文档库 最新最全的文档下载
当前位置:文档库 › 实变函数论课后答案第四章4

实变函数论课后答案第四章4

实变函数论课后答案第四章4
实变函数论课后答案第四章4

实变函数论课后答案第四章4

第四章第四节习题 1.

设()()n f x f x ?于E ,()()n g x g x ?于E ,证明:

()()()n n f x g x f x g x +?+于E

证明:0ε?>,

[||()()(()())|][||()()|][||()()|]

22

n n n n E x f x g x f x g x E x f x f x E x g x g x εε

ε+-+≥?-≥?-≥ A B εε?

(否则,若[||()()(()())|n n x E x f x g x f x g x ε∈+-+≥,而x A B εε??,

()c c c x A B A B εεεε∈?=?|()()||()()|2

2

n n f x f x g x g x ε

ε

?-<

-<

|()()(()())||()()||()()|22

n n n n f x g x f x g x f x f x g x g x ε

ε

εε

?≤+-+≤-+-<

+

=矛盾),则

[||()()(()())|]

[||()()|][||()()|]0

22

n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε

+-+≥≤-≥+-≥→

(()(),()()n n f x f x g x g x ??) 从而()()()()n n f x g x f x g x +?+ 2.

设|()|n f x K ≤.a e 于E ,1n ≥,且()()

n f x f x ?于E ,证明|()|f x K ≤.a e

于E

证明:由本节定理2(Riesz 定理)从()()n f x f x ?知?{}()n f x 的子列

{}

()k

n f

x 使

()lim ()k n k f x f x →∞

=.a e 于E

设A E ?,(\)0m E A =,()()k

n f x f x →于A ,从条件|()|k

n f x K ≤.a e 于E ,

k n B E ?,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上

令1

()k

n k B B A +∞

==? ,则B K ?,且

1

1

(\)()(()(())k k c

c

c

c

c n n k k m E B m E B m E B A m E A B E +∞+∞

===?=??=???

1

1

1

()()(\)(\)00k k c

c

n n k k k m E A m E B m E A m E B +∞+∞+∞

===≤?+?=+=+∑∑∑

故(\)0m E B =

,,k n x B k B B A ?∈???,则|()|k n f x K ≤

令k →∞,|()|f x K ≤

故x B ?∈有|()|f x K ≤,从而命题得证 3.

举例说明mE =+∞时定理不成立

解:取(0,)E =+∞,作函数列1(0,]

(){

0(,)

n x n f x x n ∈=∈+∞ 1,2,n =

显然()1n f x →于E 上,但当01ε<<时

[;|1|](,)n E x f n ε->=+∞,[;|1|](,)n mE x f m n ε->=+∞=+∞不0→

故mE =+∞时定理不成立,即n f f →.a e 于E 不能推出()()n f x f x ?于E

周民强《实变函数》P108

Th2.25 若:n n T R R →是非奇异线性变换,n E R ?,则

**(())|det |()m T E T m E =? (2.8)

|det |T 表示矩阵T 的行列式的绝对值.

证明:记{}012(,,,);01,1n i I x i n ξξξξ==≤<≤≤

{}12(,,,);02,1k n i I x i n ξξξξ-==≤<≤≤

显然0I 是2nk 个I 的平移集{}j I x +(1,2,2nk j = )的并集,0()T I 是2nk

{}()

j T I x +(1,2,2nk j = )

的并

集,且有

{}{}***

()()(

)

j j m T I x m TI T x m TI +=+=,

{}()()j mT I x m TI += 1,2,2nk j =

现在假定(2.8)式对于0I 成立00(())|det |()|det |m T I T m I T =?= (2.9)

则 0|det |(())2(())nk T m T I m T I ==

因为()2nk m I -=,所以得到()2|det ||det |()nk m TI T T m I -=?=?

这说明(2.8)式对于I 以及I 的平移集成立,从而可知(2.8)式对可数个互不相交的二进方体的并集是成立的(对任意方体0a ?>,

{}12(,,,);0a n i

I x a ξξξξ==≤< 000(())()|det()|()|det ||det ||det |()n a m T I m T aI T aE m I T aE a T m I =?=?== 0|det |()|det |()a

T m aE I T m I =?=) 对一般开集G ,1

i i G I +∞

== ,i I 为二进方体,i I 互补相交

则1

1

1

()()()|det |()|det |i i i i i i m TG m TI m TI T m I T mG +∞+∞+∞

=======∑∑

T 1-1 1

i i TG TI +∞

== ,T 连续,1T -连续 G 开,则()T G 开,从而

可测

于是应用等测包的推理方法立即可知,对一般点集(2.8)式成立 设G 为有界G δ集1

i i G G +∞

== ,i G 开,1

n

n i i S G == ,则n S 开,1

n n G S +∞

== 且

不妨设11S G =有界,否则令1S G U =? U 有界,令 1

G G U =?即可. 1T -连续,则i TG 开,n TS 开,TG 可测(1

n n T G T S +∞

== ),12TS TS ?? ,

12n S S S ????

故1

()()lim ()lim |det |()n n n n n n m TG m TS m TS T m S +∞

→+∞→+∞

====?

1

|det |lim ()|det |()|det |n n n n T m S T m S T mG +∞

→+∞

==== (n S 开)

若G 为无界G δ集,令{};||m E x x m =<,则1

m m G G E +∞

==? ,m G E ?为有界G δ

1

()(())lim (())m m n m m TG m T G E m T G E +∞

→+∞

==?=?

1

lim |det |()|det |lim ()|det |()|det |m m m n n m T m G E T m G E T m G E T mG

+∞

→+∞

→+∞

==??=?=?= n E R ??,T 线性,则n E R ??若0mE =,则(())0m T E =(后面证) n E R ??,则由注释书P69定理3,存在G δ集G E ?,*mG m E =,若E 有

界,*m E <+∞

则*(\)0m G E =,故**0((\))(\))m T G E m TG TE == (T 1-1)

****()(\))()0()()m TG m TG TE m TE m TE m TG ≤+=+≤

则*()()m TE m TG =,故**()()|det ||det |m TE m TG T mG T m E ===

若E 无界,{};||m E x x m =<则1m m E E E +∞

==? ,m E E ?

*

***1

()(())lim (())lim |det |()m m m n n m m TE m T E E m T E E T m E E +∞

→+∞

→+∞

==?=?=?

*

*

1

1

|det |lim ()|det |()|det |(())

m m m n m m T m E E T m G E T m E E +∞+∞

→+∞

===?=?=?

*|det |()T m E =

:n n T R R ?→线性,若*()0m E =,则*()0m TE =

证明:(0,,1,0,,0)n i e R =∈ 为n R 的基,()i i T e x =,

n x R ?∈,12(,,,)n x ξξξ= ,1122n n Tx x x x ξξξ=+++ ,令

122

1(||)

i i M x +∞

==∑,

11222

2

11221

1

|()|||||||||||||(||)(||)||n

n

n n i i i i T x x x x x M x ξξξξ==≤+++≤=∑∑

则|()()|||,,n T x T y M x y x y R -≤-?∈(即T 是Lipschitz 连续的)

?一边平行于坐标平面的开超矩体

{}121122(,,,),(,)(,)(,)n i i i n n I x a b a b a b a b ξξξξ==<<=??? 于12n I I I ??? 22

1()(||)n n

i i i diamI b a +∞

==-∑

12n TI TI TI TI =??? ,(,)i i i I a b =开,1T -连续,则i TI 是1R 中开集从而可

测,从而12TI TI ?是2R 中可测集,由归纳法知12n TI TI TI ??? 是可测集

若(2.9)式成立*0()|det |()o m TI T m I =,则?矩体{},i i i

I x a b ξ=<< , 1n

i i I I == ,i

I 为正方体,则对开集G 也有()|det |()m TG T m G =,特别对开区间

{},i i i I x a b ξ=<<这一开集有*()|det |()m TI T m I =

则可知n E R ?∈,若*()0m E =,则*()0m TE =

事实上,0ε?>,{}1i i I +∞

=?开区间,1

i i E I ∞=? ,1

||i i I ε∞

=<∑

*

*

*

*1

1

1

()(())()()i i i i i i m TE m T I m TI m TI ∞∞∞

===≤=≤∑

1

1

1

|det |()|det |()|det ||||det |i i i i i i T m I T m I T I T ε∞∞∞

======<∑∑∑

令0ε→知*()0m TE =

若(2.9)成立,则T 将可测集映为可测集,还要看(2.8)证明过程是否用到T 将可测集映为可测集或*()0m E =推出*()0m TE =这一性质!

下面证(2.9)成立.任一线性变换至多可分解为有限个初等变换的乘积

(i )坐标12,,,n ξξξ 之间的交换 (ii )11,i i ξβξξβξ→→ (2,,)i n = (iii) 112,i i ξξξξξ→+→ (2,,)i n = 在(i )的情形显然00|det |1,T TI I ==(2.9)成立

在(ii )的情形下,T 矩阵可由恒等矩阵在第一行乘以β而得到

{}

1211()(,,,),01,2,3,,,0(0),0(0)o n i T I x i n ξξξξξβββξβ==≤<=≤<><≤< 当当 从而可知0(())||m T I β= (2.9)式成立

在(iii )的情形,此时det 1T = (11

0001000

0100

001T ?????

???=????????

) 而且{}01212()(,,,),01(1),01n i T I x i ξξξξξξ==≤<≠≤-< X ({}{}00122();,(,,,),01,1n i T I y x I y Tx i n ξξξξξ=?∈==+≤<≤≤

01221221(),(,,,),01,01n i y T I y ξξξξξξξξξ?∈=+≤<≤+-=<

则{}01212()(,,,),01(1),01n i T I x i ξξξξξξ?=≤<≠≤-< 反过来,12(,,,)n y X ξξξ?=∈ ,01(1)i i ξ≤<≠则1201ξξ≤-<

令122(,,,)n x ξξξξ=- 则0x I ∈,12(,,,)n Tx y ξξξ==

则0()y T I ∈,0()X T I ? ) 记{}1201(,,,)(),1n A x T I ξξξξ==∈< {}012()(,,,),01(1)n i T I x i ξξξξ==≤<≠

10(1,0,,0),()\e B T I A == ,则

{}12021(,,,),n A x I Y ξξξξξ==∈≤ {}112012\(,,,),n B e x I C ξξξξξ==∈<

(12(,,,)n x Y ξξξ?=∈ ,则01,1i i n ξ≤<≤≤,21ξξ≤,则

12001,()x T I ξξ≤-<∈,且11ξ<,则x A ∈

反过来,y A ?∈,则存在120(,,,)n x I ξξξ=∈ ,01i ξ≤<,使

122(,,,)n y Tx ξξξξ==+ ,12001,y I ξξ≤+<∈,且

212,y Y

OK ξξξ≤+∈!

1y B e ?∈-,存在00()\z T I A ∈,使1\y z e =, 0x I ?∈,122(,,,)

01n i z Tx ξξξξξ==+≤<

121z A ξξ?+≥,,1122\(1,,,)n z e ξξξξ=+- , 12210011,\z e I ξξξ≤+-≤<∈

1221111,\y z e C ξξξξ+-≤?<=∈

反过来,y C ?∈,12012(,,,),,01,1n i y I i n ξξξξξξ=∈<≤<≤≤

112(1,,,)n z y e ξξξ=+=+ ,则 1212011(,01)i ξξξξξ≤-+<<≤<

则0()z T I ∈,又10111,()\,\,z A z T I A B z e y z B ξ+≥?∈==∈, 则11\,\,y B e C B e C B ∈∈=得证)

由此得到0011(),{

(),()T I A B A B I A B e A B e =??=?

=?-?-=?

010(())(\)1|det |m T I mA mB mA m B e mI T =+=+===

故(2.9)式成立 这

A

B

可测,

(

),

(,

)(,)(A T

I

H

H =?=-∞+∞?-∞

+

,0()T I 可测,H 开,则A 可测,0()\T I A B =可测

故还是需要:若:n n T R R →为非奇异线性变换,则Borel ?集n E R ?,

()T E 是可测集,从而?方块I ,()T I 可测,0()T I 可测有了,

这就有(2.9),从(2.9)知T 将零测集E 变为零测集,从而有T 将可测集变为可测集

1:n f R R →可测1

1()Borel

B R f B -???为可测集(江则坚P109

习题10)

现设:n n f R R →连续,则?开集n O R ?,1()f O -是开集, 记{}1|()n n B R f B R -=?是中的可测子集1B ,可证1B 是一个σ-代数,且包含全部开集,从而包含全部Borel 集

证1)1()f -?∈?=?,1B 可测

2)若A ∈1B ,则1111()()()()c n n f A f R A f R f A ----=-=-显然也可测,

c A ∈1B

3)若,(1,23,)i A i ∈= 1B ,

则i ?,1

()i f A -可测,1

11

1

()()i i i i f A f A +∞+∞

--=== 可测1B 是σ-代数 f 连续,则1()open O

f O -?∈1B ,1B 包含全部开集,从而包含

全部Borel 集

:n n T R R →为非奇异线性,1T -显然连续

I ?方体半开半闭(显然为Borel 集)

,11()T I TI --=可测 1

[,)n i i i I a b ==∏为Borel ,1

11

[,)n

i i i m I a b m

+∞===-

∏ 事实上,0ε?>从()()m

k

m m n f x g x →(当k →+∞)知

00(,)

N N m ε?=,使当0k N ≥时|()()|m k

m m n f x g x ε

→<而当

0m a x (,(,))k m N m ε≥时,k m

k k n n ≥

,故|()()|k k

m m n f x g x ε→< (k

k

n 是{}

1

m k k n

+∞=的子列中的一个元,故,m k

k m k k l n n +=,0l ≥

则0(,)k N m ε≥时,0m k k l N +≥ 则,|()()||()()|k m

k

k l m k

m m m m n n

f x

g x f x g x ε+→=→<)

()k m f x 收敛于1()m g x R ∈,即k f 在E 上收敛.

若条件改为:F 是一族一致有界的[,]a b 上的函数族,则结论成立 令{}123,,,[,]E x x x a b =? 则0,|()|,[,]M f x M x a b ?>≤?∈, {}1

1()|x f x f =∈F F ,

则1

x F 是1R 中的有界集,由聚点原理?一列n f ∈F 和1()g x R ∈,

11()

()k

n f g x n →→∞

同样令{}

11

(2)2()|1,2,k

x n f x k == F (n f 为上述取定的一列n f ∈F )

故12|()|k

n f x M ≤,由聚点原理,存在1k

n f 的子列2k

n f 和1

()g x R ∈(21k k n n k ≥≥)使

22()k

n f g x →,由此用归纳法可作出m N ?∈,{}

1

m

k

n k f +∞=?F (m k

n f 为1m k

n f -的子

列)使

1()m k

m n f g x R →∈

令k k

k n f f =,则n f ∈F 且m ?有()k k

m n f g x →故由Berstein 定理即知

(0,1)B C c ≤≤=,C c =

方法②建立十进位小数的展式中缺7的所有无尽十进位小数之集

A 和(0,1)上一切无尽九进位小数之集

B 之间的一一对应.集A 中每个

十进位小数对应B 中这样的小数,该小数是前一个小数中凡是数字9都有数字7代替后而得到的,这个对应是一一的(九进小数中不含9,而A 中不含7,将9 7,而其他不动)

显然(0,1),B c A c === 周民强书P35思考题:

6.设F 是定义在[,]a b 上的实值函数族,[,]E a b ?是可数集,则存在n f ∈F (1,2,n = )使得{}()n f x 在E 上收敛.

我怀疑本题有错:若不假设F 是[,]a b 上一致有界的,会有反例: 令[,]a b =[0,1],设{}|1,2,m f m == F 这里(),[,]m f x m x a b =?∈,则显然任取无穷个(1,2,)

()k

k

k n n f k f x n ∈==→+∞ F 于[,]x a b ?∈,故()n f x 不会

收敛!

0a =时,{}

111

|lim ()0[|()]n j n k n i n j i

E x f x E x f x k +∞+∞+∞+∞

→∞====>=>

故还有:[|lim ()][|lim(())][|lim(())]n n n n n n E x f x a E x f x a E x f x a →∞→∞→∞

<=--<=->- 111111

[|()][|()]j j k n i n j i

k n i n j i E x f x a E x f x a k k +∞+∞+∞+∞

+∞+∞+∞+∞=========->-+=<-

鄂强91:介于0与1之间,而十进展开式中数字7的一切实数所成立之集具有什么势?

证明:①从江则坚CH1§4.3题知2N c =,且从证明中知2N A ??与

之1-1对应的是(1)(2)0.(0,1)A A χχ∈ ,故(0,1)中小数点全是0,1两位数字构成的数组成的集合,(0,1)B 满足(0,1)2N B c ==,而十进展开式中缺数字7的一切实数之集C 满足(0,1)B C ??

附加题:徐森林书P15.8

设()(1,2,)i f x i = 为定义在n R 上的实函数列,适用点集 1{|()}

,1,2,i x f x i j j

≥=

表示点集[|lim ()0]n n x f x →∞

> 证明:江则坚书第一章第一节习题8:若()()n f x f x →于E ,则1

a R ?∈有

1

1

[|()]liminf [|()]

n k E x f x a E x f x a k +∞

=≤=≤+ 11

1111[|()]liminf [|()][|()]

c

n i k k k n i n E x f x a E x f x a E x f x a k k +∞

+∞

+∞+∞+∞=====??>=≤+=>+ ???

即111[|lim ()][|()]n i n

k n i n E x f x a E x f x a k

+∞+∞+∞

→∞

===>=>+ 另一方面,{}()n f x ?易知

{}

|sup ()[|()]m m

m n

m n

E x f x a E x f

x a +∞

≥=>=

>

故{}

1|lim ()[|inf sup ()]n m n n m n

E x f x a E x f x a →∞

≥≥>=>

111111

[|limsup ()][|sup ()][|()]

m m m n m n m i k n i n

k n i n m i E x f x a E x f x a E x f x a k k +∞+∞+∞

+∞+∞+∞+∞→∞≥≥========>=>+=>+

思考:若A 不可测, B 也不可测,且(,)0A B ρ>,则A B ?不可测? ((,)0A B ρ=显然不对, 1,,(,)0,R Q B R Q R Q R R ρ===?=可测 至少当,A B 有一个有界时,结论是对的?

若存在开集G 使G A ?,G B ?=?,不妨设A 有界, mG <+∞,则若

A B ?可测,则

****(())(())()c mG m G A B m G A B m A m G A =??+??=+-

)

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

第四章 练习题及参考答案

第四章 静态场的解 练习题 1、设点电荷q 位于金属直角劈上方,其坐标如右图所示,求 (1) 画出镜像电荷所在的位置 (2) 直角劈内任意一点),,(z y x 处的电位表达式 (3) 解:(1)镜像电荷所在的位置如图1所示。 (2)如图2所示任一点),,(z y x 处的电位为 ??? ? ??-+-= 4321011114r r r r q πεφ 其中, ()()()()()()()()2 22422 232 2222 22121212121z y x r z y x r z y x r z y x r +-++= ++++=+++-=+-+-= 2、 两个点电荷Q +和Q -位于半径为a 的接地导体球的直径延长线上,距球心均为 d 。证明镜像电荷构成一位于球心的电偶极子,且偶极矩大小为232d Q a 。 证明:由点电荷的球面镜像法知,+Q 和-Q 的镜像电荷Q Q ''',分别位于球内+Q 和- Q 连线上大小分别为Q D a μ,且分别距球心为D a 2(分别位于球心两侧)。可见Q Q ''',构 成电偶极子,由电偶极距的定义式得偶极距的大小为: 图1 图2 q - q +q -

2 322D Q a D a Q D a ql p =?==。结论得证。 3、已知一个半径为a 的接地导体球,球外一个点电荷q 位于距球心O 为d 处。利用镜像法求球外空间任意点的电位分布。 解:由点电荷的球面镜像法可知,q 的像电荷q '必定位于球内,且在q 与球心0连线上,位置在距离球心设为f 处。建立直角坐标系,由边界条件(?球)=0可取球面上两个特殊点B A ,讨论。B A ,是q 与球心0连线所对应的直径与球面的两个交点。由图示及点电荷的电位公式得: 0)(4)(4)(00=+' ++= f a q a d q A πεπε?, 0) (4)(4)(00=-' +-= f a q a d q B πεπε?。 解此方程组得:d a f q d a q 2 ,=-='。 所以任意场点),(y x P 处的电位为: r q r q ' '+ = 0044πεπε?。 其中r r ',分别是点电荷q 和q ' 到场点P 的距离。 值分别为21 2221 22])[(,])[(y f x r y d x r +-='+-=。 4、半径为a 的不接地导体球附近距球心O 为d (?d a )处有一点电荷q ,用镜像法计算 球外任一点的电位。 解:由点电荷的球面镜像法可知,q 的像电荷除了有q '(即导体球接地时对应的结果, q d a q -=',其位置为d a f 2=),还在球心处有另外一个镜像电荷q '',以保证导体球面电 势不为零的边界条件成立,且可知q q '-=''。 所以任意场点P 处的电位为: r q r q r q ' '''+ ' '+ = 000444πεπεπε?

第四章课后习题答案

4-8 一个半径为r =1m ,转速为1500r/min 的飞轮,受到制动,均匀减速,经时间t =50s 后静止,求:(1)飞轮的角加速度和飞轮的角速度随时间的关系;(2)飞轮到静止这段时间内转过的转数;(3)t =25s 时飞轮边缘上一点的线速率和加速度的大小。 解 (1)由于均匀减速,所以角加速度不变为 2015000.5/6050r r s s s β-= =-? 由角速度和角加速度的关系得 25/0 t r s d dt ω ωβ=? ? 得 250.5(/)t r s ω=- (2) d d d d dt dt d d ωωθωω βθθ = == 25/r s d d θβθωω=? ? 解得 625r θ= 所以转数为625 (3)由于250.5(/)t r s ω=- 所以t=25s 时 12.5/25(/)r s rad s ωπ== 所以线速率为 25(/)v r m s ωπ== 角加速度大小不变 4-9 某电机的转速随时间的关系为ω=ω0(1-e -t/τ ),式中,ω0=s ,τ=,求:(1) t =时的转速;(2)角加速度随时间变化的规律;(3)启动6s 后转过的圈数。 解 (1)t=60s 代入得 39(1)(/)8.6/e rad s rad s ω-=-= (2)由d dt ω β= 得 2 4.5t e β- = (3)由6 d dt θθω=?? 33618e θ-=+ [/2][5.87]5n θπ===

4-10 一个圆盘绕穿过质心的轴转动,其角坐标随时间的关系为θ(t )=γt+βt 3 ,其初始转速为零,求其转速随时间变化的规律。 解 由d dt θ ω= 得 23t ωγβ=+ 由于初始时刻转速为零,γ=0 23t ωβ= 4-11 求半径为R ,高为h ,质量为m 的圆柱体绕其对称轴转动时的转动惯量。 解 建立柱坐标,取圆柱体上的一个体元,其对转轴的转动惯量为 2 222 m m dJ dV d d dz R h R h ρρρρθππ== 积分求得 23220001 2 R h m J d d dz mR R h πρρθπ= =??? 4-12一个半径为R ,密度为ρ的薄板圆盘上开了一个半径为R/2的圆孔,圆孔与盘边缘相切。求该圆盘对通过圆盘中心而与圆盘垂直的轴的转动惯量。 解:把圆孔补上,取圆盘上一面元dS ,到转轴的距离为r ,则其转动惯量为 22dJ r dS r rdrd ρρθ== 积分得绕轴转动惯量为 23410 1 2 R J r drd R π ρθπρ==? ? 圆孔部分的绕轴转动惯量可由平行轴定理得 4 422213()()()222232 R R R R J πρπρρπ=+= 总的转动惯量为 4 121332 R J J J πρ=-= 4-13电风扇在开启电源后,经过t 1时间达到额定转速ω,当关闭电源后,经过t 2时间后停止转动,已知风扇转子的转动惯量为J ,并假定摩擦力矩和电动机的电磁力矩均为常量,求电动机的电磁力矩。 解:由转动定理得

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

数据库应用基础第4章习题参考答案

习题 1.选择题 (1)设A、B两个数据表的记录数分别为3和4,对两个表执行交叉联接查询,查询结果中最多可获得(C )条记录。 A.3 B. 4 C. 12 D. 81 (2)如果查询的SELECT子句为SELECT A, B, C * D,则不能使用的GROUP B子句是( A )。 A.GROUP BY A B.GROUP BY A,B C.GROUP BY A,B,C*D D.GROUP BY A,B,C,D (3)关于查询语句中ORDER BY子句使用正确的是( C )。 A.如果未指定排序字段,则默认按递增排序 B.数据表的字段都可用于排序 C.如果在SELECT子句中使用了DISTINCT关键字,则排序字段必须出现在查询结果中 D.联合查询不允许使用ORDER BY子句 (4)在查询设计器中,不能与其他窗格保持同步的是(D )。 A.关系图窗格 B. 网格窗格 C.SQL窗格 D. 结果窗格 (5)下列函数中,返回值数据类型为int的是(B)。 A.LEFT B. LEN C.LTRIM D. SUNSTRING 2.填空题 (1) 在启动查询分析器时,在登录对话框中可使用(Local)作为本地服务器名称。 (2) 查询分析器窗口主要由对象浏览器和(查询)窗口组成。 (3) 从Windows“开始”菜单启动查询分析器后,默认数据库为(master)。 (4) 以表格方式显示的查询结果保存为(导出)文件,其文件扩展名为(csv);以文本方式显示的查询结果保存为(报表)文件,其文件扩展名为(rpt)。 (5) 可使用(PRINT)或(SELECT)语句来显示函数结果。 (6) 在查询语句中,应在(SELECT)子句中指定输出字段。 (7) 如果要使用SELECT语句返回指定条数的记录,则应使用(TOP)关键字来限定输出字段。 (8) 联合查询指使用(UNION)运算将多个(查询结果)合并到一起。 (9) 当一个子SELECT的结果作为查询的条件,即在一个SELECT语句的WHERE子句中出现另一个SELECT语句,这种查询称为(嵌套)查询。 (10) 连接查询可分为3种类型:(内连接)、(外连接)和交叉连接。 3.问答题 (1) 在SELECT语句中,根据列的数据对查询结果进行排序的子句是什么?能消除重复行的关键字是什么? (2) 写出与表达式“仓库号NOT IN('wh1','wh2')”功能相同的表达式。用BETWEEN、AND形式改写条件子句WHERE mark> 550 AND mark<650。 (3) 在一个包含集合函数的SELECT语句中,GROUP BY子句有哪些用途?

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

第四章课后思考题及参考答案

第四章课后思考题及参考答案 1、为什么说资本来到世间,从头到脚,每个毛孔都滴着血和肮脏的东西? [答案要点]资本来到世间,从头到脚,每个毛孔都滴着血和肮脏的东西。资本主义的发展史,就是资本剥削劳动、列强掠夺弱国的历史,这种剥夺的历史是用血和火的文字载入人类编年史的。在自由竞争时代,西方列强用坚船利炮在世界范围开辟殖民地,贩卖奴隶,贩卖鸦片,依靠殖民战争和殖民地贸易进行资本积累和扩张。发展到垄断阶段后,统一的、无所不包的世界市场和世界资本主义经济体系逐步形成,资本家垄断同盟为瓜分世界而引发了两次世界大战,给人类带来巨大浩劫。二战后,由于社会主义的胜利和民族解放运动的兴起,西方列强被迫放弃了旧的殖民主义政策,转而利用赢得独立和解放的广大发展中国家大规模工业化的机会,扩大资本的世界市场,深化资本的国际大循环,通过不平等交换、资本输出、技术垄断以及债务盘剥等,更加巧妙地剥削和掠夺发展中国家的资源和财富。在当今经济全球化进程中,西方发达国家通过它们控制的国际经济、金融等组织,通过它们制定的国际“游戏规则”,推行以所谓新自由主义为旗号的经济全球化战略,继续主导国际经济秩序,保持和发展它们在经济结构和贸易、科技、金融等领域的全球优势地位,攫取着经济全球化的最大好处。资本惟利是图的本性、资本主义生产无限扩大的趋势和整个社会生产的无政府状态,还造成日益严重的资源、环境问题,威胁着人类的可持续发展和生存。我们今天看到的西方发达资本主义国家的繁荣稳定,是依靠不平等、不合理的国际分工和交换体系,依靠发展中国家提供的广大市场、廉价资源和廉价劳动力,通过向发展中国家转嫁经济社会危机和难题、转移高耗能高污染产业等方式实现的。资本主义没有也不可能给世界带来普遍繁荣和共同富裕。 2、如何理解商品二因素的矛盾来自劳动二重性的矛盾,归根结底来源于私人劳动和社会劳的矛盾?[答案要点]商品是用来交换的劳动产品,具有使用价值和价值两个因素或两种属性。在私有制条件下,商品所包含使用价值和价值的矛盾是由私有制为基础的商品生产的基本矛盾即私人劳动和社会劳动的矛盾所决定的。以私有制为基础的商品经济是以生产资料的私有制和社会分工为存在条件的。一方面,在私有制条件下,生产资料和劳动力都属于私人所有,他们生产的产品的数量以及品种等,完全由自己决定,劳动产品也归生产者自己占有和支配,或者说,商品生产者都是独立的生产者,他们要生产什么,怎样进行生产,生产多少,完全是他们个人的私事。因此,生产商品的劳动具有私人性质,是私人劳动。另一方面,由于社会分工,商品生产者之间又互相联系、互相依存,各个商品生产者客观上都要为满足他人和社会的需要而进行生产。因此,他们的劳动又都是社会劳动的组成部分。这样,生产商品的劳动具有社会的性质,是社会劳动。对此,马克思指出,当劳动产品转化为商品后,“从那时起,生产者的私人劳动真正取得了二重的社会性质。一方面,生产者的私人劳动必须作为一定的有用劳动来满足一定的社会需要,从而证明它们是总劳动的一部分,是自然形成的社会分工体系的一部分。另一方面,只有在每一种特殊的有用的私人劳动可以同任何另一种有用的私人劳动相交换从而相等时,生产者的私人劳动才能满足生产者本人的多种需要。完全不同的劳动所以能够相等,只是因为它们的实际差别已被抽去,它们已被化成它们作为人类劳动力的耗费、作为抽象的人类劳动所具有的共同性质。”私有制条件下,商品生产者私人劳动所具有的这二重性质,表现为生产商品的劳动具有私人劳动和社会劳动的二重性。 生产商品的私人劳动和社会劳动是统一的,同时也是对立的。其矛盾性表现在:作为私人劳动,一切生产活动都属于生产者个人的私事,但作为社会劳动,他的产品必须能够满足一定的社会需要,他的私人劳动才能转化为社会劳动。而商品生产者的劳动直接表现出来的是它的私人性,并不是它的社会性,他的私人劳动能否为社会所承认,即能否转化为社会劳动,他自己并不能决定,于是就形成了私人劳动和社会劳动的矛盾。这一矛盾的解决,只有通过商品的交换才能实现。当他的产品在市场上顺利地实现了交换之后,他的私人劳动也就成了社会劳动的一部分,他的具体劳动所创造的使用价值才是社会需要的,他的抽象劳动所形成的价值才能实现。如果他的劳动产品在市场上没有卖出去,那就表明,尽管他是为社会生产的,但事实上,社会并不需要他的产品,那么他的产品

第四章课后习题参考答案

1 数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与“数据 链路接通了”的区别何在? 答:(1)数据链路与链路的区别在于数据链路除链路外,还必须有一些必要的通信协议来控制数据的传输。因此,数据链路比链路多了实现通信协议所需要的硬件和软件。 (2)“电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了。但是,数据传输并不可靠。在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”。此后,由于数据链路连接具有检测、确认和重传等功能,才使不太可靠的物理链路变成可靠的数据链路,进行可靠的数据传输。当数据链路断开连接时,物理电路连接不一定跟着断开连接。 2 数据链路层中的链路控制包括哪些功能? 答:数据链路层中的链路控制包括链路管理;帧同步;流量控制;差错控制;将数据和控制信息分开;透明传输;寻址等功能。 数据链路层做成可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。 3数据链路层的三个基本问题(帧定界,透明传输和差错检测)为什么都必须加以解决? 答:帧定界是分组交换的必然要求;透明传输是避免二进制比特流中出现与帧定界符号相同的模式,使节点错误识别帧;差错检测是为了避免接收到错误信息和防止信道中出现的无效数据帧浪费后续路由上的传输和处理资源。 4 如果在数据链路层不进行帧定界,会发生什么问题? 答:在数据传输过程中的传输网中的结点及接收方将无法区分分组(帧),也将不能确定分组的控制域和数据域,也不能实现差错控制。 5 PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不能使数据链路层实现可靠传输? 答:1,PPP是面向字节的点对点通信协议,适用于线路质量不太差的情况,其主要特点:(1)协议简单,不使用序号和确认机制,也不需要流量控制;具有检错能力,但无纠错功能;只支持点到点的链路通信和和全双工链路(2)PPP规定特殊的字符为帧界定符,且在同步传输链路时,采用比特填充法,当用在异步传输时,使用字符填充法来保证数据传输的透明性; (3)PPP可同时支持链路所连接的LAN或ROUTER上运行的多种网络层协议;(4)可在多种点到点的链路上运行(串行,并行,高速,低速,电的,光的,交换的或非交换的),并可自动检测链路的工作状态,同时对不同的链路设置最大传输单元MTU(帧的有效载荷)的标准默认值;(5)提供了网络地址协议和数据压缩功能. 2,在TCP/IP协议簇中,可靠的传输由TCP协议负责,而PPP只进行检错,它是一个不可靠的传输协议,因此不需要帧的编号。 3,PPP适用于质量不太差的点对点全双工通信链路,且上层协议要保证数据传输的可靠性,如用户通过ISP连接Internet. 4,(1)PPP只提供了检错功能,当发现帧出现错误时,只是将其丢弃;(2)PPP帧没有使用序号,接收端不能通过序号确认帧的顺序和是否完全到达。 6 要发送的数据为1101011011。采用CRC的生成多项式是P(x)=x4+x+1 。试求应添加在数 据后面的余数。 数据在传输过程中最后一个1变成了0,问接收端能否发现? 若数据在传输过程中最后两个1都变成了0,问接收端能否发现? 答:添加的检验序列(冗余码)为1110 (11010110110000除以数P=10011)

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

第四章课后习题参考答案

第4章网络基础知识与Internet应用一、单项选择题 二、填空题 1.局域网、城域网、广域网或LAN、MAN、WAN 2. C、A、C 3. 127.0.0.1(本机)、255.255.255.255(限制广播)、0.0.0.0(广播) 4. Electronic Commerce, EC 5.B2B、B2C 6. Instrumented:物联化 Interconnected:互联化 Intelligent:智能化 7.感知层、网络层、应用层 8.接入(网络层)、应用(业务层) 9.硬件系统、软件系统 10.不可否任性

三、简答题 1. 计算机网络发展包括四个阶段:第一,面向终端的计算机网络;第二,计算机-计算机网络;第三,开放标准网络阶段;第四,因特网与高速计算机网络阶段。各阶段的特点:第一,面向终端的计算机网络:以单个计算机为中心的远程联机系统,构成面向终端的计算机网络。第二,计算机-计算机网络:由若干个计算机互联的系统,组成了“计算机-计算机”的通信时代,呈现出多处理中心的特点。第三,开放标准网络阶段:由于第二阶段出现的计算机网络都各自独立,不相互兼容。为了使不同体系结构的计算机网络都能互联,国际标准化组织ISO提出了一个能使各种计算机在世界范围内互联成网的标准框架―开放系统互连基本参考模型OSI。第四,因特网与高速计算机网络阶段:采用高速网络技术,综合业务数字网的实现,多媒体和智能型网络的兴起。 2.TCP/IP网络使用32位长度的地址以标识一台计算机和同它相连的网络,它的格式为:IP 地址=网络地址+ 主机地址。标准IP地址是通过它的格式分类的,它有四种格式:A类、B类、C类、D类。 3. 电子商务所涵盖的业务范围包括:信息传递与交流;售前及售后服务;网上交易;网上支付或电子支付;运输;组建虚拟企业。 4. 包括banner(网幅广告)、button广告、文字链接广告、弹出式广告(pop up window)及其它形式(如移动logo、网上分类广告等)。其中banner广告是主流形式,也被认为是最有效的。 5. 国际电信联盟( ITU)对物联网做了如下定义:通过二维码识读设备、射频识别(RFID) 装置、红外感应器、全球定位系统和激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。

第四章习题答案

教材习题答案 分析图电路的逻辑功能 解:(1)推导输出表达式 Y2=X2;Y1=X 1X2;Y0=(MY1+X 1M)X0 X2X1X0Y2Y1Y0 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111000 001 011 010 110 111 101 100 000 001 011 010 111 110 100 101 (3)逻辑功能:当M=0时,实现3位自然二进制码转换成3位循环码。 当M=1时,实现3位循环码转换成3位自然二进制码。分析图电路的逻辑功能。 图 解:(1)从输入端开始,逐级推导出函数表达式。 F1 = A⊕B⊕C

F2 = A(B⊕C) + BC= A BC + AB C +ABC + ABC (2)列真值表 表4.3.2 A B C F1F2 000 001 010 011 100 101 110 11100 11 11 01 10 00 00 11 (3)确定逻辑功能。由真值表可知,该电路实现了一位全减器的功能。 A、B、C、F1、F2分别表示被减数、减数、来自低位的借位、本位差、本位向高位的借位。分析图电路的逻辑功能 解:(1)F1=A B C;F2=(A B)C+AB (2)真值表: A B C F2F1 000 001 010 011 100 101 110 11100 01 01 10 01 10 10 11

(3)逻辑功能:实现1位全加器。 设ABCD是一个8421BCD码,试用最少与非门设计一个能判断该8421BCD码是否大于等于5的电路,该数大于等于5,F= 1;否则为0。 解:(1)列真值表 表4.3.4 (2)写最简表达式

继电保护第四章课后习题参考答案资料讲解

纵联保护依据的最基本原理是什么? 答:纵联保护包括纵联比较式保护和纵联差动保护两大类,它是利用线路两端电气量在故障与非故障时、区内故障与区外故障时的特征差异构成保护的。纵联保护的基本原理是通过通信设施将两侧的保护装置联系起来,使每一侧的保护装置不仅反应其安装点的电气量,而且哈反应线路对侧另一保护安装处的电气量。通过对线路两侧电气量的比较和判断,可以快速、可靠地区分本线路内部任意点的短路与外部短路,达到有选择、快速切除全线路短路的目的。 纵联比较式保护通过比较线路两端故障功率方向或故障距离来区分区内故障与区外故障,当线路两侧的正方向元件或距离元件都动作时,判断为区内故障,保护立即动作跳闸;当任意一侧的正方向元件或距离元件不动作时,就判断为区外故障,两侧的保护都不跳闸。 纵联差动保护通过直接比较线路两端的电流或电流相位来判断是区内故障还是区外故障,在线路两侧均选定电流参考方向由母线指向被保护线路的情况下,区外故障时线路两侧电流大小相等,相位相反,其相量和或瞬时值之和都等于零;而在区内故障时,两侧电流相位基本一致,其相量和或瞬时值之和都等于故障点的故障电流,量值很大。所以通过检测两侧的电流的相量和或瞬时值之和,就可以区分区内故障与区外故障,区内故障时无需任何延时,立即跳闸;区外故障,可靠闭锁两侧保护,使之均不动作跳闸。 4.7 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,分析在K点短 路时各端保护方向元件的动作情况,各线路保护的工作过程及结果。 ?? 答:当短路发生在B—C线路的K处时,保护2、5的功率方向为负,闭锁信号 持续存在,线路A—B上保护1、2被保护2的闭锁信号闭锁,线路A—B两侧 均不跳闸;保护5的闭锁信号将C—D线路上保护5、6闭锁,非故障线路保护 不跳闸。故障线路B—C上保护3、4功率方向全为正,均停发闭锁信号,它们 判定有正方向故障且没有收到闭锁信号,所以会立即动作跳闸,线路B—C被切 除。 答:根据闭锁式方向纵联保护,功率方向为负的一侧发闭锁信号,跳闸条件是本 端保护元件动作,同时无闭锁信号。1保护本端元件动作,但有闭锁信号,故不 动作;2保护本端元件不动作,收到本端闭锁信号,故不动作;3保护本端元件 动作,无闭锁信号,故动作;4保护本端元件动作,无闭锁信号,故动作;5保 护本端元件不动作,收到本端闭锁信号,故不动作;6保护本端元件动作,但有 闭锁信号,故不动作。 4.10 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,在K点短路 时,若A—B和B—C线路通道同时故障,保护将会出现何种情况?靠什么保护 动作切除故障?

相关文档
相关文档 最新文档