文档库 最新最全的文档下载
当前位置:文档库 › 实变函数论习题选解

实变函数论习题选解

实变函数论习题选解
实变函数论习题选解

《实变函数论》习题选解

一、集合与基数

1.证明集合关系式:

(1))()()()(B D C A D C B A --?--- ;

(2))()()()(D B C A D C B A -=--;

(3)C B A C B A )()(-?--;

(4)问)()(C B A C B A --=- 成立的充要条件是什么?

证 (1)∵c

B A B A =-,c c c B A B A =)((对偶律), )()()(

C A B A C B A =(交对并的分配律)

, ∴)()(

)()()()(D C B A D C B A D C B A c c c c c ==---第二个用对偶律

)()()()()()(B D C A D B C A D B A C B A c c c c c --=?= 交对并分配律.

(2))()()

()()()(c c c c D B C A D C B A D C B A ==--交换律结合律 )()()()(D B C A D B C A c -==第二个用

对偶律.

(3))()()()()(C A B A C B A C B A C B A c c c c ===--分配律

C B A C B A c )()(-=?.

(4)A C C B A C B A ??--=-)()( .

证 必要性(左推右,用反证法):

若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x )(-∈,从而左边不等式不成立,矛盾!

充分性(右推左,显然):事实上,

∵A C ?,∴C C A = ,如图所示:

故)()(C B A C B A --=- .

2.设}1 ,0{=A ,试证一切排列

A a a a a n n ∈ ),,,,,(21

所成之集的势(基数)为c .

证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n 为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ,令 n a a a a f 21.0)(=,特别,

]1 ,0[0000.0)0(∈== f ,]1 ,0[1111.0)1(∈== f ,

即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ n a a a ,则f 是一一对

应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.

3.证明:整系数多项式的全体是可列的(可数的).

证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++= 2210对应于一个序列: n a a a a ,,,,210 ,而每个)0(n i a i ≤≤取自可数集N N Z }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合 N ∈=

n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.

4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .

证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,

∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;

另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E 的基数c E =,为证 c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数 ]1 ,0[ Q 排列成 ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在 ,,,,21n r r r 处的值 ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:

)(lim )(k n k r f x f ∞

→=. 现在,作映射E C →]1 ,0[:?,)),(,),(),(()(21 n r f r f r f x f ,则?是单射,而集E C f r f r f r f A n ?∈=}]1 ,0[)),(,),(),({(21 是全体实数列E 的一个子集,故 ]1 ,0[C ~E A ?,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.

附注 ①若?=21A A ,?=21B B ,又1f :1A ~1B ,2f :2A ~2B .则存在 f :21A A ~21B B ;假如21A A ?,21B B ?,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?

解 若?=21A A ,?=21B B ,令???∈∈=,

),(, ),()(2211A x x f A x x f x f 则)(x f 就是21A A

到21B B 的一一对应.

若21A A ?,21B B ?,则12A A -与12B B -之间不一定存在一一对应.例如: } , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211 n B A n B n A ====,

),3 ,2( 1:1 =+n n n f ,),2,1( :2 =n n n f ,

则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.

但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.

②几个常见的一一对应:

(ⅰ)) ,(b a ~R ,()

) ,( , tan )(2b a x x f a b a x ∈-?=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x x

x x f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为 , , , ,21n r r r ,而]1 ,0[中的有理数排列为 , , , , ,1 ,021n r r r .作其间的对应f 如下:

???????>====+,中无理数时是当当当当)1 ,0(

, ),2( ,, ,1 , ,0 )(2

21x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).

(ⅲ)N N ?~N ,()N N ?∈-=-),( , )12(2),(1j i j j i f i .

这是因为任一自然数均可唯一表示为q n p ?=2(p 非负整数,q 正奇数),而对非负整

数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p .

(ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=.

证 1.c

F 2≥; 设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即?

??-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ 当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记

}]1 ,0[{?=E E M ,}]1 ,0[)({?=X E x E χ,

则M ~X ,c M 2==X .而F ?X ,从而有F ≤X ,即F c ≤2.

2.c F 2≤.

对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而c B 2=,从而有c F G F 2≤=.

综合 1, 2立知 c F 2=.

附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ??,而A ~C ,则B ~C (此结果更便于应用). 5.试证任何点集的点全体组成的集是开集.

证 设集F 的点集为0F (称为F 的部),下证0

F 为开集.

0F x ∈?,由点的定义,存在x 的邻域F I x x x ?=),(βα.现作集 F x x I G ∈=,则显

然G 为开集,且G F ?0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ?∈0,所

以,y 为F 的点,即0F y ∈,也就是说0F G ?.综上有G F =0为开集.

6.开映射是否连续?连续映射是否开?

解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[ ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而 +∞-∞==

n n P P , +∞

-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{( =k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )

现在R 上定义函数 ??

???∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k k k k π

则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间

) ,(k k b a ,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (k

k k k k k

a b b a b b ------βπαπ; 若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f

的不连续点.

又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)

1 ,0[非开非闭.

7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.

解 P E ='.分以下三步:

①设Cantor 集为P ,其补集(或叫余集)为G ,则 ),(),(),(9

89792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ???=,2,0i a ??

???=,2,1,0i b ( ,3 ,2 ,1=i ). 由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设

n a a a y 21.0=;

当G x ∈时,可设 2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有

0200.021n a a a y =右;

对于G 的构成区间的左端点左y 有 20222.021n a a a y =左.

由此可见,G E ?,且当E z ∈时,有 111.0)(212

1n a a a y y z =+=右左. ②下证Cantor 集P 中的点都是E 的极限点:

对P y ∈?,由于 n a a a y 21.0=,取E z k ∈,则 111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而

k k k k k y z 3

1312331

31

121?>?N ε当N k >时,有ε

31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.

③下证G x ∈?,有E x '?.事实上,有两种情况:

10.若E x ∈,则只能是G 的构成区间的中点,即 111.021n a a a x =.由Cantor 集的构造知:对)( x z E z ≠∈?,都有 n x z 3

1≥-,所以,E x '?; 20.若E x ?且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ,于是,

E z ∈?,有m x z 3

1>-,所以,E x '?. 故G 中的点不属于E '.

综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.

8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证?≠∞

= 1k k E .

证 用反证法:若?=∞= 1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞

=∞= ,从而

} ,\] ,[{N ∈=k E b a E k c k 为有界渐开集列(升列)

,且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c k

=,使得] ,[1b a E n k c k

?= ,即 ()] ,[\] ,[1b a E b a n k k == . ∴ ] ,[\] ,[1b a E b a n k k == ,从而?== n

k k E 1,故?=n E ,

矛盾!

附注 更一般地,若非空闭集套}{n E : ????n E E E 21满足

0sup )(,??→?-=∞→∈n E y x n y x E n

ρ,

则存在唯一的 ∞

=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”

) 证 由n E 非空,取) ,3 ,2 ,1( =∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+?n n E E ,所以,) ,2 ,1 ,0( =?∈++m E E x n m n m n ,从而

0)(sup ,??→?=-≤-∞→∈+n n E y x n m n E y x x x n

ρ,

由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n ??→?∞

→.又由n E 为闭集立知n E x ∈0,从而 ∞

=∈10n n E x .存在性得证.下证唯一性:

若另有 ∞=∈10n n E y ,则) ,2 ,1( 00 =∈n E y x n 、,而0)(0

0→≤-n E y x ρ,

所以,00x y =.这就证明了唯一性.

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

实变函数(程其襄版)第一至四章课后习题答案

第一章集合 早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。 康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。 实变函数论建立在实数理论和集合论的基础上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。 §1 集合的表示 集合是数学中所谓原始概念之一,不能用别的概念加以定义,就目前来说,我们只要求掌握一下朴素的说法: 在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称作一个集合,其中每一个个体事物叫做该集合的元素。 顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。 例1 4,7 ,8,3四个自然数构成的集合。 例2 全体自然数 例3 0和1之间的实数全体 0,1上的所有实函数全体 例4 [] 例5 A,B,C三个字母构成的集合 例6 平面上的向量全体 全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。 1.集合的表示

一个具体集合A 可以通过例举其元素,,a b c L 来定义,可记{},,A a b c =L 也可以通过该集合中的各个元素必须且只需满足的条件p 来定义,并记为 A={x :x 满足条件p} 如例1可以表示为{4,7,8,3}例3可以表示为{}:(0,1)x x ∈ 设A 是一个集合,x 是A 的元素,我们称x 属于A ,记作x A ∈,x 不是A 的元素,记作x A ?。 为方便表达起见,?表示不含任何元素的空集,例如 {x :sin x >1}=? 习惯上,N 表示自然数集,(本书中的自然数集不包含0),Z 表示整数集,Q 表示有理数集,R 表示实数集. 设()f x 是定义在E 上的函数,记()f E ={ ()f x :x ∈E},称之为f 的值域。若D 是R 中的集合,则 1()f D -={x :x ∈E ,},称之为D 的原像,在不至 混淆时,{x :x ∈E ,()f x 满足条件p}可简写成{x :()f x 满足条件p }. 2.集合的包含关系 若集合A 和B 满足关系:对任意x ∈A,可以得到x ∈B ,则成A 是B 的子集,记为A ?B 或B ?A ,若A B 但A 并不与B 相同,则称A 是B 的真子集. 例7. 若()f x 在R 上定义,且在[a,b]上有上界M ,即任意对 x ∈[a,b]有()f x ≤M.用集合语言表示为:[a,b] ?{x :()f x ≤M}. 用集合语言描述函数性质,是实变函数中的常用方法,请在看下例. 例8. 若()f x 在R 上连续,任意取定0x ∈R,对任意ε>0,存在δ>0.使得对任 意0 0(,)x x x δδ∈-+有0|()()|f x f x -<ε,即 0000((,))((),())f x x f x f x δδεε-+?-+. 3.集合相等 若集合A 和B 满足关系:A ?B 且B ?A,则称A 和B 相等,记为A=B.

实变函数试题库 及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A U U 2.设n E R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数 a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()() ()a e n f x f x x E →∈,则()()n f x f x ? x E ∈ (是否成立) 二、选择题 1、设E 是1R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C =I U I U I (B )(\)A B A =?I

(C )(\)B A A =?I (D )A B A B ?U I 3. 若() n E R ?是闭集,则 ( ) (A )0E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点 2.若()E R ?的外测度为0,则( ) (A )E 是可测集 (B )0mE = (C )E 一定是可数集 (D )E 一定不是可数集 3.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立( ) (A )()E f x dx ?存在 (B )()f x 在E 上L -可积 (C ).()()()a e n f x f x x E →∈ (D )lim ()()n E E n f x dx f x dx →∞=?? 4.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( ) (A )()()f x L E +∈与()()f x L E - ∈至少有一个成立 (B )()()f x L E +∈且()()f x L E - ∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈

实变函数论课后答案第四章

实变函数论课后答案第四章4第四章第四节习题 1.设于,于,证明:于 证明:, (否则,若,而, 矛盾),则 () 从而 2.设于,,且于,证明于 证明:由本节定理2(定理)从知的子列使 于 设,,于,从条件于,设 ,,于上 令,则,且 故 ,则 令, 故有,从而命题得证

3.举例说明时定理不成立 解:取,作函数列 显然于上,但当时 ,不 故时定理不成立,即于不能推出于 周民强《实变函数》P108 若是非奇异线性变换,,则 () 表示矩阵的行列式的绝对值. 证明:记 显然是个的平移集()的并集,是个()的并集,且有, 现在假定()式对于成立() 则 因为,所以得到 这说明()式对于以及的平移集成立,从而可知()式对可数个互不相交的二进方体的并集是成立的(对任意方体, ) 对一般开集,,为二进方体,互补相交 则

1-1 ,连续,连续开,则开,从而可测 于是应用等测包的推理方法立即可知,对一般点集()式成立 设为有界集,开,,则开,且不妨设有界,否则令有界,令即可. 连续,则开,开,可测(),, 故 (开) 若为无界集,令,则,为有界集 ,线性,则若,则(后面证) ,则由注释书P69定理3,存在集,,若有界, 则,故(1-1) 则,故 若无界,则, 线性,若,则 证明:为的基,, ,,,令,则 则(即是连续的) 一边平行于坐标平面的开超矩体 于

,开,连续,则是中开集从而可测,从而是中可测集,由归纳法知是可测集 若()式成立,则矩体, ,为正方体,则对开集也有,特别对开区间 这一开集有 则可知,若,则 事实上,,开区间,, 令知 若()成立,则将可测集映为可测集,还要看()证明过程是否用到将可测集映为可测集或推出这一性质! 下面证()成立.任一线性变换至多可分解为有限个初等变换的乘积 (i)坐标之间的交换 (ii) (iii) 在(i)的情形显然()成立 在(ii)的情形下,矩阵可由恒等矩阵在第一行乘以而得到从而可知()式成立 在(iii)的情形,此时()

第三版实变函数论课后答案

1. 证明:()B A A B -=的充要条件是A B ?. 证明:若() B A A B -=,则()A B A A B ?-?,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?,又x B ?∈,若x A ∈, 则 ()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有 () x B A A ∈-.故 ()B B A A ?-,从而有()B A A B -=。 证毕 2. 证明c A B A B -=. 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?. 另一方面, c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-. 综合上两个包含式得c A B A B -=. 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理 9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则 A B λλλλ∈∧ ∈∧ ? . 证:若x A λλ∈∧ ∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈,这说明 A B λλλλ∈∧ ∈∧ ? . 定理4中的(4): ()()( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 证:若 () x A B λ λλ∈∧ ∈ , 则 有 'λ∈∧ ,使 ''()( )()x A B A B λλλλλλ∈∧ ∈∧ ∈?. 反过来,若()( )x A B λλλλ∈∧ ∈∧ ∈则x A λλ∈∧ ∈或者x B λλ∈∧ ∈ . 不妨设x A λλ∈∧ ∈,则有'λ∈∧使'' '()x A A B A B λλλλλλ∈∧ ∈?? . 故( )()()A B A B λλλ λλλλ∈∧ ∈∧ ∈∧ ? . 综上所述有 ()( )( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 定理6中第二式()c c A A λλλλ∈∧ ∈∧ = . 证:( )c x A λλ∈∧ ?∈,则x A λλ∈∧ ? ,故存在'λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ?? 从而有( )c c A A λλλλ∈∧ ∈∧ ? . 反过来,若c x A λλ∈∧ ∈ ,则'λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴? ,从而()c x A λλ∈∧ ∈

实变函数论习题选解

《实变函数论》习题选解 一、集合与基数 1.证明集合关系式: (1))()()()(B D C A D C B A --?---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-?--; (4)问)()(C B A C B A --=-Y 成立的充要条件是什么? 证 (1)∵c B A B A I =-,c c c B A B A Y I =)((对偶律), )()()(C A B A C B A I Y I Y I =(交对并的分配律) , ∴)()( )()()()(D C B A D C B A D C B A c c c c c Y I I I I I ==---第二个用 对偶律 )()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并 分配律 . (2))()() ()()()(c c c c D B C A D C B A D C B A I I I I I I I ==--交换律 结合律 )()()()(D B C A D B C A c Y I Y I I -== 第二个用对偶律 . (3))()() ()()(C A B A C B A C B A C B A c c c c I Y I Y I I I = ==--分配律 C B A C B A c Y Y I )()(-=?. (4)A C C B A C B A ??--=-)()(Y . 证 必要性(左推右,用反证法): 若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上, ∵A C ?,∴C C A =I ,如图所示: 故)()(C B A C B A --=-Y . 2.设}1 ,0{=A ,试证一切排列 A a a a a n n ∈ ),,,,,(21ΛΛ 所成之集的势(基数)为c . 证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf , 即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=U 的充要条件是A B ?. 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U .总有()x B A A ∈-U .故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I . 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I . 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I . 综合上两个包含式得c A B A B -=I . 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I . 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I . 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U . 证:若()x A B λλλ∈∧ ∈U U ,则有'λ∈∧,使 ' ' ()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U . 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U . 不妨设x A λλ∈∧ ∈U ,则有'λ∈∧使' ' ' ()x A A B A B λλλλλλ∈∧ ∈??U U U . 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U .

相关文档
相关文档 最新文档