文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线之轨迹问题例题习题

圆锥曲线之轨迹问题例题习题

圆锥曲线之轨迹问题例题习题
圆锥曲线之轨迹问题例题习题

专题:圆锥曲线之轨迹问题

一、临阵磨枪

1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。

2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。

3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。

4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。

5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。

二、小试牛刀

1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。

故所求轨迹方程是 0(3)y x =≥

2.已知圆O 的方程为22

2

=+y x ,圆O '的方程为01082

2

=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =

3.已知椭圆)0(122

22>>=+b a b

y a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1

MF 的中点P 的轨迹方程为

析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:

0000

22

22

x c x x x c y y y y -?

=?=+????

?=??=?? 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上

∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为

22

22(2)41x c y a b

++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+

=-,0),2

1

(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。

析:设点D 为BC 的中点,显然有OP OA AP -=u u u r u u u r u u u r

12AB BC AB BD AD +=+=u u u r u u u r u u u r u u u r u u u r

[),0,AP AD λλ=∈+∞u u u r u u u r

故点P 的轨迹是射线AD , 所以,轨

迹一定过三角形的重心。

三、大显身手

1、直接法

例1、设过点P (x,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,若,2PA BP =且1=?AB OQ ,则P 点的轨迹方程为

解:设(,0),(0,)A a B b 又(,)P x y 所以(,),(,)BP x y b PA a x y =-=--u u u r u u u r

又,2PA BP = 所以32()223x a x a x

y b y b y

?

=-=?????-=-??=?

33

(,0),(0,3)(,3)22

A x

B y AB x y ∴∴=-u u u r

而Q 点与P 点关于y 轴对称,∴点Q 的坐标为(,)x y - 即(,)OQ x y =-u u u r

又1=?AB OQ 所以

2

23312

x y += 这个方程即为所求轨迹方程。 变式1、已知两点M (-2,0),N (2,0),点P 满足0=?+?NP MN MP MN ,动点P 的轨迹方程为

解:设(,)P x y 则:2

2

4,(2),(4,0),(2,).MN MP x y MN NP x y ==++==-u u u u r u u u r

又0=?+?NP MN MP MN

224(2)4(2)0x y x ∴+++-= 化简得所求轨迹方程为:28y x =-

2、定义法

例2、已知圆

A 的方程为

100)3(2

2

=+-y x ,点B (-3,0),M 为圆O

上任意一点,BM 的中垂线交AM 于点P ,求点P 的轨迹方程。

解:由题意知:BP MP =

AM PA MP PA PB =+=+∴

又圆

A

的半径为

10,所以

10=AM 10=+∴PB PA

即点P 的轨迹是以定点A(3,0) B(-3,0)为焦点,

10为长轴的椭圆 (椭圆与长轴所在的对称轴的两交点除外)其轨迹方程为

)5(116

252

2±≠=+x y x 变式2、已知椭圆)0(122

22>>=+b a b y a x 的焦点为

21,F F ,P 是椭圆上的任意一点,如果M 是线段P F 1的

中点,则动点M 的轨迹方程是

解:因为M 是线段P F 1的中点,连接OM ,则

221PF OM =

112

1

PF MF = 由

a PF PF 221=+a PF PF MO MF =+=

+)(2

1

211 即点M 到定点O 、定点1F 的距离和为定值a ,故动点M 的轨迹是以O 、1F 为焦点,

以a 为长轴的椭圆,其方程为14)2(4222

2

=++b

y a c x (说明:此题也可以用代入法解决)

3、坐标转移法(代入法)

例3、从双曲线12

2

=-y x 上一点Q 引直线x+y=2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程。

O

P

x

y

A

B

M

x

y

P

F1

F2

M

解:设Q ),(00y x 则由

??

?=-+=+--0

20

00y x y x y x 可得 N 点坐标 ??

???++-=

+-=22220000y x y y x x 设),(y x P 由中点坐标公式可得:

???-+=-+=???

???

++-=

+-=23223222322232000000y x y y x x y x y y x x 又点Q ),(00y x 在双曲线122=-y x 上, 所以 4442020=-y x 代入得4)23()23(2

2=-+--+y x y x

化简得 2

1

)2

1()2

1(2

2

=

---y x 即为所求轨迹方程。 变式3、自抛物线x y 22

=上任意一点P 向其准线l 引垂线,垂足为Q ,连接顶点O 与P 的直线和连接焦点F 与Q 的直线交于R ,求点R 的轨迹方程。

解:设),(),,(00y x P y x R ∵抛物线的方程是x y 22=

∴),2

1

(),0,21(0y Q F -

所以 直线OP 的方程是000=-x x x y 直线QF 的方程是 02

1

00=-

+y y x y 联立两方程得:??

???--=

--=12212200x y y x x x 又 02

02x y =

所以 )1

22(2)122(2--=--x x

x y 化简得:0222=-+x y x 即为所求轨迹方程。

4、参数法

例4、设椭圆方程为14

2

2

=+y x ,过点M (0,1)的直线l 交椭圆于A 、B ,点P 满足)(21OB OA OP +=,点)2

1

,21(N ,当直线l 绕点M 旋转时,求:

(1)动点P 的轨迹方程; (2)NP 的最大、最小值。

解:(1)设直线l 的方程为1+=kx y 代入椭圆方程得

032)4(22=-++kx x k

设),(),,(2211y x B y x A 则 2

2142k

k

x x +-=

+ 2422)(2

2

2121++-=++=+∴k

k x x k y y 设动点P 的坐标为),(y x ,由)(2

1

OB OA OP +=

可得 ??

???+=

+=+-=+=22122144242k y y y k k x x x 消去参数k 即得所求轨迹方程为:0422=-+y y x 当斜率k 不存在时,点P 的坐标为(0,0)显然在轨迹上,

故动点P 的轨迹方程为042

2

=-+y y x 。

(2)P 点的轨迹方程可以化为1)2

1

(41622=-+y x

所以可设点P 的坐标为)sin 2

1

21,cos 41(αα+ 则

21cos 41cos 163)sin 21()21cos 41(2222

+--=+-=ααααPN

12

7)32(cos 1632++-=α 所以 当3

2

cos -

=α时 621max

=

PN 当1cos =α时 4

1min =PN 变式4、过抛物线x y 22

=的顶点作互相垂直的两弦OA 、OB.

(1) 求弦AB 的中点的轨迹方程;(2)证明:直线AB 与x 轴的交点为定点。

解:(1)由题意知OA 的斜率存在且不为零,设为k

则直线OA 的方程为kx y =与抛物线x y 22=联立可得

点A 的坐标为)2

,2(

2

k

k 同理可得点B 的坐标为)2,2(2k k - 设弦AB 的中点为M (x,y )则

??

???-=+=k

k y k k x 1122

消去k 得弦AB 的中点的轨迹方程为

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

数学曲线方程及圆锥曲线典型例题解析

数学曲线方程及圆锥曲线典型例题解析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线方程及圆锥曲线典型例题解析 一.知识要点 1.曲线方程 (1)求曲线(图形)方程的方法及其具体步骤如下: 化” (2)求曲线方程的常见方法: 直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。 转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。 几何法:就是根据图形的几何性质而得到轨迹方程的方法。 参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐

标,间接地把坐标x,y联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。 2.圆锥曲线综合问题 (1)圆锥曲线中的最值问题、范围问题 通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。 圆锥曲线的弦长求法: 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、 B(x2,y2)两点,则弦长|AB|为: 若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. 在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围。 (2)对称、存在性问题,与圆锥曲线有关的证明问题 它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。 (3)实际应用题 数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等。

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

【整理】圆锥曲线的综合经典例题(有答案解析)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点 横坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用 待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方 程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

圆锥曲线中的轨迹问题(含解析)

圆锥曲线中的轨迹问题 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A .3 B .32 C . 32 D .1 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 二、填空题 4.已知分别过点(1,0)A -和点(1,0)B 的两条直线相交于点P ,若直线PA 与PB 的斜率之积为-1,则动点P 的轨迹方程是________. 5.动圆经过点(3,0)A ,且与直线:3l x =-相切,求动圆圆心M 的轨迹方程是____________. 三、解答题 6.圆C 过点()60A , ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;

(2)P 为圆C 上的任意一点,定点()8,0Q ,求线段PQ 中点M 的轨迹方程. 7.若平面内两定点(0,0)O ,(3,0)A ,动点P 满足||1 ||2 PO PA =. (1)求点P 的轨迹方程; 8.点(,)M x y 与定点(3,0)F 的距离和它到直线25:3 l x = 的距离之比是常数3 5,求点 M 的轨迹方程. 9.在圆:C 223x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当P 在 圆上运动时,线段PD 上有一点M ,使得DM =, (1)求M 的轨迹的方程; 10.已知点()1,0F ,点P 到点F 的距离比点P 到y 轴的距离多1,且点P 的横坐标非负,点()1,M m (0m <); (1)求点P 的轨迹C 的方程;. (2)过点M 作C 的两条切线,切点为A ,B ,设AB 的中点为N ,求直线MN 的斜率.

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

“圆锥曲线平行弦中点轨迹问题”说题

圆锥曲线平行弦中点轨迹问题”说题 说题”是近年来涌现出的一种新型教学研究模式 简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新 般说来,说题应从以下几个方面进行分析:数学思想 与数学方法,命题变化的自然思维,小结、归纳与应用,题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的 挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值 面是本人的一次说题研究,在此抛砖引玉供各位参考、说问题 背景 问题来源于2005 年上海市普通高等学校春季招生考试 数学试卷第22 题: 1)求右焦点坐标是(2,0),且经过点(-2,-2)的 椭圆的标准方程; (2)已知椭圆C的方程是x2a2+y2b2=1 (a>b>0), 设 斜率为k的直线I,交椭圆C于A、B两点,AB的中点为M.证

明:当直线l 平行移动时,动点M 在一条过原点的定直线上; 3)利用(2)所揭示的椭圆几何性质,用作图方法找 出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心. 二、说问题立意 1.考查椭圆的标准方程和性质;中心对称等; 2.考查数 学思想有:从特殊到一般思想;数形结合思想;分类讨论思 想;数学方法:判别式法;函数与方程转化等;引导将双 曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通 过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求. 、说问题解法 解法1(1)略(2)设直线I的方程为y=kx+m,与椭圆C的交点A(x1, y1 )、B (x2, y2),则有y=kx+m, x2a2+y2b2=1,解得( b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. ???△ >0,二m2vb2+a2k2,即-b2+a2k2vmvb2+a2k2.则 x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2. ??? AB 中点M 的坐标为(-a2kmb2+a2k2 , b2mb2+a2k2 ).

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

神奇的圆锥曲线问题探究

神奇的圆锥曲线动态结构 目录 一、神奇曲线,定义统一 01.距离和差,轨迹椭双 02.距离定比,三线统一 二、过焦半径,相关问题 03.切线焦径,准线作法 04.焦点切线,射影是圆 05.焦半径圆,切于大圆 06.焦点弦圆,准线定位 07.焦三角形,内心轨迹 三、焦点之弦,相关问题 08.焦点半径,倒和定值 09.正交焦弦,倒和定值 10.焦弦中垂,焦交定长 11.焦弦投影,连线截中 12.焦弦长轴,三点共线 13.对焦连线,互相垂直 14.相交焦弦,轨迹准线 15.相交焦弦,角分垂直 16.定点交弦,轨迹直线 17.焦弦直线,中轴分比

四、相交之弦,蝴蝶特征19.横点交弦,竖之蝴蝶20.纵点交弦,横之蝴蝶21.蝴蝶定理,一般情形五、切点之弦,相关问题22.主轴分割,等比中项23.定点割线,倒和两倍24.定点割线,内外定积25.主轴交点,切线平行六、定点之弦,张角问题26.焦点之弦,张角相等27.定点之弦,张角仍等28.对称之点,三点共线29.焦点切点,张角相等30.倾角互补,连线定角七、动弦中点,相关问题31.动弦中点,斜积定值32.切线半径,斜积仍定33.动弦中垂,范围特定34.定向中点,轨迹直径35.定点中点,轨迹同型八、向量内积,定值问题

37.存在定点,内积仍定九、其它重要性质38.光线反射,路径过焦39.切线中割,切弦平行40.直周之角,斜过定点41.正交半径,斜切定圆42.直径端点,斜积定值43.垂弦端点,交轨对偶44.准线动点,斜率等差45.焦点切线,距离等比46.共轭点对,距离等积47.正交中点,连线定点48.顶点切圆,切线交准49.平行焦径,交点轨迹50.内接内圆,切线永保51.切线正交,顶点轨迹52.斜率定值,弦过定点53.直线动点,切弦定点54.与圆四交,叉连互补55.交弦积比,平行方等56.补弦外圆,切于同点57、焦点切长,张角相等

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

2021高考数学圆锥曲线轨迹方程问题解法指导

2021高考数学圆锥曲线轨迹方程问题解法指导 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目.分析原因除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是山东卷高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可

以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归。 解题方法荟萃 1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。 直接法一般有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

相关文档
相关文档 最新文档