文档库 最新最全的文档下载
当前位置:文档库 › 磁通量的变化

磁通量的变化

磁通量的变化
磁通量的变化

1. 磁通量Φ:①物理意义:某时刻穿过磁场中某个面的磁感线条数,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大,因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。

②大小计算:Φ=BS⊥或φ=SB⊥

Φ=B·S,S为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影,

我们称之为“有效面积”。

如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B,

线圈面积为S,把面积S投影投影到与磁场垂直的方向即水平方向,则S⊥=Scosθ,故φ=BS⊥=BScosθ。

把磁感应强度B分解为平行于线圈平面的分量B∥和垂直与线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcosθ,故φ=B⊥S=BScosθ。

如果磁场范围有限,如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,

一半在磁场外,当线框以bc边为轴转动时,如果转动的角度小于60度,面积S在垂直与

磁感线方向且在磁场中的投影不变,这时“有效面积”为S/2,磁通量φ=BS/2.

如果磁场范围有限,如图示,当线圈包含全部磁场时,面积再扩大,磁通量扔不变,还是φ=BS.

③磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定。

穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量抵消以后

所剩余的磁通量。若磁感线沿相反方向穿过同一平面,且正向穿过它的磁通量为φ1,反向穿过它的磁通量为φ2,则穿过该平面的磁通量等于磁通量的代数和,即φ1-φ2.

○4多匝线圈的磁通量:穿过某一线圈的磁通量是由穿过该面的磁感线条数的多少决定的,与线圈匝数无关,只要n匝线圈的面积相同,放置情况也相同,则通过n匝线圈与通过单匝线圈的磁通量相同,即Φ≠NBS

2.磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值

②大小计算:ΔΦ=Φ2-Φ1要首先规定正方向

③与磁场垂直的平面,开始时和转过180°时穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS而不是零

磁通量发生变化的四种情形

①磁感应强度B不变,有效面积S变化,则△φ=φt-φ0=B?△S。

如图所示,闭合回路的一部分导体切割磁感线,此时穿过abcd面

的磁通量的变化量可用此公式计算。

②磁感应强度B变化,磁感线穿过的有效面积S不变,则△φ=φt-φ0=△B?S。如图(8)所示,通电直导线下边有一个矩形线框,若使线框逐渐远离(平动)通电导线,此时穿过线框的磁通量的变化量可用此公式计算。

③线圈平面与磁场方向的夹角θ发生变化时,线圈在垂直与磁场方向的投影面积S⊥=Ssinθ发生变化,从而引起穿过线圈的磁通量发生变化,即B、S不变,θ变化。此时可由△φ=φt-φ0=BS(sinθ1-sinθ2)计算并判断磁通量的变化。如图所示,当线框以ab为轴顺时针转动时,此时穿过abcd面的磁通量的变化量可由此公式计算。○4若磁感应强度B和回路面积S同时发生变化,则△φ=φt-φ0≠△B?△S.如图所示,若导线CD向右滑动,回路面积从S1变到S2,磁感应强度B从变到,则回路中的磁通量的变化量△φ=B2S2- B1S1

1、(1)利用磁场产生电流的现象,叫做电磁感应现象。(2)由电磁感应现象产生的电流,叫做感应电流。

2、产生感应电流的条件 a.闭合回路 b. 穿过闭合回路的磁通量发生变化

3、产生感应电流的方法:(1)磁铁运动(2)闭合电路一部分运动(3)磁场强度B变化或有效面积S变化

注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。

“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的主要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

1、楞次定律

(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。

②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。

(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。(3)“阻碍”的含义.

①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”)

②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢了,但磁通量仍在增加,不影响磁通量最终的增加量;当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,但磁通量仍在减少,不影响磁通量最终的减少量。即感应电流的磁场延缓了原磁通量的变化,而不能使原磁通量停止变化,该变化多少磁通量最后还是变化多少磁通量。

③“阻碍”不意味着“相反”. 在理解楞次定律时,不能把“阻碍”作用认为感应电流产生磁场的方向与原磁场的方向相反。事实上,它们可能同向,也可能反向。(“增反减同”)

(4)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在客服这种阻碍的过程中,其他形式的能转化成电能。

(5)“阻碍”的形式. 感应电流的效果总是要反抗(或阻碍)引起感应电流的原因

(1)就磁通量而言,感应电流的磁场总是阻碍原磁场磁通量的变化.(“增反减同”)

(2)就电流而言,感应电流的磁场阻碍原电流的变化,即原电流增大时,感应电流磁场方向与原电流磁场方向相反;原电流减小时,感应电流磁场方向与原电流磁场方向相同. (“增反减同”)

(3)就相对运动而言,由于相对运动导致的电磁感应现象,感应电流的效果阻碍相对运动.(“来拒去留”)(4)就闭合电路的面积而言,电磁感应应致使回路面积有变化趋势时,则面积收缩或扩张是为了阻碍回路磁通量的变化.(“增缩减扩”)

(6)适用范围:一切电磁感应现象. (7)研究对象:整个回路.

(8)使用楞次定律的步骤:

①明确(引起感应电流的)原磁场的方向.

②明确穿过闭合电路的磁通量(指合磁通量)是增加还是减少.

③根据楞次定律确定感应电流的磁场方向.

④利用安培定则确定感应电流的方向

2、右手定则. (1)内容:伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,让磁感线垂直(或倾斜)从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。

(2)作用:判断感应电流的方向与磁感线方向、导体运动方向间的关系。

(3)适用范围:导体切割磁感线。

(4)研究对象:回路中的一部分导体。

(5)右手定则与楞次定律的联系和区别.

①联系:右手定则可以看作是楞次定律在导体运动情况下的特殊运用,用右手定则和楞次定律判断

感应电流的方向,结果是一致的。

②区别:右手定则只适用于导体切割磁感线的情况(产生的是“动生电流”),不适合导体不运动,磁场或者面积变化的情况,即当产生“感生电流时,不能用右手定则进行判断感应电流的方向。也就是说,楞次定律的适用范围更广,但是在导体切割磁感线的情况下用右手定则更容易判断。

磁通量及磁通量的变化专题训练

磁通量及磁通量的变化专题训练 磁通量φ及磁通量Δφ的变化是磁场理论中一个很重要的基本概念 1、磁通量φ 磁感应强度B与垂直于磁场方向的面积S的乘积叫做穿过这个面积的磁通量,定义式为φ=BS。如果面积S与磁感应强度B不垂直,可将磁感应强度B向着垂直于面积S和平行于面积S和方向进行正交分解,也可以将面积向着垂直于磁感应强度B的方向投影[这两种方法的基本物理原理是:B∥S时,φ=0;B⊥S时,φ为最大(BS)]。 2、磁通量的变化Δφ 由公式:φ=BS可得 BΔS(实际面积的变化、与磁感应强度间夹角的变化,就是有效面积的变化)Δφ=SΔB(B是矢量,它的变化有三种情况) ΔSΔB(B是矢量,它的变化有三种情况) 可见磁通量φ是由B、S及角度θ共同决定的,磁通量的变化情况应从这三个方面去考虑 巩固练习 一、选择题 1、下列关于磁通量的说法中,正确的是 A.穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数D.穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa、φb的大小关系为A.φa>φb B.φa<φb C.φa=φb D.无法比较 3、一磁感应强度为B的匀强磁场方向水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成θ角。将abcd绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A.0 B.2BS C.2BScosθD.2BSSinθ 4、如图所示,矩形线框abcd的长和宽分别为2L和L,匀强磁场的磁感应强度为B,虚线为磁场的边界。若线框以ab边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A.变大B.变小 C.不变D.无法判断

高中物理选修3-2《磁通量》教案(人教版)

教学目标 知识目标 1、知道决定感应电动势大小的因素; 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能对“磁通量的变化量”、“磁通量的变化率”进行区别; 3、理解法拉第电磁感应定律的内容和数学表达式; 4、会用法拉第电磁感应定律解答有关问题; 5、会计算导线切割磁感线时感应电动势的大小; 能力目标 1、通过学生实验,培养学生的动手能力和探究能力. 情感目标 1、培养学生对实际问题的分析与推理能力。培养学生的辨证唯物注意世界观,尤其在分析问题时,注意把握主要矛盾. 教学建议 教材分析 理解和应用法拉第电磁感应定律,教学中应该使学生注意以下几个问题: ⑴要严格区分磁通量、磁通量的变化、磁通量的变化率这三个概念. ⑵求磁通量的变化量一般有三种情况: 当回路面积不变的时候,;

当磁感应强度不变的时候,; 当回路面积和磁感应强度都不变,而他们的相对位置发生变化(如转动)的时候,(是回路面积在与垂直方向上的投影). ⑶E是时间内的平均电动势,一般不等于初态和末态感应电动势瞬时值的平均值,即: ⑷注意课本中给出的法拉第电磁感应定律公式中的磁通量变化率取绝对值,感应电动势也取绝对值,它表示的是感应电动势的大小,不涉及方向. ⑸公式表示导体运动切割磁感线产生的感应电动势的大小,是一个重要的公式.要使学生知道它是法拉第电磁感应定律的一个特殊形式,当导体做切割磁感线的运动时,使用比较方便.使用它计算时要注意B、L、v这三个量的方向必须是互相垂直的,遇到不垂直的情况,应取垂直分量. 建议在具体教学中,教师帮助学生形成知识系统,以便加深对已经学过的概念和原理的理解,有助于理解和掌握新学的概念和原理.在法拉第电磁感应定律的教学中,有以下几个内容与前面的知识有联系,希望教师在教学中加以注意: ⑴由“恒定电流”知识知道,闭合电路中要维持持续电流,其中必有电动势的存在;在电磁感应现象中,闭合电路中有感应电流也必然要存在对应的感应电动势,由此引出确定感应电动势的大小问题. ⑵电磁感应现象中产生的感应电动势,为人们研制新的电源提供了可能,当它作为电源向外供电的时候,我们应当把它与外电路做为一个闭合回路来研究,这和直流电路没有分别; ⑶用能量守恒和转化来研究问题是中学物理的一个重要的方法.化学电源中的电动势表征的是把化学能转化为电能的本领,感应电动势表征的是把机械能转化为电能的本领.

磁通量不变也有感应电流(经典)

磁通量不变也有感应电流 在学习了电磁感应现象后,我们都知道,产生感应电流必须具备两个条件:①电路闭合。②磁通量发生变化。笔者认为不能死记这一结论。在遇到具体问题时,要灵活处理。举例如下: 例1. 如图1所示,一闭合的圆形导电线圈用一根绝缘的细杆挂在固定点O,线圈绕竖直线OP来回摆动的过程中穿过水平方向的匀强磁场区域,磁感线方向与竖直面垂直,不计空气阻力。则() A. 线圈进入和离开磁场区域时都有感应电流产生,而且感应电流的方向相反; B. 线圈进入磁场区域后越靠近竖直线OP时速度越大,产生的感应电流也越大; C. 线圈开始摆动后,摆角会越来越小,摆角小到某一数值后不再减小; D. 线圈在摆动过程中,机械能将完全转化为线圈中的电能。 解析:这道习题很多同学做错,他们认为:当线圈完全进入磁场后,磁通量不变,不产生感应电流,机械能保持不变。 事实上,当线圈完全进入磁场后摆动时,虽然不产生感应电流,但线圈左右两边在做切割磁感线运动,上下两端存在电势差。当线圈向右摆动时,线圈的上端聚集了正电荷,下端聚集了负电荷,上端的电势高于下端的电势;当线圈向左摆动时,线圈的上端聚集了负电荷,下端聚集了正电荷,下端的电势高于上端的电势。也就是说当线圈左右摆动时,其上下两端将出现交变电压,以及交变电压引起的瞬间的交变电流,这一交变电流的存在要消耗能量。由能量转化和守恒定律可知,线圈的机械能将不断减小,直到完全转化为线圈中产生的电能,线圈最终停止摆动。正确答案应为A、D。 例2. 某装置的俯视图如图2,均匀辐向分布的磁场中有一铝环自由下落(平动、环平面始终水平),若环所在处的磁感应强度为B、铝环的电阻率为、横截面为S。求:(1)铝环下落速度为v时,环中感应电流的表达式。(2)若铝的密度为D,不计空气阻力,求铝环下落的最大速度。

因磁通量变化产生感应电动势的现象

因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下:因磁通量变化产生感应电动势的现象。 电感(inductance of an ideal inductor)是闭合回路的一种属性。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”。 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时, 会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。 自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。 互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 法拉第在西元1831年8月29日发明了一个“电感环”。这是第一个变压器,但法拉第只是用它来示范电磁感应原理,并没有考虑过它可以有实际的用途。

磁通量、磁通量的变化及磁通量变化率

1 磁通量、磁通量的变化专题训练 一、选择题 1、下列关于磁通量的说法中,正确的是 A .穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B .在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C .穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D .穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a 和b ,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa 、φb 的大小关系为 A .φa >φb B .φa <φb C .φa =φb D .无法比较 3、一磁感应强度为B 的匀强磁场方向水平向右,一面积为S 的矩形线圈abcd 如图所示放置,平面abcd 与竖直方向成θ角。将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量 为 A .0 B .2BS C .2BScos θ D .2BSSin θ 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场的磁感应 强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中, 穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 5、如图所示,两直导线中通以相同的电流I ,矩形线圈位于导线之间。将线圈 由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是 A .向里,逐渐增大 B .向外,逐渐减小 C .先向里增大,再向外减小 D .先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水平地紧挨着磁铁从A 端移至B 端的过程中,穿过 线框的磁通量的变化情况是 A .变大 B .变小 C .先变大后变小 D .先变小后变大 7、如图所示,匀强磁场中放有平行的铜导轨,它与大线圈M 相连,小线圈N 放在大线圈M 内,裸金属棒ab 在导轨上做某种运动。则下列说法中正确的是 A .若ab 向右匀速运动,穿过小线圈N 的磁通量向里且增大 B .若ab 向左加速运动,穿过小线圈N 的磁通量向外且增大 C .若ab 向右减速运动,穿过小线圈N 的磁通量向里且减小 D .若ab 向左减速运动,穿过小线圈N 的磁通量向里且减小 8、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈2从1的正上方下落,在下 落过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方下落到1的正下方的过程中,穿过线圈 2的磁通量φ A .为零且保持不变 B .不为零且保持不变 C .先向上增大,再向上减小 D .先向上增大,再向下减小 c d I

磁通量及磁通量的变化专题训练

磁通量及磁通量的变化专题训练 一、选择题 1、下列关于磁通量的说法中,正确的是 A .穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B .在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C .穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D .穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a 和b ,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa 、φb 的大小关系为 A .φa >φ b B .φa <φb C .φa =φb D .无法比较 3、一磁感应强度为B 的匀强磁场方向水平向右,一面积为S 的矩形线圈abcd 如图所示放置,平面abcd 与竖直方向成θ角。将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A .0 B .2BS C .2BScos θ D .2BSSin θ 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场的磁感应强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 5、如图所示,两直导线中通以相同的电流I ,矩形线圈位于导线之间。将线圈由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是 A .向里,逐渐增大 B .向外,逐渐减小 C .先向里增大,再向外减小 D .先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水平地紧挨着磁铁从A 端移至B 端的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .先变大后变小 D .先变小后变大 7、如图所示,匀强磁场中放有平行的铜导轨,它与大线圈M 相连,小线圈N 放在大线圈M 内,裸金属棒ab 在导轨上做某种运动。则下列说法中正确的是 A .若ab 向右匀速运动,穿过小线圈N 的磁通量向里且增大 B .若ab 向左加速运动,穿过小线圈N 的磁通量向外且增大 C .若ab 向右减速运动,穿过小线圈N 的磁通量向里且减小 D .若ab 向左减速运动,穿过小线圈N 的磁通量向里且减小 8、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈2从1的正上方下落,在下落过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方下落到1的正下方的过程中,穿过线圈2的磁通量φ A .为零且保持不变 B .不为零且保持不变 C .先向上增大,再向上减小 D .先向上增大,再向下减小 9、如图所示,螺线管CD 的绕法不明,当磁铁AB 分别以不同的速度V 1(A 端向下)和V 2(B 端向下)(V 1 <V 2)插入螺线管时,电路中有如图所示的感应电流。则下列说法中正确的是 A .两种情况下,穿过螺线管CD 的磁通量都是增大的 B .两种情况下,穿过螺线管CD 的磁通量的变化是相等的 C .以速度V 1插入时穿过螺线管C D 的磁通量的变化率比以速度V 2插入时小 D .以速度V 1插入时穿过螺线管CD 的磁通量的变化率比以速度V 2插入时大 10、一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强 c d C D A B

2018年高考物理一轮复习 专题 磁通量、磁通量变化量的理解与应用每日一题

磁通量、磁通量变化量的理解与应用 高考频度:★☆☆☆☆难易程度:★☆☆☆☆ 如图所示,大圆导线环A中通有电流,方向如图所示,另在导线环所在的平面画一个圆B,它的一半面积在A环内,另一半面积在A环外。则B圆内的磁通量 A.为零 B.是进去的 C.是出来的 D.条件不足,无法判别 【参考答案】B 【试题解析】穿过B环的磁通量分为两部分,一是环A内部的,方向向里,一是环A外部的方向向外,因为面积相等,但是环内部的磁感线密度比外部大,所以根据公式Φ=B·可得通过B圆环的磁通量是进去的。 【名师点睛】穿过B环的磁通量分为两部分,一是环A内部的,方向向里,一是环A外部的方向向外,环内部的磁感线密度比外部大。本题考查了磁通量的计算,关键是理解穿过B环的磁通量分为两部分和环内部的磁感线密度比外部大。 如图所示,AB是水平面上一个圆的直径,在过AB的竖直面内有一根通电直导线CD,已知CD∥AB。当CD竖直向上平移时,电流的磁场穿过圆面积的磁通量将 A.逐渐增大B.逐渐减小 C.始终为零D.不为零,但保持不变 如图所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是

A.先减小后增大 B.始终减小 C.始终增大 D.先增大后减小 一个直径为d的圆形线圈,垂直放置在磁感强度为B的匀强磁场中,现使线围绕其直径转过30°角,如图所示,则穿过线圈的磁通量的变化为______。 关于磁通量的概念,以下说法中正确的是 A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,则磁通量也越大 C.穿过线圈的磁通量为零,但磁感应强度不一定为零 D.磁通量发生变化一定是磁场发生变化引起的。 某地地磁场磁感应强度B的水平分量B x=0.18×10–4 T,竖直分量B y=0.54×10–4 T。求:(1)地磁场B的大小及它与水平方向的夹角; (2)在水平面内2.0 m2的面积内地磁场的磁通量Φ。 【参考答案】 C 根据右手定则可得CD产生的磁场在AB的水平面上方向垂直向里,即与AB是平行的,所以没有磁感线穿过圆,所以当CD竖直向上平移时,电流的磁场穿过圆面积的磁通量始终为零,C正确。 【名师点睛】CD产生的磁场方向与AB的水平面平行,所以没有磁感线穿过圆,当磁感线方向与圆环所在平面垂直时,通过圆环的磁通量为零。

研究磁通量变化时感应电流的方向

研究磁通量变化时感应电流的方向 [探究目的] 探究感应电流的方向与磁通量变化的关系。 方案设计: 方案1 [实验原理] 将条型磁铁的N 、S 极分别 插入感应线圈,或从感应线圈中 拉出,观察检流计指针的偏转情 况,然后归纳出判断感应电流方 向的规律。 [实验器材] 条型磁铁、检流计、感应线圈等。 [实验过程] 如图7中(a)、(b)、(c)、(d)所示,将条型磁铁插入或拉出,观察并记录检流计指针的偏转方向。 [实验记录] (1)在图7中画出(a)、(b)、(c)、(d)四种情况下,线圈中感应电流方向及感应电流磁场的方向。 (2)归纳出感应电流的方向与磁通量变化的关系:_____________________________________。 图 7

某一实验装置如图所示,在铁芯P上绕着两个线圈A和B,如果线圈A中电流i和时间t的关系有下图所示的A、B、C、D四种情况. 在t1—t2这段时间内,哪些情况可以在线圈B中观察到感应电流( BCD )

如图所示的器材可用来研究电磁感应现象及判定感应电流的方向。 (1)在给出的实物图中,用笔划线代替导线将实验仪器连成完整的实验电路。 (2)将线圈L1插入线圈L2中,合上开关S,能使线圈L2中感应电流的磁场方向与线圈L1中原磁场方向相反的实验操作是() A.插入铁芯F B.拔出线圈L1C.使变阻器阻值R变大 D.断开开关S (3)某同学第一次将滑动变阻器的触头P从变阻器的左端快速滑到右端,第二次将滑动变阻器的触头P从变阻器的左端慢慢滑到右端,发现电流计的指针摆动的幅度大小不同,第一次比第二次的幅度(填写“大”或“小”),原因是线圈中的(填写“磁通量”或“磁通量的变化”或“磁通量变化率”)第 一次比第二次的大。 (1)在右图中,用笔线代替导线将实验仪器连成完整 的实验电路。(2)( A )(3)“大”、“磁通量变 化率”(各 2分) (1)C (2)右;抽出(3)感应电流的磁场总是阻碍原来磁通量的变化

磁通量的变化讲解学习

1. 磁通量Φ:①物理意义:某时刻穿过磁场中某个面的磁感线条数,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大,因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。 ②大小计算:Φ=BS⊥或φ=SB⊥ Φ=B·S,S为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影, 我们称之为“有效面积”。 如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B, 线圈面积为S,把面积S投影投影到与磁场垂直的方向即水平方向,则S⊥=Scosθ,故φ=BS⊥=BScosθ。 把磁感应强度B分解为平行于线圈平面的分量B∥和垂直与线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcosθ,故φ=B⊥S=BScosθ。 如果磁场范围有限,如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内, 一半在磁场外,当线框以bc边为轴转动时,如果转动的角度小于60度,面积S在垂直与 磁感线方向且在磁场中的投影不变,这时“有效面积”为S/2,磁通量φ=BS/2. 如果磁场范围有限,如图示,当线圈包含全部磁场时,面积再扩大,磁通量扔不变,还是φ=BS. ③磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定。 穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量抵消以后 所剩余的磁通量。若磁感线沿相反方向穿过同一平面,且正向穿过它的磁通量为φ1,反向穿过它的磁通量为φ2,则穿过该平面的磁通量等于磁通量的代数和,即φ1-φ2. ○4多匝线圈的磁通量:穿过某一线圈的磁通量是由穿过该面的磁感线条数的多少决定的,与线圈匝数无关,只要n匝线圈的面积相同,放置情况也相同,则通过n匝线圈与通过单匝线圈的磁通量相同,即Φ≠NBS 2.磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值 ②大小计算:ΔΦ=Φ2-Φ1要首先规定正方向 ③与磁场垂直的平面,开始时和转过180°时穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS而不是零 磁通量发生变化的四种情形 ①磁感应强度B不变,有效面积S变化,则△φ=φt-φ0=B?△S。 如图所示,闭合回路的一部分导体切割磁感线,此时穿过abcd面 的磁通量的变化量可用此公式计算。 ②磁感应强度B变化,磁感线穿过的有效面积S不变,则△φ=φt-φ0=△B?S。如图(8)所示,通电直导线下边有一个矩形线框,若使线框逐渐远离(平动)通电导线,此时穿过线框的磁通量的变化量可用此公式计算。 ③线圈平面与磁场方向的夹角θ发生变化时,线圈在垂直与磁场方向的投影面积S⊥=Ssinθ发生变化,从而引起穿过线圈的磁通量发生变化,即B、S不变,θ变化。此时可由△φ=φt-φ0=BS(sinθ1-sinθ2)计算并判断磁通量的变化。如图所示,当线框以ab为轴顺时针转动时,此时穿过abcd面的磁通量的变化量可由此公式计算。○4若磁感应强度B和回路面积S同时发生变化,则△φ=φt-φ0≠△B?△S.如图所示,若导线CD向右滑动,回路面积从S1变到S2,磁感应强度B从变到,则回路中的磁通量的变化量△φ=B2S2- B1S1

磁通量、磁通量的变化及磁通量变化率

磁通量、磁通量的变化及磁通量变化率专题训练 磁通量φ、磁通量的变化Δφ及磁通量变化率Δφ/Δt 是磁场理论中很重要的基本概 念。 1、 磁通量φ 磁感应强度B 与垂直于磁场方向的面积S 的乘积叫做穿过这个面积的磁通量, 定义式为 φ=BS 。 如果面积S 与磁感应强度B 不垂直,可将磁感应强度B 向着垂直于面积S 和平行于面积S 和方向进行正交分解,也可以将面积向着垂直于磁感应强度B 的方向投影[这两种方法的基本物理原理是:B ∥S 时,φ=0;B ⊥S 时,φ为最大(BS )]。 2、磁通量的变化Δφ 由公式:φ=BS 可得 (1)Δφ=B ΔS (实际面积的变化、与磁感应强度间夹角的变化,就是有效面积的变化) (2)Δφ=S ΔB (B 是矢量,它的变化有三种情况) (3)Δφ=ΔS ΔB (B 是矢量,它的变化有三种情况) 可见磁通量φ是由B 、S 及角度θ共同决定的,磁通量的变化情况应从这三个方面去考虑 3、磁通量的变化率Δφ/Δt 磁通量的变化率为单位时间内磁通量的变化量,表示磁通量变化快慢。 巩固练习 一、选择题 1、下列关于磁通量的说法中,正确的是 A .穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B .在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C .穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D .穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a 和b ,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa 、φb 的大小关系为 A .φa >φb B .φa <φb C .φa =φb D .无法比较 3、一磁感应强度为B 的匀强磁场方向水平向右,一面积为S 的矩形 线圈abcd 如图所示放置,平面abcd 与竖直方向成θ角。将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A .0 B .2BS C .2BScos θ D .2BSSin θ 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场 的磁感应强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 5、如图所示,两直导线中通以相同的电流I ,矩形线圈位于导线之间。将线圈由实线位置移到 虚线位置的过程中,穿过线圈的磁通量的变化情况是 A .向里,逐渐增大 B .向外,逐渐减小 C .先向里增大,再向外减小 D .先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水 平地紧挨着磁铁从A 端移至B 端的过程中,穿过线框的磁通 量的变化情况是 A .变大 B .变小 C .先变大后变小 D .先变小后变大 7、如图所示,匀强磁场中放有平行的铜导轨,它与大线圈M 相连,小线 圈N 放在大线圈M 内,裸金属棒ab 在导轨上做某种运动。则下列说法中正确的是 A .若ab 向右匀速运动,穿过小线圈N 的磁通量向里且增大 B .若ab 向左加速运动,穿过小线圈N 的磁通量向外且增大 C .若ab 向右减速运动,穿过小线圈N 的磁通量向里且减小 D .若ab 向左减速运动,穿过小线圈N 的磁通量向里且减小 8、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈 2从1的正上方下落,在下落过程中两线圈平面始终保持平行且共轴,则线圈2从1 的正上方下落到1的正下方的过程中,穿过线圈2的磁通量φ A .为零且保持不变 B .不为零且保持不变 C .先向上增大,再向上减小 D .先向上增大,再向下减小 9、如图所示,螺线管CD 的绕法不明,当磁铁AB 分别以不同的 速度V 1(A 端向下)和V 2(B 端向下)(V 1 <V 2)插入螺线管时,电路中有如图所示的感应电流。则下列说法中正确的是 A .两种情况下,穿过螺线管CD 的磁通量都是增大的 B .两种情况下,穿过螺线管CD 的磁通量的变化是相等的 C .以速度V 1插入时穿过螺线管C D 的磁通量的变化率比以速度V 2插 入时小 D .以速度V 1插入时穿过螺线管CD 的磁通量的变化率比以速度V 2插入时大 10、一平面线圈用细杆悬于P 点,开始时细杆处 于水平位置,释放后让它在如图所示的匀强磁场中运 动。已知线圈始终与纸面垂直,当线圈由水平位置第一次到达位置Ⅰ的过程中,穿过线圈的磁通量 A .向右逐渐增大 B .向左逐渐减小 C .向右先增大后减小 D .向左先减小后增大 11 、如图所示,蹄形磁铁和矩形线框均可绕竖直轴转动。现将蹄形磁铁逆时针转动(从上往下 c d I

从三个角度理解“磁通量及其变化”

从三个角度理解“磁通量及其变化” “磁通量及其变化”是学好电磁感应的一个突破口,直接关系到对楞次定律及法拉第电磁感应定律的学习与应用.而在解决实际问题过程中由于对“磁通量”理解不全面,往往容易出错.下面从三个角度对该知识点进行剖析. 1.磁通量Φ的定义 磁感应强度B与垂直于磁场方向的面积S的乘积叫做穿过这个面积的磁通量,定义式为Φ=BS. (1)面积S是指闭合电路中包含磁场的那部分的有效面积. 如图1所示,若闭合电路abcd和ABCD所在平面均与匀强磁场B垂直,面积分别为S1和S2,且S1>S2,但磁场区域恰好只有ABCD那么大,穿过S1和S2的磁通量是相同的,因此,Φ =BS中的S应指闭合电路中包含磁场的那部分的有效面积 S2. 图1 (2)如果面积S与磁感应强度B不垂直,可将磁感应强度B向着垂直于面积S的方向投影,也可以将面积向着垂直于磁感应强度B的方向投影. 特例:B∥S时,Φ=0; B⊥S时,Φ最大(Φ=BS). (3)磁通量与线圈的匝数无关.线圈匝数的多少不改变线圈面积大小,所以不管有多少匝线圈,S是不变的,B也和线圈无关,所以磁通量不受线圈匝数影响.也可以简单理解为磁通量大小只取决于穿过闭合线圈的磁感线条数. 2.磁通量的方向 磁通量是双向标量,若设初始时为正,则转过180°时为负. 说明:磁通量是标量,它的方向只表示磁感线是穿入还是穿出.当穿过某一面积的磁感线既有穿入的又有穿出的时,二者将互相抵消一部分,这类似于导体带电时的“净”电荷. 3.磁通量的变化ΔΦ 由公式:Φ=BSsin θ可得 磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有: (1)S、θ不变,B改变,这时ΔΦ=ΔB·Ssinθ (2)B、θ不变,S改变,这时ΔΦ=ΔS·Bsin θ (3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1) 可见磁通量Φ是由B、S及它们间的夹角θ共同决定的,磁通量的变化情况应从这三个方面去考虑. 对点例题(单选)如图2所示,一水平放置的矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现若使矩形线框以左边的边为轴转到竖直的虚线位置,则此过程中磁通量改变量的大小是() 1

磁通量及磁通量的变化练习题

磁通量及磁通量的变化练习题 1、下列关于磁通量的说法中,正确的是 A.穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D.穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa、φb的大小关系为 A.φa>φb B.φa<φb C.φa=φb D.无法比较 3、一磁感应强度为B的匀强磁场方向水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成θ角。将abcd绕ad轴转180°角,则穿过线圈平面的磁通量 的变化量为 A.0 B.2BS C.2BScosθD.2BSSinθ 4、如图所示,矩形线框abcd的长和宽分别为2L和L,匀强磁场的磁感应强度为 B,虚线为磁场的边界。若线框以ab边为轴转过60°的过程中,穿过线框的磁通 量的变化情况是 A.变大B.变小C.不变D.无法判断 5、如图所示,两直导线中通以相同的电流I,矩形线圈位于导线之间。将线圈 由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是 A.向里,逐渐增大B.向外,逐渐减小 C.先向里增大,再向外减小D.先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水平地紧挨着磁铁从A端移至B端的 过程中,穿过线框的磁通量的变化情况是 A.变大B.变小C.先变大后变小D.先变小后变大 7、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈2从1的 正上方下落,在下落过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方 下落到1的正下方的过程中,穿过线圈2的磁通量φ A.为零且保持不变B.不为零且保持不变 C.先向上增大,再向上减小D.先向上增大,再向下减小 8、一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图 所示的匀强磁场中运动。已知线圈始终与纸面垂直,当线圈由水平位置第一次 到达位置Ⅰ的过程中,穿过线圈的磁通量 A.向右逐渐增大B.向左逐渐减小 C.向右先增大后减小D.向左先减小后增大 9、如图所示面积为S矩形线圈在磁感应强度为B的匀强磁场中以轴OO’匀速转动,角速度为ω,则穿过线圈的磁通量随时间变化的关系是(从图示位置开始计时) A.φ=BSsinωt B.φ=BScosωt C.φ=BS D.φ=0 10、如图所示,匀强磁场的磁感应强度B=2.0T,方向指向X轴正方向,且ab=40cm, bc=30cm,ae=50cm。求通过面积S1(abcd)、S2(befc)和S3(aefd)的磁通量φ 1、φ 2、φ3分别为多少? N S a b c b d a θ B Z X Y a b c d e f a b c d L I I A B S N 1 2 2 P Ⅰ O O’

楞次定律 磁通量

高中物理选修3-2第一章电磁感应总结 一、夯实基础知识 1、电磁感应现象 (1)电流的磁效应与电磁感应现象 (2)产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 (3)感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 (4)关于磁通量变化 在匀强磁场中,磁通量Φ=B ?S ?sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变; ②B 、α不变,S 改变;③B 、S 不变,α改变。 常用算法,t S B t ???=??Φ或t B B t ???=??Φ 2、楞次定律(判断感应电流的方向) (1)内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 ①从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 ②从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

磁通量“不变”怎样产生感应电流

磁通量“不变”怎样产生感应电流 人民教育出版社物理选修3-2第四章第二节中阐述感应电流的产生条件是“只要穿过闭合电路的磁通量发生变化,闭合导体回路中就有感应电流”,由此,总结出产生感应电流必不可少的两个条件是:一.闭合电路;二.磁通量的变化。然而,一些善于思考的同学通过做题发现,似乎磁通量不变也能产生感应电流,问题主要出现在以下两个例题上。但笔者认为这两道例题都不能说明磁通量不变也可产生感应电流。现与 各位老师商榷。 例1 某装置的俯视图如图1,均匀辐向分布的磁场中有 一铝环自由下落(平动、环平面始终水平),若环所在处的磁 感应强度为B 、铝环的电阻率为ρ、横截面为S 。求:(1)铝 环下落速度为v 时,环中感应电流的表达式。(2)若铝的密 度为D ,不计空气阻力,求铝环下落的最大高度。 有学生认为,铝环向下运动的过程中磁通量一直为零且 不变,怎么会产生感应电流?笔者认为这是对辐向磁场片面 理解导致的。在找到磁单极子之前,磁感线都是闭合曲线,在怎样的情况下才会有这样的辐向磁场呢?如图2-1是扬声 器磁铁示意图,其中间圆柱为磁铁N 极,外圈为S 极。其磁感线示意图如图2-2,其上为下落的铝环。 从图中可以看到圆环缝隙处的磁场为辐向磁 场,当导线环向下运动时,穿过导线环的磁通量 不为零且增加,而不是学生认可的“磁通量为零 且不变”。而如果找到磁单极子,则图1中的辐向 磁场可以由磁单极子产生,此时的确可以做到在 铝环中“磁通量为零且不变”的情况下有感应电 流。但如果将来找到了磁单极子,那首先要改的是麦克斯韦方程组,如0≠???S dS B ,那也就会有“磁通量不变也可产生感应电流。” 与本题类似的模型还有:匀强磁场磁感线如图3所示,磁感线由上 板出发到下板终止。正方形线框ABCD 以垂直纸面向外的速度匀速向外 运动,AB 边在磁场内,CD 边在磁场外。本模型中AB 边作切割磁感线运 动,而其它边没有切割,故线框中有感应电流,但同时线框中磁通量为 零且不变,这也是由于图中磁场为磁单极子产生的磁场。 例2.如图4是法拉第制作的世界上第一台发电机 模型的原理图。将铜盘放在磁场中,让磁感线垂直穿过 铜盘。图中a 、b 导线与铜盘的中轴线处在同一平面内。 转动铜盘,就可以使闭合电路获得电流。若已知铜盘的 半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R , 从上往下看逆时针匀速转动铜盘的角速度为ω。则下列 说法正确的是 A .回路中产生大小和方向做周期性变化的电流 图 1 图2-1 图 2-2 图 4 图3

如何使学生理解当穿过线圈的磁通量为零时磁通量的变化率最大

如何使学生理解当穿过线圈的磁通量为零时磁通量的变化率最 大 在高中物理“交流电”的教学中,一个重要的内容是使学生知道交流电的产生过程,让学生理解在交流电的产生过程中,当穿过线圈的磁通量为零时,磁通量的变化率最大,从而产生的感应电动势达到最大值。 图 1 如图1所示,线圈在匀强磁场中绕垂直于磁场的轴线OO'匀速转动时,线圈中产生正弦交流电。如何使学生理解当线框平面与磁场方向平行时,穿过线框的磁通量为零,而磁通量的变化率最大呢?尽管学生在电磁感应一章中已经了解了回路中的感应电动势与穿过这一回路的磁通量的变化率成正比,但对于前面的论题学生并不理解,需要教师给以很好的引导。教学中可以根据学生的学习基础从不同的角度、分不同的层次进行分析。下面仅就这个问题,提供四种教学方法。 一、学生熟悉的导体切割法 在电磁感应一章中,学生已经学习过法拉第电磁感应定律。根据法拉第电磁感应定律,当穿过线框的磁通量的变化率最大时,感应电动势最大。在电磁感应一章,学生也学习了导体切割磁感线时,感应电动势的计算方法E=Blv,此时的速度v的方向与磁感强度B的方向垂直。

图 2 图2为图1的俯视图,我们在图中考查线框ab边和cd边在磁场中转动时,在不同位置垂直切割磁感线的速度。 当线框平面转动到与磁场方向平行时(图中1位置),穿过线框的磁通量为零。此时线框的ab、dc边的速度方向与磁场方向垂直,切割磁感线时的速度最大,由此产生的感应电动势最大,由法拉第电磁感应定律可以反推出此时穿过线框的磁通量的变化率最大。 当线框平面与磁场方向垂直时(图中2位置),线框ab、dc边的速度方向与磁场方向平行,此时ab、dc边不切割磁感线,线框中的感应电动势为零,所以穿过线框的磁通量的变化率为零。 这是教师在教学中通常使用的方法,学生比较好接受,因为学生从初中就对切割磁感线产生感应电流有所了解。但这种接受只是对这一事实的接受,对于为什么会是这样,很多学生并不理解,学习只是停留在机械记 忆的层次上。 二、直观易懂的图形法 在线框转动过程中,穿过线框的磁通量的变化量取决于线框平面在垂直于磁场方向上的投影面积的变化量,图3是图1的俯视图。由于线框在磁场中匀速转动,所以线框每转过30°所用的时间相同。从线框平面与磁场方向平行开始计时,观察每转过30°线框投影面积的变化量。

学习“磁通量”要注意的几个问题

学习“磁通量”要注意的几个问题 在匀强磁场中,磁感应强度B与垂直磁场方向平面的面积S的乘积,叫做穿过这个面的磁通量,即:,在国际单位制中,磁通量的单位是韦伯(Wb)。从磁感线角度认 为在同一磁场中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大。因此B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。所以磁通量反映穿过某一面积的磁感线条数的多少。在具体学习磁通量这个物理量时要注意以下几个问题。 一、磁通量的正负问题 磁通量是标量,但有正负之分。磁通量的正负不代表大小,只反映磁通量是怎么穿过某一平面的,若规定向里穿过某一平面的磁通量为正,则向外为负。尤其在计算磁通量变化时更应注意。 例1 在磁感应强度为B的匀强磁场中,面积为S的线圈垂直磁场方向放置,若将此线圈翻转180°,那么穿过此线圈的磁通量的变化量是多少? 解析:由于线圈发生了翻转,穿过线圈平面的磁通量情况相反。若规定开始时穿过线圈的磁通量为正,则线圈翻转180°后穿过线圈的磁通量应为负,那么穿过线圈磁通量的变 化量为。同样也可以规定末态时穿过线圈的磁通量为正,则。 二、有效面积问题 定义式中的面积S指的是垂直于匀强磁场方向的面积,如果平面跟磁场方向不 垂直,应取垂直磁场方向上的投影面积,即为有效面积。 例2 如图1所示,一个单匝线圈abcd水平放置,面积为S,当有一半面积处在竖直向下的匀强磁场中,磁感应强度为B,当线圈以ab边为轴转过30°和60°时,穿过线圈的磁通量分别是多少? 图1 解析:当线圈分别转过30°和60°时,线圈平面在垂直于磁场方向的有效面积相同, 都等于,所以磁通量相同,都等于。 例3 一磁感应强度为B的有界磁场,面积为S1,现有一面积为S2的线圈,垂直于磁场方向放置,如图2所示,试求穿过线圈平面的磁通量是多少?

浅谈线圈磁通量的计算

浅谈线圈磁通量的计算 对于一个匝数为N ,截面积为S 的线圈,置于磁感强度为B 的匀强磁场中,线圈截面垂直于磁场方向,则穿过该线圈的磁通量为多少? 计算穿过线圈的磁通量竟是用BS Φ=还是用N B S Φ=? 对于这个问题,许多资料强调:穿过线圈的磁通量与匝数无关,也就是磁通量不受线圈匝数的影响.同理,磁通量的变化率也不受线圈匝数的影响[1]。 下面举一个例子,2009年广州一模的物理卷中有这样一道题: 例1(2009广州一模·9)如图所示,原、副线圈匝数比为2:1的理想变压器正常工作时( ) A .原、副线圈磁通量之比为2:1 B .原、副线圈电流之比为1:2 C .输入功率和输出功率之比为1:1 D .原、副线圈磁通量变化率之比为1:1 标准答案是BCD ,B 和C 两个选项是没有问题的。下面讨论一下A 选项和D 选项: 对于理想变压器,穿过原副线圈每一匝的磁通量是相同的,即12Φ=Φ,同样,原副线圈每一匝的磁通量变化率也是相同的,即1 2 t t ?Φ?Φ=??.因此,对变压器原、副线圈的每一 匝来说,应该有磁通量之比为1:1,磁通量变化率之比也为1:1. 但选项中提到的是原副线圈的磁通量、原副线圈的磁通量变化率. 按照题目的意思,原副线圈不是单匝的线圈,穿过它每一匝的磁通量和穿过线圈的磁通量这两种说法有没有什么区别呢?按照许多资料和参考书的说法,线圈的磁通量与匝数无关,也就是磁通量不受线圈匝数的影响。同理,磁通量的变化率也不受线圈匝数的影响,则选项D 是正确的,A 是错误的。 通过这个例题可以看出,现在高中的物理教学中,普遍认为线圈的磁通量与匝数无关。但对于穿过线圈每一匝的磁通量与穿过线圈的磁通量这两个概念,也有人认为是应该加以区别的:认为从线圈的整体角度讲,以公式Φ=NBS 计算所得结果,才应该是穿过线圈的磁通量,而以公式Φ=ΒS 计算所得结果则是穿过线圈截面的磁通量[2]。论证方法如下: 为简单起见,用实线表示软导线绕成一个两匝的闭合线圈,而用虚线表示“磁感线”穿过此线圈,如图1所示.将上述线圈拉展成圆形单匝闭合线圈,这时就会发现“磁感线”缠绕在圆形线圈上,如图2所示.从图2中不难看出“磁感线”反复两次单方向地穿过圆形单匝线圈,如同有两根磁感线同时穿过线圈一样,因而可形象地说产生的磁通量为“两条”, 即一条磁感

磁通量教案

磁通量教案 一、教学目标 )理解什么是磁通量,知道其与磁感应强度的关系,并能进行磁通量的计算,能初步判断磁通量的变化情况。 二、教学重点 理解磁感应强度的意义,知道磁通量与磁感应强度的关系 三、教学过程 (一)、磁通量: 1.定义:穿过某一面积的磁感应线的条数,叫做穿过这个面积的磁通量 2.符号:Φ 3.表达式:Φ=BScosa(a是平面S与中性面《垂直于磁感线的平面》的夹角)Φ=BSsinθ(θ是平面S与磁感应强度B的夹角) Φ= (当平面S与磁感应强度B垂直时) Φ= (当平面S与磁感应强度B平行时) 4.单位:韦伯,Wb 5.磁通量的变化量:△Φ=Φ2-Φ1 △Φ=△BScosθ(磁场变化而面积不变时) △Φ=B△Scosθ(磁场不变而面积变化时) △Φ=BS△(cosθ)(磁场和面积都不变而是二者的夹角发生变化时)(二)、磁通量与磁感应强度的关系: 穿过垂直于磁感应强度方向的单位面积的磁感应线的条数等于磁感应强度B,所以在匀强磁场中垂直于磁感应强度的面积S的磁通量Φ。 Φ=BS(当平面S与磁感应强度B垂直时) 由公式可知:B=――磁通密度,即单位面积上磁通量 (三)、巩固练习 一、选择题 1、下列关于磁通量的说法中,正确的是 A.穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D.穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa、φb的大小关系为A.φa>φb B.φa<φb C.φa=φb D.无法比较 3、一磁感应强度为B的匀强磁场方向水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成θ角。将abcd绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A.0 B.2BS C.2BScosθD.2BSSinθ

相关文档
相关文档 最新文档