实现单项运行经济指标的高效。

系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之

间( 四川地源热泵示范工程)。采用混合源地源热泵机组及冷(热)源地源埋管系统的初投资为

710.00万元左右(详见表1)。

2.2空气源热泵冷(热)源与初投资

系统性能酷暑制冷,空气源热泵的制冷效率与室外气候有直接的关系,随室外温度的升高而降低,机组消耗功率随室外环境温度的升高而增加。空气温度35℃,出水温度7℃,空气源热泵制冷能效比EER值在2.5左右。隆冬供热,南方地区受特定地质与气候条件因素影响,成为冷暖气流对峙区“低温高湿”,空气中低品位“潜热”含量高,空气源热泵因构造缺陷,不能有效地利用低品位热源,持续期累计约50天左右(-5~2℃温度有近10天左右,2~5℃温度有近40天左右)。当空气源热泵迎面风速为2M/S时,室外空气干球温度在0~5℃,相对湿度>80%时结霜最为严重,此时平均每小时化一次霜,按现代技术不停机旁通换向化霜程序,一次化霜的时间不少于8分钟左右(包括室内反向取热)。空气源热泵在0~5℃条件下处于无霜至结满霜与半结霜状态下运行,供热性能下降35~40%;化霜减少的供热量达15~20%左右。因此,在最恶劣工况条件下空气源热泵机组的实际供热输出量,只有标准工况供热量的50%左右,供热性能系数

COP平均只有1.5左右。

系统初投资冬季酒店供热需求量为2500KW,选择空气源热泵方案,容量应按实际供热能

力确定为:

Q = Q0?δ + R Q0 为设定的标准供热量、δ为实际供热系数、R为辅助热源;

Q0 = 3800KW δ= 0.53 R = 500KW Q = Q0? δ+ R = 3800 * 0.53 + 500 = 2514KW 设计采用标准制冷量为3800KW空气源热泵机组加500KW辅助电加热装置,能够满足制热最不利工况下供热。根据涡旋压缩机构造不适应空气源热泵结霜后,长期处在高压差下运行,容易损坏等因素,应采用螺杆压缩机组,空气源热泵主机方案初投资为716.00万元左右(详见表1)。

2.3 热源塔热泵冷(热)源与初投资

系统性能热源塔热泵夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空气源热泵。由冷热源吸收设备——闭式热源塔和低位热源提升设备——低热源热泵组成。采用宽带小温差传热设计,比传统空气源热泵结霜温度下降了5~6℃,环境空气温度高于1.5℃以上时属于无霜运行期,减少了85%的结霜机率。当环境空气温度低于1.5℃以下时累计时间约10天左右,为防止零下温度湿空气遇蒸发器结霜,系统设计了负温度防霜系统,自动喷淋环保防冻溶液降低换热器表面冰点,待低温期过后采用浓缩装置分离水份,保障了热源塔热泵在最恶劣工况下0~5℃供热

性能系数COP值不低于3.2。

系统初投资冬季酒店供热需求量为2500KW,选择热源塔热泵方案,容量应按实际供热能

力确定为:

Q = Q0?δ + R Q0 为设定的标准制冷量、δ为实际供热系数、R为辅助热源;

Q0 = 3450KW δ = 0.75 R = 0KW Q = Q0?δ + R = 3450 * 0.75 + 0 = 2587KW 设计采用标准供热量为3450KW热泵热水机组,能够满足制热最不利工况下供热。系统应采用满液式螺杆压缩机组,热源塔热泵及冷(热)源初投资方案为445.00万元左右(详见表1)。

2.4不同冷(热)源及机组配置初投资分析表

小结:混合源地源热泵冷(热)源与初投资710.00万元左右;空气源热泵方案初投资为716.00万元左右;热源塔热泵及冷(热)源初投资方案为445.00万元左右,是三个空调方案中最

低的。

3. 不同冷(热)源热泵方案能耗比较

在对方案进行综合经济性比较时,首先应注意比较基准的基本一致。应用相同设备档次、能源价格等基准条件进行比较,才能保证比较结果的科学性和合理性。对比方案全部采用满液式

螺杆机组。

小结: 酒店平均电价为0.815元/kwh,酒店为度假旅游服务,冬季为服务淡季。具体能耗

如下:

① 混合源热泵方案系统耗电为2249330 kwh,能耗为2249330×0.815=1833203元(183.32

万元);

② 空气源热泵方案系统耗电为3195532 kwh,能耗为3195532×0.815=2604358元(260.44

万元);

③ 热源塔热泵方案系统耗电为2321101 kwh,能耗为2321101×0.815=1891697元(189.17

万元)。

4. 不同冷(热)源热泵方案选择与确定

4.1 混合源地源热泵方案最初的设计方案是采用地下水源热泵机组,由于项目建筑红线建筑范围内,场地基础地质岩体广布,地质构造复杂,经水文地质勘测找不到足够的地下水源来作为热泵系统的冷(热)源,而地源土壤源打孔费用和机组造价高达710.00万元左右,对比其它节能空调系统增加初投资26

5.35 万元,年支付贷款利息为27.76万元,全年节能回报只有5.85万元左右。且本项目又处在市中心,没有足够可利用的空地打孔。因此,地下水源、地下土壤源冷(热)源方案虽然节能,没有成熟可靠的条件使用。更何况节能费用尚不能抵消增加的初投资贷

款利息。

4.2 空气源热泵方案在地源热泵方案被否定后,考虑采用空气源来作为来作为热泵系统的冷(热)源方案。夏季,空气源热泵的冷源来自空气冷却,空气源动力风机的噪声也会对周边环境及酒店自身产生影响,冷却效果受“高温酷暑”环境温度影响,最恶劣工况时能效比只有EER=2.5左右,比水蒸发冷却增加了近一倍的能耗。冬季,空气中低位“潜热”含量高,空气源热泵因构造缺陷不能有效地利用低位热源,结霜降低机组换热效率,而除霜既要耗能又影响连续供暖能力;当室外温度过低,会使机组保护停机不能正常工作,即使可以工作,其效率也很低,影响酒店的正常经营。而其空气源热泵螺杆机组造价高达716.00万元左右,对比其它节能空调

系统增加初投资271.65万元,年支付贷款利息为28.4万元,全年能耗对比其它节能空调系统增

加71.27万元左右。

4.3 热源塔热泵方案经慎重考虑科学论证后,最后提出一种介于水冷却制冷机节能与无霜空气源热泵之间的组合制冷与热泵系统。经多方面研究与网上市场调查了解到,热源塔热泵可有效地解决了地下水源热泵无水源,地源土壤源热泵造价高,传统风冷热泵夏季制冷能耗高、冬季供热翅片换热器易结霜降低换热效率、化霜耗能等问题,造成供热能耗高。热源塔热泵夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空气源热泵,经受住南方五十年一遇的冰冻期考验,客房供暖温度达到30℃。热源塔热泵冷、暖空调和热水三联供一机三用,无需辅助热源,节能环保、高效,且初投资合理,热源塔热泵冷(热)源系统造价为44

5.00万元左右,与其它热泵方

案对比如下:

① 对比混合源地源热泵方案减少初投资265.35 万元,减少年还贷利息27.76 万元,能耗

增加5.85万元,实际比混合源地源热泵方案年减少21.91万元的费用。

② 对比空气源热泵方案减少初投资271.65 万元。减少年还贷利息28.41 万元,年节能耗

减少71.27万元左右,实际比空气源热泵方案年减少99.68万元的费用。

5. 结论

通过不同对热泵及冷(热)源系统方案进行的综合经济分析不难看出,热源塔热泵冷(热)源系统作为大中型建筑物(特别是酒店服务业)中央空调系统的冷(热)源具有明显的初投资低、节能和性能稳定优势。不受区域地质及自然环境的限制,在气候适宜的长江流域以南地区可在冬、夏过度季节共用,省去了锅炉设备、水源和地埋管等辅助冷(热)源系统,符合我国南方地理情况。

一机三用,设备利用率高。

热源塔夏季制冷具有比冷却塔更好的冷却效果,较低的风速令人满意的噪音;冬季热源塔由于采用了宽带小温差传热设计,吸取低品位热源能力比窄带空气源热泵换热器结霜温度下降了5~6℃,减少了85%的结霜机率。在环境负温度运行期间,设计有喷淋防霜系统以及旋流汽液分

离消噪系统,有效地控制了对环境的污染。

热源塔热泵系统全年可比空气源热泵年节约综合运行费用61% 左右,减少初投资271.65万元;比混合源地源热泵系统年节约综合运行费用11.6% 左右,减少初投资265.35万元。因此,热源塔热泵系统在大中型建筑中可以广泛地应用。

参考文献:

1.《热泵市场》杂志“热泵暴雪天如何过冬”(冰冻期热源塔热泵供暖记实)记者郭星

成 P32

2. 建设部“第二届地热能开发利用与热泵技术应用交流会”会刊

2.1 建筑空调节能减排的多元性作者鲍士雄上海交通大学 P49

重点:“冷却塔取热技术”

2.2 四川浅层地热能资源开发利用条件分区作者江波四川省地堪院 P63

重点:“每米地埋管造价120—200元/米”

2.3 南方热源塔热泵可再生能源节能环保综述作者刘秋克热源塔热泵研究

所 P76

2.4 南方地源热泵与热源塔热泵经济性能分析作者刘秋克热源塔热泵研究

所 P81

3.《筑龙网》空气源热泵在南京的应用作者张建忠龚延风杜垲

4. 宁波市工程设计研究院热源塔热泵技术研究所

空调冷热源的选择

空调冷热源的选择 暖052 苏毅 2104080512101

空调冷热源的选择 影响空调冷热源方案决策的因素很多,要选择一个最优的设计方案,我们需要综合考虑各种因素的影响。一般情况下,选择冷热源方案时应考虑以下因素: 1.初投资。不同冷热源方案的初投资有较大差别,在选择方案时应进行仔细的分析比较。 2.运行费用。其中包括运行能耗,运行管理费,设备维修费等。空调运行能耗在建筑能耗中占有很大比例,空调运行过程中的管理人员工资、设备故障维修费等都是应该在冷热源选择时考虑的因素。 3.环境影响。为了解决环境污染问题,保护环境已经成为我国的一项基本国策。 4.运行的可靠性、安全性、操作维护的方便程度、使用寿命。 5.机房面积,燃煤锅炉房要求的储煤、渣面积,储油条件等。 6.增容费。各城市根据其发展情况以及地理位置,对不同能源设定不同的增容费,而且数量一般也是比较大,因此也是项重要的考虑因素。 冷热源的选择依据不仅包括系统自身的要求,而且还涉及工程所在地区的能源结构、价格、政策导向、环境保护、城市规划、建筑物用途、规模、冷热负荷、初投资、运行费用以及消防、安全和维护管理等许多问题。因此,这是一个技术、经济的综合比较过程,必须按安全性、可靠性、经济性、先进性、适用性的原则进行综合技术经济比较来确定。在进行冷热源选择论证时,应遵循一些基本原则。 1.热源应优先采用城市、区域供热或工厂余热。高度集中的热源能效高,便于管理,有利于环保。 2.热源设备的选用应按照国家能源政策并符合环保、消防、安全技术规定,大中城市宜选用燃气、燃油锅炉,乡镇可选用燃煤锅炉。 3.若当地供电紧张,有热电站供热或有足够的冬季供暖锅炉,特别是有废热、余热可利用时,应优先选用溴化锂吸收式冷水机组作为冷源。 4.当地供电紧张,且有燃气供应,尤其是在实行分季计价而价格比较低廉的地区,可选用燃气锅炉、直燃型溴化锂吸收式冷(热)水机组作为冷热源。 直燃型溴化锂吸收式冷(热)水机组与溴化锂吸收式冷水机组相比,具有热效率高,燃料消耗少,安全性好,可直接供冷或供热,初投资、运行费和占地面积少等优点,因此在同等条件下特别是夏季有廉价天然气可利用时,应优先选用直燃型溴化锂吸收式冷(热)水机组。 5.若当地无上述的区域供热或工厂余热,也没有燃气供应时,可采用燃煤、燃油锅炉供热,电动压缩式制冷机组供冷,或选用燃油型直燃式溴化锂吸收式制冷机作为冷热源。 6.若当地供电不紧张时,空调冷源应优先选用电力驱动的制冷机。 7.根据建筑物全年空调负荷分布规律和制冷机部分符合下的调节特性系数,合理选择制冷机的机型、台数和调解方式,提高制冷系统在部分负荷下的运行效率,以降低全年总能耗。 8.选用风冷型制冷机组还是水冷型制冷机组需因地制宜,因工程而异。一般大型工程宜选用水冷机组,小型工程或缺水地区宜选用风冷机组。 9.冷水机组一般选用2-4台,机组之间考虑互为备用和轮换使用的可能性。从便于维护管理的角度考虑,宜首先选用同类型同规格的机组,从节能角度考虑,可选用不同类型不同容量机组搭配方案。 10.具备多种能源的大型建筑,可采用复合能源供冷、供热。当影响能源价格因素比较多,很难确定利用某种能源最经济时,配置不同能源的机组通常是最稳妥的方案。 11.夏热冬冷地区、干旱缺水地区的中小型建筑,可采用空气源热泵或地下埋管式地源

冷热源方案比较

某广场冷热源方案比较 1 项目概况 1.1项目名称:某广场 1.2 开发商(甲方):某广场投资有限公司 1.3项目位置:本工程为某广场项目, 1.4项目概况:本工程为某广场项目,由购物中心、商铺、住宅、公寓、配套物业组成。大商业建筑面积为17.94万平方米。 1.5 建筑层数: a. 购物中心地上最高六层,地下二层。 b.公寓,地上暂定27层, 地下2层。 c. 住宅地上33层,地下2层。 d. 室外步行街及底商:地上2层。 1.6 某广场室外气象参数: 冬季:采暖室外计算干球温度:-4℃ 通风室外计算干球温度:4℃ 空调室外计算相对湿度:71% 冬季平均室外风速:3.3m/s 大气压力:1024.1Kpa 夏季:空调室外计算干球温度:32℃ 空调室外计算湿球温度:28.1℃ 通风室外计算干球温度:35.6℃ 夏季空调日平均温度:29℃ 夏季平均室外风速:2.3m/s 大气压力:1002.3Kpa

1.8某广场广场空调系统冷热负荷情况如下: 序号项目 分区业态建筑 面积(m2)建筑面积冷负荷指 标(W/m2) 建筑面积热负 荷指标(W/m2) 总冷负荷 (kW) 总热负荷 (kW) 1 超市15000 180 50 2700 750 2 万千百货28800 180 50 5184 1440 3 商业综合体 92000 m2 总冷负荷: 14138(kW) 总热负荷: 3930(kW) 室内步行街 40000 220 65 8800 2600 娱乐楼 17500 220 45 3850 788 国美 3000 180 45 540 135 酒楼3000 300 60 900 180 商管 1100 100 90 110 99 地下车库48200 4 小计156600 22084 5992 商业综合体包括步行街、综合楼、娱乐楼,地下一层国美等,不包括步行街外铺。 2 投资分析: 2.1某广场空调冷热源方案的提出: 经上述分析并结合当地实际情况,我司给出以下三个可行的空调冷热源方案: 2.1.1 方案 A:电制冷机组(夏季制冷使用)+燃气锅炉, 满足整个商业综合体夏季制冷,冬季制热功能要求。 2.1.2 方案 B: 燃气溴化锂冷热水机组(夏季制冷,冬季制热使用), 满足整个商业综合体制冷,制热功能要求。 2.1.3 方案 C: 某广场物业部分采用地源热泵+电制冷+燃气锅炉联合运行, 超市和百货部分冷热源配置同方案一。

冷热源设计方案的比较知识分享

冷热源设计方案的比 较

一、项目概况 金沙江大酒楼规划总建筑面积约11279.16平方米,总用地面积为2295.8平方米;宾馆总建筑面积为5484.4平方米。主楼高43.8米。 二、论证依据 《采暖通风与空气调节设计规范》GB50019-2003 《高层民用建筑设计防火规范》GB50045-95(2001年版) 《建筑设计防火规范》GBJ16-87 全国民用建筑工程设计技术措施》-《暖通空调·动力》分册 三、项目冷热负荷预估 冷热源系统需要提供的冷热负荷如下: 夏季冷负荷:745kW 冬季供暖通风热负荷:335kW 根据项目使用功能的划分,商铺的冷热负荷主要发生在白天营业时间,夜间不需要;酒店客房的冷热负荷全天都有;办公室的冷热负荷也主要发生在白天上班时间。因此在确定冷热源方式时,不光要考虑到冷热源的负荷大小,还必须考虑到冷热源的使用搭配和调节,以便为今后的经济运行创造条件。四、方案的确定 冷热源设计方案一直是需要供冷、供热空调设计的首要难题,根据中国当前各城市供电、供热、供气的不同情况,空调冷热源及设备的选择可以有多种方案组合,如何选定合理的冷热源组合方案,达到技术经济最优化,是比较困难的。

一般说来,选择冷热源方案所要考虑的主要因素一般有以下几点: 从技术方面考虑,主要是设备运行的可靠性,技术先进性,节能性,结构紧凑性,安装操作维修方便性,噪声振动性、环保性等。 从经济方面考虑,在选择空调冷热源设备时,需要对设备的初投资和运行费用进行综合分析。 下面提供四种方案进行论证: 方案一:电制冷机组+电热水机组。 方案二:燃气三用直燃机,提供冷冻水、暖通用热水和生活热水 方案三:地下水水源热泵冷热水机组,提供冷冻水、暖通用热水和生活热水方案四:电制冷机组+市政热网 方案一:电制冷机组+电热水机组近些年来电力供应越来越充裕,电气设备得到广泛的运用,电力机组也在空调领域运用得越来越广泛。电制冷机组供应冷冻水,电热水机组供应热水和生活热水,可以充分满足各方面的使用要求。电制冷机组的选用可根据使用情况大小搭配,选用螺杆式冷水机组。考虑到工程所在地区(广州)冬季温度比较高,所以冬季选用电热水机组。此方案设计使机房设计紧凑,系统简单。 方案二:燃气三用直燃机可以利用一种设备同时满足供冷、供暖和供生活热水的需求,可以节省机房面积,减少对电力的需求,污染物排放量也较小,比较适用于环保要求高、地价昂贵、电力增容费较高的场所。前些年,由于供电紧缺直燃机非常流行,近些年来因为供电充裕、油价上涨直燃机的使用越来越少。

热源塔热泵技术

热源塔热泵技术 1、热源塔热泵系统原理 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品。热源塔利用低于冰点载体介质(乙二醇溶液)能高效地提取冰点以下的湿球水体显热能,通过热源塔热泵机组输入少量高品位能源,实现冰点以下低温位热能向高温位转移。对建筑物进行供热和制冷以及提供热水的技术。 热源塔热泵空调系统是针对中国南方地区冬季气侯、气象条件的特殊因素,阴雨联绵,潮湿阴冷,空气湿度大,传统风冷热泵在冬季供热时结霜严重,融霜耗电大,热泵效率低,达不到舒式的供热温度,而采用矿物燃料为辅助供热时即不卫生又污染环境,开发的国际领先的热泵空调工程技术。热源塔是按照供热负荷能力设计的换热面积,满足高效提取冰点以下低温位能可再生能源要求。 说明:南方地区在整个冬季基本多处于无日照寒湿阴冷气侯环境。阴雨天夜间空气湿度越大,风冷热泵供热效果越差(室内空气温度低湿度高,人体散失潜热量多而感到阴冷);相反,阴雨天夜间空气湿度越大,热源塔热泵供热效果相对越好(室内空气温度高湿度低,人体散失潜热量少而感到暖和),主要是湿球温度与干球温度相差很小,湿球所含显热高的缘故。 热源塔热泵水—水区域空调系统供热工艺原理图 1.热源塔 2.热源泵 3.换向站 4.热泵机组 5.换向站 6.末端设备 7.变频负荷泵 8.溶液池 9.膨胀水箱

热源塔热泵混合空调系统供热工艺原理图 1.热源塔 2.住宅区总热源泵 3.网点区热源泵 2、热源塔热泵系统特点 冷热源单项节能25%~30% 冬季,由于充分利用了南方气候、气象条件的特殊因素,阴雨联绵,潮湿阴冷,湿球温度高储藏的巨大能量的特点,热源塔提取低品位能性能稳定,整个冬季机组的性能系数COP可在3.0~4.0范围内变化。 夏季,由于热源塔是按照冬季提取显热负荷能力设计的,转化为冷却塔后有足够地蒸发面积可承受瞬间高峰空调余热负荷,冷却水温低效率最高、节能,机组的能效比EER 可在4.2~4.5范围内变化。 相比南方风冷热泵中央空调可节能25%~30%;同南方土壤源热泵空调相比节能效果相同。热源塔提取低品位能不受能量储藏的限制,可为宾馆酒店提供充足生活热水——低品位能来源。 综合设计节能50%~60% 热源塔热泵技术——是空调节能工程设计与空调节能机组设备组合的工程系统产品,空调节能工程设计主要有:冷(热)源优化设计节能、按商用空调使用功能优化区域控制节能、按户式空调使用功能优化单元个性控制节能、变水流量或变制冷剂流量设计节能、按负荷变化模块化机组节能、按使用功能单元个性化热源塔热源塔单体机及多联体机节能。 经湖南业主实际测算空调系统采用热源塔热泵综合节能技术,比传统空调综合节能率达

冷热源设计方案的比较

一、项目概况 金沙江大酒楼规划总建筑面积约平方米,总用地面积为平方米;宾馆总建筑面积为平方米。主楼高米。 二、论证依据 《采暖通风与空气调节设计规范》GB50019-2003 《高层民用建筑设计防火规范》GB50045-95(2001年版) 《建筑设计防火规范》GBJ16-87 全国民用建筑工程设计技术措施》-《暖通空调·动力》分册 三、项目冷热负荷预估 冷热源系统需要提供的冷热负荷如下: 夏季冷负荷:745kW 冬季供暖通风热负荷:335kW 根据项目使用功能的划分,商铺的冷热负荷主要发生在白天营业时间,夜间不需要;酒店客房的冷热负荷全天都有;办公室的冷热负荷也主要发生在白天上班时间。因此在确定冷热源方式时,不光要考虑到冷热源的负荷大小,还必须考虑到冷热源的使用搭配和调节,以便为今后的经济运行创造条件。 四、方案的确定 冷热源设计方案一直是需要供冷、供热空调设计的首要难题,根据中国当前各城市供电、供热、供气的不同情况,空调冷热源及设备的选择可以有多种方案组合,如何选定合理的冷热源组合方案,达到技术经济最优化,是比较困难的。 一般说来,选择冷热源方案所要考虑的主要因素一般有以下几点: 从技术方面考虑,主要是设备运行的可靠性,技术先进性,节能性,结构紧凑性,安装操作维修方便性,噪声振动性、环保性等。 从经济方面考虑,在选择空调冷热源设备时,需要对设备的初投资和运行费用进行综合分析。 下面提供四种方案进行论证: 方案一:电制冷机组+电热水机组。 方案二:燃气三用直燃机,提供冷冻水、暖通用热水和生活热水 方案三:地下水水源热泵冷热水机组,提供冷冻水、暖通用热水和生活热水 方案四:电制冷机组+市政热网 方案一:电制冷机组+电热水机组近些年来电力供应越来越充裕,电气设备得到广泛的运用,电力机组也在空调领域运用得越来越广泛。电制冷机组供应冷冻水,电热水机组供应热水和生活热水,可以充分满足各方面的使用要求。电制冷机组的选用可根据使用情况大小搭配,选用螺杆式冷水机组。考虑到工程所在地区(广州)冬季温度比较高,所以冬季选用电热水机组。此方案设计使机房设计紧凑,系统简单。 方案二:燃气三用直燃机可以利用一种设备同时满足供冷、供暖和供生活热水的需求,可

冷热源方案比较

冷热源方案比较 可选方案类型: 1、水冷机+市政热源 2、风冷热泵 3、多联机 4.水源热泵机组 现对各种冷热源的优缺点做如下比较: 一、水冷机+市政热源 优点: 1.设备放置集中,管理方便。 2.初投资较低。(250元/平米左右)(不包括市政热源开口费)。 3.制冷机制冷效率较高,运行费用较风冷热泵低。 缺点: 1.主机及辅助水泵、水处理设备均需要专属制冷机房,市政热源需要换热用换热器及辅助水泵、水处理设备,需要专用设备机房,一般放置于地下室,无地下室时,需要专门的设备机房(一般放置于裙房或者单建设备用房) 2.主机需配置冷却塔,冷却塔需露天放置(可放置于屋面或者地面) 3.制冷机负荷适应性较多联机差。 4.冬季供暖运行受市政热源限制,必须符合市政供热时间段(11月至3月)。 大概峰值用电量:9000m2×100W/m2×,需要设置200kVA专用变压器。 二、风冷热泵(模块机)

优点: 1.不需要单独设置机房,机组可放置于屋顶及室外空地。 2.初投资较低。(300元/左右平米)。 缺点: 1.冬季供热能力随着室外温度的降低而下降,满足不了冬季用热。如彻底解决这种情况, 需要设置辅助电加热,导致选择变压器容量大极大增加运行费用。 2.运行费用高于VRV多联变频系统。 3.水系统管道较多联机大,会占用高度空间,所以对建筑层高有要求。 4.室外机放置区域噪声大,荷载重(放置于屋面对结构有影响)且夏季排热较多。 大概峰值用电量:9000m2×100W/m2×,需要设置400kVA专用变压器。 三、VRV(多联变频系统) 优点: 1.部分负荷或者部分功能分区需空调时主机运行效率较高,运行费用比风冷热泵低,且综合空调季因为符合适应性最强,较水冷机 +市政热源运行费用也低。2.室外机可放置于屋顶,室外空地或者每层预留的设备机房内。 3.制冷剂管道比较小且布置灵活,占用室内吊顶空间极少,对建筑层高影响最小。 4.可实现分层或者分区域控制,对机组的效率影响较小。 5.施工周期短。

空调冷热源具体实施方案模板总结模板计划模板大全.doc

空调冷热源方案大全 一、常规电制冷空调系统 目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: 1)系统简单,占地比其他形式的稍小。 2)效率高, COP(制冷效率)一般大于 5.3。 3)设备投资相对于其它系统少。 不足之处: 1)冷水机组的数量与容量较大,相应的其他用电设备数量、容量也增加,运动设备的增加加大了维护、维修工作量。 2)总用电负荷大,增加了变压器配电容量与配电设施费。 3)所使用电量均为高峰电,不享受峰谷电价政策,运行费用高。 4)在拉闸限电时出现空调不能使用的状况。 5)运行方式不灵活,在过渡季节、节假日或休息时间个别区域供冷,需要开主机运行,形成大马拉小车,浪费了机组的配置能力,增加了运行费用。

6)对于大型区域供冷系统较难实现较好的供冷(供水温度不能降低),管网的投 资大、输送能耗高、空调品质差。 二、冰蓄冷空调系统 冰蓄冷空调是在常规水冷冷水机组系统的基础上减小制冷主机容量增加蓄冰装 置,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时释 放出来。该技术在二十世纪 30 年代开始应用于美国,在 70 年代能源危机中得到发达 国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况 来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000 ㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷 空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移 1KW 高峰电 力,一次性奖励 2000 美元,美国一次性奖励 500 美元,等等。 中国也加大对蓄能技术的推广力度,国家计委和经贸委特地下达《节约用电管理办 法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。 湖南良源自动化(自动化系统集成商,黄 136.7748.O898)的工程师们多年来一 直致力于该系统的电气自动化节能改造 ,愿为中央空调节能事业贡献自己的一份力量。 冰蓄冷中央空调代表当今世界中央空调的先进水平,预示着中央空调的发展方向, 有如下特点: 优点: 1)减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电 容量与配电设施费。 2)冷主机制冷效率高(COP 大于 5.3),同时利用峰谷荷电价差,大大减少空调年 运行费,可节约运行费用35%以上(与热泵和溴化锂空调形式比可以节约40%以上)。3)减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免 双线路的高可靠性费用,节约投资。 4)使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 5)可以为较小的负荷(如只用个别办公室)融冰定量供冷,而无需开主机。 6)在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况, 运行更合理,费用节约明显。 7)具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备 带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现 空调不能使用的状况。

热源塔热泵在夏热冬冷地区的应用

太阳能次生源热源塔热泵技术在夏热冬冷地区的应用 湖南大学土木工程学院热源塔热泵研究中心刘秋克李念平成剑林 湖南秋克热源塔热泵科技工程有限公司殷浪刘博城蔡继辉 摘要在研究国内外冷却塔采热热泵技术不适应我国南方夏热冬冷气候条件下运行的基础上,由国内QIUKE科技以6项中国发明专利和1项美国发明专利重新定位,以吸收和提升低温位热源为单位的设计制造定义为“太阳能次生源热源塔热泵”简称(热源塔热泵)。2008年初我国南方遭受了五十年一遇的冰冻期,热源塔热泵经受了恶劣气候环境下严峻考验,供暖温度超过28℃。热源塔热泵堪称为百年空调重大突破,在全球属于发展初期应用较少,但确已顽强的生命力崛起被人类逐渐步接受。热源塔热泵在夏热冬冷地区与其它热泵空调和化石能源空调相比较,具有效率更高、使用限制条件比较少的特点。 关键词热源塔热泵、地源热泵、冷热源、太阳能次生源、可再生能源 引言 对于我国夏热冬冷地区舒适性空调,一般应满足夏季制冷和冬季供暖两种功能。在传统的建筑物中因气候因素和经济发展等原因,一般只需考虑夏季制冷问题。但随着人们生活水平的提高和促进工作和生产效率的提高,对空调的舒适度要求较高,需要满足建筑物冬季供暖的场所需求倍增。对于冬季供暖有需求的建筑物,如果设计仅仅考虑空调冷源问题,而不重视空调热源的选择采用电辅和化石能源,将造成冬季空调能源消耗过大,从而造成全年空调能耗偏高和终端用户高排碳污染环境。 在传统空调热源方案中,通常需分别设置冷源(制冷机)和热源(锅炉或电辅热)。由于用高温位的化石能源去生产中位热能,其存在能源效率很低和环境污染问题,所以空调热源的来源方式应逐步的由传统化石能源锅炉转化为应用太阳能次生源作为热泵的热源,能源效率高更加环保。 本文结合技术的起源和基本原理与工程实例,介绍一种在夏热冬冷地区综合经济性能比较突出的空调冷(热)源系统——太阳能次生源热源塔热泵空调技术。 1、能源来自太阳能次生源太阳能次生源广义的解释,太阳能以辐射能形式加热了地球表面,地球吸收了太阳能后所产生的一系列热能存储与释能及质的转换,形成可再生利用的新能源均为太阳能次生源。能够用于建筑物冷热空调的太阳能次生源包括:地源热泵所用的热源、空气源热泵所用的热源和制冷所用的蒸发冷却(太阳能辐射给地球的热量反射给空气所形成的干湿球差才存在液体蒸发现象)等。其他例如风能、海洋能、气候变化等等都是来自太阳能次生源。 2、热源塔定义的起源以热源塔定位用作吸收低温位冷(热)源技术的起源可追溯到日本20世纪80年代,采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,日本取名为采热塔/加热塔,国内暖通会议取名为冷却塔采热,有的厂家也称之为能源塔。由于是冷却塔结构没有改变,存在溶液随时被稀释导致运行的不稳定和设备腐蚀及立体空间污染问题,在此基础上QIUKE科技重新定位确立正确的研发方向,以吸收低温位热源为单位的设计制造,定义为“热源塔”,2005年在全国科技网上招标。 2.1开式冷却塔即时吸收热源存在的问题采用冷却塔加氯盐溶液曝气循环吸收空气中的低温位热源,在工程实际应用中设备严重腐蚀、水质环境污染、立体空间环境空气污染严重。 2.1.1冷却塔取热效率低,冷却塔是以汽化蒸发潜热能为主构造的换热设备,用于冬季吸收显热能时即使放大冷却塔容量吨位来配置,显然也是换热面积不足传热温差大,溶液温度低导致热泵蒸发温度低,热泵供热性能下降。加之采用的热泵大温差传热,蒸发温度低,需要高浓度的氯盐类作为循环介质,曝气循环溶解氧增加加速氯盐对设备的腐蚀性。 2.1.2溶液浓度高不可再生利用,在低温高湿气候期持续时间长达90天,需要将稀释后溶液排放掉补充原液维持浓度,造成了河道水环境污染。氯盐类溶液飘雾污染腐蚀周围环境的钢结构。

冷热源方案

河北出版传媒创意中心项目空调方案说明 一、项目概况 本项目位于正定新区隆兴大道以南,天津大街以东,其中在建部分为办公A区部分,建筑面积为69806.63㎡,地下2层,地上23层,总高度99.65m;其中中央空调设计面积为44873㎡,根据设计院给出的数据,夏季空调冷负荷5170Kw,冷指标109w/㎡;冬季空调热负荷为3535KW,热指标为75w/㎡。 二、现场分析 1、负荷分布情况:本工程为现代化办公楼,功能区域包括展览区、大堂、演艺厅、小剧场、排练厅、食堂、餐厅等部分,分布在负一层至五层之间。此部分热负荷约为1000Kw,冷负荷约为1800Kw。考虑到具体使用情况此部分负荷按照一半考虑。六层至二十为办公区,热负荷约为2100Kw,冷负荷约为2700Kw。二十一层至二十三层为高管办公休息区,热负荷约为400Kw,冷负荷约为600Kw。 2、地质情况:根据之前热能勘测打井结果,本地区打井深度约为100到120米。 3、可使用地源热泵埋管面积:项目东南侧可使用面积约5400平米,可打井320口;周汉河内可使用面积约9300平米,可打井580口。 三、方案设计 情况一,周汉河内可以打井埋管,土方工程量大,约10万方。 方案一:采用地源热泵(埋管)提供冷热源。 利用以上两块土地,可打井900口,能满足最大时冷热负荷制冷采暖要求,因夏季像土壤排热量大于冬季向土壤的吸热量,所以为了保证土壤的热平衡性,夏季需要增设冷却塔,用以保证土壤的持续利用性。 情况二,周汉河内不考虑打井埋管,则适合埋管面积只有项目东南侧绿化带,约可打井300余口,冬季可满足1100Kw热负荷,夏季可满足1500Kw冷负荷的使用要求。其余部分采用其它形式提供冷热源。据此设计方案如下。

空调冷热源方案经济技术比较

空调冷热源方案经济技术比较 1、工程简介 本项目用地位于湖北宜昌市东站片区,总建筑面积为6487㎡,一层面积为3420㎡,二层面积为3066㎡。第一层主要为多功能厅、会议室门厅,二层主要为会议室。 2、冷热源方案配置及主要设备选型 2.1 选型原则 空调冷热源方案选择应按照国家能源政策和符合环保、消防、安全技术规规定建筑性质以及根据当地能源供应情况来选择。应以电和天然气为主,大中城市宜选用燃气、燃油锅炉,乡镇可选用燃煤锅炉。 若当地供电紧张,有热电站供热或者有足够的动机供暖锅炉,特别是有废热余热可以利用时应该优先选择溴化铝吸收式制冷机组。 按照性能系数高低来选择制冷设备的顺序为:离心式、螺杆式、活塞式、吸收式和涡旋式。 此外还应该考虑产品冷量调节范围、水资源状况、噪声、外形尺寸、电源的电压等级、占地、重量、无故障运行周期、服务质量等多种因素。 2.2 备选方案的确定 通过鸿业负荷计算软件7.0计算得出该项目空调冷负荷为740kW,应甲方要求主要提出两种冷热源方案进行对比: 方案一:螺杆式冷水机组+锅炉 方案二:风冷热泵 各方案主要见设备表1、2。 表1 方案1的主要设备

表2 方案2的主要设备 3 方案比较 3.1 初投资比较 初投资包括设备费和安装调试费。设备费主要包括主要设备和辅助设备费用,方案1的辅助设备费用按照热源主设备费用的30%计算。设备安装调试费用按照设备费用的25%计算。 表3 各方案的初投资(万元)

3.2 年经营费用比较 年经营费为固定费与运行费之和。固定费包括用设备折旧费、占有空间费和利息等。将初投资P 折成等额年金,即固定费A : (1)(1)1 n n i i A P i +=*+-∑ 式中:i ——年利率(按5.875%计); n ——折旧年限。 设备及安装费折旧年限对不同形式主机取不同年限:方案1取20年;方案2取15年(残值不计)。各方案固定费用计算结果见表4。 表4 各方案固定费用 (万元) 运行费用包括能耗费(水费、电费、燃料费)、维修费、人工费等。其中水价按1.5元/t 计算,电价按照0.87元/kWh 计算,油料(燃气)价格按照2.43元/m 3计算,冷却水系统补水量取冷却循环水量的2%。每天运行24小时,平均运行系数取0.7,供冷期为120天,供热期为120天。维修费按照设备费用的6%计算,各方案人工费相差无几,在此不计。 各方案运行费见表5,各方案年经营费用见表6。 表5 各方案年运行费

热源塔热泵系统的原理及其应用

热源塔热泵的原理及其应用 摘要:热源塔空调系统,是针对中国南方地区冬季潮湿阴冷,空气湿度大,传统空调风冷热泵在冬季供热时严重结霜,融霜耗电大,热泵效率低,而采用燃油、燃气、煤为主供取热时,其能耗高又污染环境,在这种背景下开发地具有国际领先水平的热泵空调设备及系统工程技术。本文介绍了热源塔热泵系统的原理、特点及热源塔热泵系统的选择和应用。 关键字:热源塔;热泵机组;低温高湿 0.背景 在我国南方地区,尤其在冬季,该区域没有北方的集中供暖,较多采用电加热或电热辅助以及燃油、燃气锅炉等方式供暖,高品位能源消耗较大。同时,由于特殊的气候条件,形成了冬季室外空气“低温高湿”的特点,使得目前此区域内较常使用的空气源热泵系统室外换热器难以维持在干工况运行且结霜严重,各项性能系数大大降低。针对此地区气候特点,结合空气源热泵及水冷机组用冷却塔的优点,为改善室外换热器湿工况运行的不利条件,同时利用冬季湿空气显热及水蒸气相变潜热并推迟室外侧翅片表面结霜时间,开发出了一套名为热源塔热泵的新型热泵系统。 1.热源塔热泵系统的原理 热源塔是利用水和空气的接触,冬季制热是按照供热负荷能力设计的换热面积,利用冰点低于零度的载体介质,高效提取低温环境下的相对湿度较高的空气中的低品位热能,通过向热源塔热泵机组输入少量高品位能源,实现低温环境下低品位热能向高品位转移,对建筑物进行供热以及提供热水。夏季制冷,通过蒸发作用来散去空调中产生的废热的一种设备。 1.1 热源塔的构成和分类 从构造上看,热源塔主要由围护构架、旋流风动系统、低温高效换热器、汽液分离系统、凝结水分离系统、低温防霜系统(如图1所示)组成。其中,围护构架包括塔体框架、顶部的出风筒,侧壁的围护板及进风栅;旋流风动系统由位于风筒内部的变速电动机控制装置和斜射旋流风机组成;低温高效换热器由围护构架内部的高效肋片、换热管、进液口及出液口构成;低温高效换热器上方设有由斜流折射分离器和斜射旋流分离器构成的汽液分离系统;低温高效换热器下方设有由接水盘、凝结水控制装置和溶液控制阀构成的凝结水分离系统;还设有由溶液池、喷淋泵控制装置、喷淋器构成的低温防霜系统。当空气经低温高效换热器表面逆向流通时,形成传热面与空气之间的显热与潜热交换,获得低于环境温度2~3℃的溶液作为热源塔热泵的低品位热源。消噪汽液分离器可有效地分离负压条件下产生的水分和降低风机运行时产生的噪声。 热源塔的核心技术是溶液浓缩装置。冬季阴雨连绵期间,热源塔防冻液膜直接与空气进行显热与潜热交换的同时,凝结了空气中的水分,使防冻溶液浓度降低,冰点上升。而浓缩装置的作用是将稀释的防冻液浓缩,使冰点下降。

于中央空调冷热源方案选择要点1

关于空调冷热源方案选择的若干要点 中央空调系统一直是整个项目中的能耗大户,空调冷热源方案的选择是一个直接关系到空调工程项目的成败和经济效益优劣的重要问题。近年来,随着科学技术的迅速发展以及对节能和环保要求的不断提高,暖通空调领域中新的设计方案大量涌现,同一个设计项目,往往可以有几种、十几种不同的冷热源设计方案可以选择,如何对冷热源方案进行科学的比较和优选,是一个涉及面广、影响因素多的复杂技术工作。需从可行性、经济性、调节性、安全性及环境影响等方面进行综合技术经济分析。 1、可行性问题: 能够满足使用要求,这是方案可行性应考虑的主要问题。冷热源设计方案应符合国家和当地政府有关法规和规范的要求,包括有关环境保护的要求;设计方案应能满足有关方面的要求(如供电、供气、供水、供热等),并应特别顾及这些条件的长期、变化情况。例如采用水源热泵设计方案时应考虑当地地质情况、地下水资源的现状和变化趋势、冬季热负荷和夏季冷负荷不平衡所产生的热(冷)蓄积效应等问题。 2、经济性比较问题: 经济性比较是目前空调冷热源方案比较中考虑最多的一个问题。初投资费用是投资方最为关注的一个参数,空调冷热源设计方案的初投资费用不仅包括各种设备、管道、材料的投资,而且应包括各种相关收费(如热力入网费、用电设备增容费、天然气的气源费等),相应的安装、调试费用,相关的工程管理等各种收费,相关水处理和配电与控制投资,机房土建投资与相应室外管线的费用。 运行费用是空调冷热源设计方案技术经济性比较必须考虑的重要参数。运行费用包括能耗费、人工费和维保费。在计算过程中应注意不同地区、不同时期、不同时段各种能源的价格可能不同。 在设计方案经济性比较时应综合考虑初投资、运行费用以及设备的使用寿命。对于同时有供暖和空调要求的项目,应考虑冬季和夏季设备综合利用问题,进行冬夏季综合经济性比较。 3、调节性和可操作性问题 空调系统冷热源的装机容量通常是按接近全年最不利的气象条件确定的,因此冷热源机组应有较好的调节性能,以适应全年负荷的变化。 4、空调冷热源方案比较案例 空调冷热源方案有多种组合方式,作为空调冷热源的能源有电力、天然气、城市热力等;空调设备有电制冷机组、热泵机组、燃气直燃机、燃气锅炉、市政热网等。不同的能源、不同的设备对投资成本、运行费用和环境影响是不一样的。常用的冷热源形式有离心式冷水机组+城市热网、离心式冷水机组+燃气锅炉、溴化锂直燃机组、地(水)源热泵机组、热源塔热泵、风冷热泵机组六种方案。下列表格对六种方案进行比较分析。 为便于分析比较,本案例预设项目的建筑面积10万m2,空调冷负荷指标100W/m2,热负荷指标70W/m2,即空调总冷负荷为10000KW,总热负荷为7000KW。空调设备的用电量和用气量按设备能效系数(KW/kwh和KW/Nm3)折算。年运行费用按冬季采暖150天,夏季空调90天,每天运行10小时进行计算。初投资费用中只比较不同方案的主要设备费用,辅助设备、管道材料安装调试费以及其他土建机房投资费用等认为基本相同,不在比较范围内。

中央空调热泵冷热源实际工程案例分析

中央空调热泵冷热源实际工程案例分析 一、工程概况 该大酒店位于城市发展的商业中心。该大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210m2。地下建筑面积:3160m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。单位面积冷指标为70.4W/m2。单位面积热指标为58.5W/ m2。热水负荷为5000KW/天。 二、不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬,才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100 元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之间(四川地源热泵示范工程)。采用混合源地源热泵机组及冷(热)源地源埋管系统的初投资为710.00万元左右(详见表1)。

2.2空气源热泵冷(热)源与初投资 系统性能酷暑制冷,空气源热泵的制冷效率与室外气候有直接的关系,随室外温度的升高而降低,机组消耗功率随室外环境温度的升高而增加。空气温度3 5℃,出水温度7℃,空气源热泵制冷能效比EER值在2.5左右。隆冬供热,南方地区受特定地质与气候条件因素影响,成为冷暖气流对峙区“低温高湿”,空气中低品位“潜热”含量高,空气源热泵因构造缺陷,不能有效地利用低品位热源,持续期累计约50天左右(-5~2℃温度有近10天左右,2~5℃温度有近40天左右)。当空气源热泵迎面风速为2M/S时,室外空气干球温度在0~5℃,相对湿度>80%时结霜最为严重,此时平均每小时化一次霜,按现代技术不停机旁通换向化霜程序,一次化霜的时间不少于8分钟左右(包括室内反向取热)。空气源热泵在0~5℃条件下处于无霜至结满霜与半结霜状态下运行,供热性能下降35~4 0%;化霜减少的供热量达15~20%左右。因此,在最恶劣工况条件下空气源热泵机组的实际供热输出量,只有标准工况供热量的50%左右,供热性能系数CO P平均只有1.5左右。 系统初投资冬季酒店供热需求量为2500KW,选择空气源热泵方案,容量应按实际供热能力确定为: Q=Q0?δ+RQ0为设定的标准供热量、δ为实际供热系数、R为辅助热源; Q0=3800KWδ=0.53R=500KWQ=Q0?δ+R=3800*0.53+500=2514KW 设计采用标准制冷量为3800KW空气源热泵机组加500KW辅助电加热装置,能够满足制热最不利工况下供热。根据涡旋压缩机构造不适应空气源热泵结霜后,长期处在高压差下运行,容易损坏等因素,应采用螺杆压缩机组,空气源热泵主机方案初投资为716.00万元左右(详见表1)。 2.3热源塔热泵冷(热)源与初投资 2.3.1热源塔热泵原理 热源塔热泵定义为:夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空

热源塔热泵冷热源方案浅析

热源塔热泵冷热源方案浅析 桐庐好的大酒店有限公司方国明 内容摘要 冷(热)源来源经济与否直接关系建筑物空调的初投资与综合运行费用。本文以实际设计方案为例,对不同制冷机冷源与热泵热源来源方案进行了综合性经济分析、比较,从而得出结论:用“热源塔热泵”系统可实现冷暖空调卫生热水三联供,的确是一个经济合理的方案。 热源塔热泵夏季为高效水蒸发冷却热回收制冷机,可以向酒店提供免费卫生热水和桑拿热水;过度季节提供卫生热水时产生的冷量可满足、餐厅、娱乐及多功能厅冷负荷;冬季热泵的低品位热源来自高效宽带无霜热源塔系统,可有效地保障热泵供暖及卫生热水所需要的低品位热 源。 在无锅炉等辅助热源条件下,热源塔热泵经受住南方五十年一遇的冰冻期考验,室内供暖温度达到30℃。系统运行可靠维修量小,比混合源地源热泵冷(热)源减少60%左右的初投资,年减少综合经济费用11.6%。这种无需设计锅炉、水源和地埋管等辅助热源系统的热泵,初投资经济合理,室内外机械设备综合占地面积都比较小、节能效果明显,以及对周围环境影响符合国家环保标准的空调冷(热)源来源方式,值得和大家交流探讨。 关键词:热源塔、冷(热)源、热源塔热泵 1. 工程概况 桐庐大酒店位于城市发展的商业中心——杭州市桐庐县城区。桐庐大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。地上建筑面积:34210 m2。地下建筑面积:3160 m2。夏季制冷负荷为2500KW,冬季供热负荷为2000KW。 单位面积冷指标为70.4W/ m2。单位面积热指标为58.5W/ m2。热水负荷为500KW。 2. 不同冷(热)源热泵方案初投资比较 2.1混合源地源热泵冷(热)源与初投资 系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬, 才能实现单项运行经济指标的高效。 系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100元/米。在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之

空调冷热源方案的选择及分析(一)(优.选)

空调冷热源方案的选择及分析(一) 摘要:冷热源方案的选择是空调系统设计过程中的一个重要的决策环节。关系到项目的投资、运行费用、对环境的影响、能耗等重要问题。本文试图研究空调系统冷热源方案的选择方法,找到一种科学、合理、简便的决策方法,提出了简单而实用的层次分析法。为工程技术人员选择空调系统令热源提供理论指导。 关键词:空调;冷热源方案;层次分析法 一前言 业主和工程设计人员自项目方案设计阶段就非常重视空调冷热源的选择问题,冷热源形式不同,初投资和能耗差别会很大,因此,相关人员需进行多次调研和咨询。如何根据实际条件正确选择冷热源,已成为设计工作者和用户经常碰到的一个问题,也是影响社会总能耗和工程投资的重要因素。 二空调冷热源方案选择的原则及指标体系的设置 (一)空调冷热源方案选择的原则 空调冷热源方案选择的具体原则可归纳为以下几点: 热源设备的选用,应按照国家能源政策和符合环保、消防、安全技术规定,以及根据当地能源供应情况来选择,应以电和天然气为主,大中城市宜选用燃气、燃油锅炉,乡镇可选用燃煤锅炉, 若当地供电紧张,有热电站供热或有足够的冬季供暖锅炉,特别是有废热、余热可资利用时,应优先选用溴化锂吸收式制冷机; 当地供电紧张,且夏季供应廉价的天然气,同时技术经济比较合理时,可选用直燃式溴化锂吸收式制冷机; 直燃式溴化锂吸收式制冷机与溴化锂吸收式制冷机相比,具有许多优点,因此,在同等条件下特别是有廉价天然气可资利用时,应优先选用; 积极发展集中供热、区域供冷供热站和热电冷联产技术。 按性能系数高低来选择制冷设备的顺序为:离心式、螺杆式、活塞式、吸收式、涡旋式;考虑建筑全年空调负荷分布规律和制冷机部分负荷下的调节特性,合理选择机型、台数和调节方式,提高制冷系统在部分负荷下的运行效率,以降低全年总能耗; 为了平衡供电峰谷差,有条件时应积极推广蓄冷空调和低温送风或大温差供水相结合的系统; 保护大气臭氧层,积极采用cFc和HCFC替代制冷剂。当今世界公认的三大环保问题(臭氧层破坏、温室效应、酸雨)均与空调中制冷设备的各种排放物质有关。在选用冷热源设备时,应注意其所使用工质符合环保要求; 选用风冷还是水冷机组须因地制宜,因工程而异。一般大型工程宜选用水冷机组,小型工程或缺水地区宜选用风冷机组; 上述10个基本的选型原则,并非选型中考虑的全部因素和问题,但它是基本的、必要的。其它诸如产品的冷量调节范围、水资源状况、噪声、外形尺寸、电源的电压等级、占地、重量、无故障运行周期、服务质量等多种因素,也可能阶段性地上升为突出问题。 (二)空调冷热源方案选择指标体系的设置 空调冷热源方案设计是一个普遍性与特殊性相结合的问题,应在考虑具体设计特定条件的基础上,对符合要求的各备选方案在总体上进行比较。比较本身就是一个相对的概念,为了对各备选方案进行比较,就需要有一系列性能指标、经济指标和实物指标,对方案进行比较时,首先要求这些指标是可比的,特别是代表方案价值的主要指标必须具有可比性。

水汽能型热泵系统简介

水汽能型热泵系统简介 人类的生存与发展离不开能源的利用,为了满足人们日常的工作、生产和生活的需求,人类对自然资源进行了大量的开采,不断利用自然界各种能源。在各种大量无序的开采利用过程中,造成了环境污染、资源浪费,进一步危害了人类自身的生存。与此同时,人类为了更好地生存与发展,不断地向大城市集中,造成城市的拥挤与资源的浪费,城市的能源利用问题亟待解决。为了寻找新的能源,人类付出了艰辛的劳动,无论太阳能、风能、潮汐能、核能等等的利用,都不断地带动了人类社会的进步与发展。进入20世纪,人类对能源消耗更加巨大,对新能源的渴求变得更加急切,在这样的一个背景下水汽能热泵系统应运而生。1.1.水汽能及水汽能热泵 地球表面的水体与各类大气下垫面(如土壤、森林、草地、建筑等)及各类含水物体中蕴含了大量的液态水,液态水在各类物质的表面无时不刻地发生汽化,也就是从液态转变为气态。在其转变过程中,液态水吸收环境的热量(即汽化潜热)后变为气态的水汽进入到空气中,因而空气中的水汽本身含有了大量的热量。就其本质而言,其所吸收的所有热量均来自于太阳所赋予地球的热量,所以,这部分能量也是太阳能的一部分。 空气体量相对于人类而言是无限大的,所以在空气中的水汽含有的热量也是无限的。这部分热量一直都存储在空气中的水汽内,当水汽遇冷凝结时又会释放出来,在这个过程中,水会呈现气态、液态共存的现象,而热量就是在这个转变过程中得到了释放。由于水汽的形成是自发进行的,热量是自动进入到水汽内的,所以这部分能源是无偿且无限的。由于这部分能源是储存在空气中的水汽内、由水汽与液态水转变过程中得到,因此它的发现者黄国和将之命名为水汽能。由于空气中的水蒸汽体量巨大,其蕴含的热量超过了地下所埋藏的煤炭、石油和天然气所含热量的总和,因此水汽能的储存量是极其巨大的,水汽能的利用是可循环的,不处在枯竭与短缺,在利用过程中不存在对环境的污染。 水汽能热泵技术是一种充分利用空气中水蒸汽热量的可再生能源技术,在冬季充分利用水汽能收集器收集空气中含有的水蒸汽所蕴含的热量,通过水汽能热泵将这部分低品位热量提升,作为中央空调的热源提供以及生活热水的供应;在夏季,水汽能热泵将吸收的建筑热量回收为生活热水,利用作为高效冷却器将多

相关文档