文档库 最新最全的文档下载
当前位置:文档库 › 化工原理课程设计流化床干燥器

化工原理课程设计流化床干燥器

化工原理课程设计流化床干燥器
化工原理课程设计流化床干燥器

化工原理课程设计流化床干燥器

1

化工原理课程设计

计算说明书

( ~ 年第一学期)

设计题目卧式多室流化床干燥器

院系生命科学学院

专业班级生物工程1101

姓名

学号

指导教师

成绩

日期: 12月 7日

目录

一、设计任务书 0

二、干燥原理 (1)

( 一) 干燥概述 (1)

( 二) 干燥原理 (2)

三、干燥流程的确定与说明 (3)

( 一) 干燥器的选择方法 (3)

( 二) 几种常见干燥器 (4)

( 三) 干燥中主要设备和机器的确定 (5)

( 四) 干燥流程的说明 (7)

四、流化床干燥器的工艺计算 (9)

( 一) 干燥流程的确定 (9)

( 二) 物料和热量衡算 (9)

( 三) 干燥器的设计 (12)

五、辅助设备的设计与选型 (20)

( 一) 送风机和排风机 (20)

( 二) 气——固分离器 (21)

( 三) 供料装置 (22)

六、设计计算汇总结果 (23)

七、认识与体会 (25)

八、参考文献 (26)

九、主要符号及说明 (27)

1

2

一、设计任务书

二、干燥原理

(一)干燥概述

干燥一般是指将热量加于湿物料并排除挥发湿分( 大多数情况下是水) , 而获得一定湿含量固体产品的过程。湿分以松散的化学结合或以液态溶液存在于固体中, 或积集在固体的毛细微结构中。

当湿物料作热力干燥时, 以下两种过程相继发生:

过程1.能量( 大多数是热量) 从周围环境传递至物料表面使湿分蒸发。

过程2.内部湿分传递到物料表面, 随之由于上述过程而蒸发。

干燥速率由上述两个过程中较慢的一个速率控制, 从周围环境将热能传递到湿物料的方式有对流、传导或辐射。在某些情况下可能是这些传热方式联合作用, 工业干燥器在型式和设计上的差别与采用的主要传热方法有关。在大多数情况下, 热量先传到湿物料的表面热按后传入物料内部, 可是, 介电、射频或微波干燥时供应的能量在物料内部产生热量后

1

传至外表面。

整个干燥过程中两个过程相继发生, 并先后控制干燥速率。

(二)干燥原理

1.外部条件控制的干燥过程( 过程1)

在干燥过程中基本的外部变量为温度、湿度、空气的流速和方向、物料的物理形态、搅动状况, 以及在干燥操作时干燥器的持料方法。外部干燥条件在干燥的初始阶段, 因为物料表面的水分以蒸汽形式经过物料表面的气膜向周围扩散, 这种传质过程伴随传热进行, 故强化传热便可加速干燥。但在某些情况下, 应对干燥速率加以控制, 采用相对湿度较高的空气, 既保持较高的干燥速率又防止出现质量缺陷。

2.内部条件控制的干燥过程( 过程2)

在物料表面没有充分的自由水分时, 热量传至湿物料后, 物料就开始升温并在其内部形成温度梯度, 使热量从外部传入内部, 而湿分从物料内部向表面迁移, 这种过程的机理因物料结构特征而异。主要为扩散、毛细管流和由于干燥过程的收缩而产生的内部压力。在临界湿含量出现至物料干燥到很低的最终湿含量时, 内部湿分迁移成为控制因素, 了解湿分的这种内部迁移是很重要的。一些外部可变量, 如空气用量, 一般回提高表面蒸发速率, 此时则降低了重要性。对内部条件控制的干燥过程, 其强化手段是有限的, 在允许的情况下, 减小物料的尺寸, 以降低湿分的扩散阻力很有效的。

3.物料的干燥特性

物料中的湿分可能是非结合水或结合水。有两种排除非结合水的方法:

2

蒸发和汽化。当物料表面水分的蒸汽压等于大气压时, 发生蒸发。这种现象是在湿分的温度升高到沸点时发生的, 物料中出现的即为此种现象。

如果被干燥的物料是热敏性的, 那么出现蒸发的温度, 即沸点, 可由降低压力来降低( 真空干燥) 。如果压力降至三相点以下, 则无液相存在, 物料中的湿分被冻结。

在汽化时, 干燥是由对流进行的, 即热空气掠过物料。降热量传给物料而空气被物料冷却, 湿分由物料传入空气, 并被带走。在这种情况下, 物料表面上的湿分蒸汽压低于大气压, 且低于物料中的湿分对应温度的饱和蒸汽压。但大于空气中的蒸汽分压。

三、干燥流程的确定与说明

( 一) 干燥器的选择方法

干燥器选择的最好方法是利用过去的经验, 选择干燥器的最初方式是以原理的性质为基础的, 在处理液态物料时所选择的设备一般限于喷雾干燥器、转鼓干燥器、搅拌间歇真空干燥器。最粘性不很大的液状物料、旋转闪蒸干燥器及惰性载体干燥也很使用。

对于膏状物和污泥的连续干燥, 旋转闪蒸干燥器常是首选干燥设备。由于无聊为细颗粒分散状态, 尘埃问题是一种主要的考虑。然而据此要求在间歇和连续操作间作选择是困难的。一般采用间歇干燥器为常压或真空托盘干燥器、间歇常压或真空搅拌干燥器及常压或真空转筒干燥器。在溶剂回收、起火、有致毒危险或当需要限制温度时真空操作更可

3

取。用于连续干燥的干燥器为:

(a)喷雾此时雾化是关键, 为应考虑的问题;

( b) 流化床但物料在深床层中分散均匀较困难;

( c) 连续带式循环干燥器适合于要求无尘的产品;

( d) 气流干燥有时要求原料和干产品混合以促使物料分散在进入干燥器的气体中;

( e) 连续迥转圆筒直接( 加热) 或间接( 加热) , 在此设备中使湿物料与干无聊充分混合有利于操作。

同时, 在干燥器的选择过程中还应该考虑能源价格、安全操作和环境因素等多方面对干燥器选择的影响。

( 二) 几种常见干燥器

1.气体干燥器干燥速度快, 气固并流操作, 干燥时间短; 另外结构简单, 设备投资少, 占地面积小, 操作方便, 性能稳定, 维修量小。

但其主要缺点是:

⑴由于物料停留时间很短, 气流干燥器只适合干燥非结合水, 不适合于结合水分的干燥;

⑵由于颗粒之间以及颗粒与器壁之间的碰撞与摩擦。因此, 气流干燥器不适合于干燥晶形不允许破坏的物料;

⑶气固两相分离的任务很重, 固体产品的放空损失较大, 粉料排空对环境造成一定污染;

⑷气固两相接触时间短, 两相间的传热不充分, 气体放空时的温度较高, 热效率较低; 另外气体经过干燥系统的流动阻力较大, 风机的动力消耗较

4

高, 因而气流干燥器的能量消耗较高。

2.转筒干燥器机械化程度高, 生产能力较大, 干燥介质经过转筒的阻力较小, 对物料的适应性较强, 操作稳定, 运行费用低。可是, 转筒干燥器装置比较笨重, 金属耗材多, 传动机构复杂, 维修量较大, 设备投资高, 占地面积大。

3.喷雾干燥器干燥速度快, 干燥时间短, 特别适合于热敏性物料的干燥。可是它的体积传热系数很低, 水分汽化强度小, 因而干燥器体积庞大, 热效率低, 动力消耗较大。

4.厢式干燥器能够用于各种物料的干燥, 但其热效率较低, 产品质量不均匀, 主要使用于小规模多品种、干燥条件变动大的场合

5.流化床干燥器它最大的两个优点有两个: 一是由于物料颗粒的剧烈运动和相互混合, 床内各处温度均匀一致, 从而避免了物料的局部过热; 二是流化床的停留时间任意可调, 特别适合于干燥结合水分, 因此, 工业上常将流化床干燥器与气流干燥器串联使用。

单层流化床的主要缺点是由于颗粒的完全混合, 在连续操作时颗粒物料的停留时间分布不均匀, 部分物料因在流化床中停留时间过短而位能得到充分干燥, 另一部分在流化床中停留时间过长而过分干燥。这种干燥器不实用于易结晶或结块的物料。

( 三) 干燥中主要设备和机器的确定

根据我们此次设计的主要任务: 将湿物料PVC的含湿量从0.1降至0.005。从这里能够看出PVC的初始湿含量较低, 其中存在的水应该都是结合水, 而流化床干燥器的最大优点就是干燥结合水, 故我们选择流化床

5

干燥器。此干燥器在干燥结合水的同时还为物料的优质干燥提供可能, 可是, 物料在干燥器中的停留时间不均匀, 是单层流化床的主要缺点。

为解决停留时间分布不均匀的问题, 能够采用多层流化床或者卧式多室流化床。前者存在的主要困难是如何定量地控制物料使其顺利的进入下一层, 且不使气体沿溢流管短路跑掉; 另外, 其结构复杂, 气体的流动阻力较大。而后者的气体压降比前者低, 操作稳定性好, 结构简单, 造价较低, 可动部件少, 维修费用低。故我们应该选择卧式多室流化床。

流化床在空气流速为零时, 物料因受重力和浮力作用而静止于分布板上。随着空气流速的提高, 每个颗粒受到的空气推动力将不断增加, 而当空气速度达到某一值时, 重力、浮力和推动力将达到平衡, 此时颗粒将离开分布板, 悬浮于空气中。如果空气速度过大, 则会呈聚式流动。( 如图1所示)

6

过滤器将空气净化。再者, 大气的温度较此次设计要求的温度低, 故在空气进入干燥器之前需让它流过换热器, 使它的温度升高到100℃。另外, 出干燥器的空气会带走少部分PVC, 故应该在排空之前使用旋风分离器进行气固分离。

(四)干燥流程的说明

如图2所示。首先, 利用鼓风机的旋转, 在其内部产生负压, 空气在压差的推动下进入管路。进入管路后的空气经过滤器除去其中含有的颗粒物质, 以免进入干燥器后对物料产生污染。然后, 净化后的常温、压力为9.7×104kPa的空气进入换热器, 与压力为400kPa的饱和水蒸气进行热量交换, 空气被加热, 而饱和水蒸气冷却而被液化。出口处的空气温度可达到100℃、 9.7×104kPa。

换热器中出来的空气温度已达到生产所要求的温度, 此时, 热空气从干燥器下部进入塔内, 经使空气流动均匀的分布板后与湿物料进行热量和

7

质量传递, 使物料得以干燥。出干燥器的空气中含有少量物料, 为减少浪费和对大气的污染, 我们让空气进入旋风分离器, 完成气固分离。

最后, 我们再利用鼓风机将含有大量湿分的空气排往大气。

8

9

四、 流化床干燥器的工艺计算

(一)干燥流程的确定

根据干燥任务, 采用如上图2所示的卧式多室流化床干燥装置。 来自气流干燥器的颗粒状物料用星形供料器加到干燥器的第一室, 依次经各室后, 于44.2℃离开干燥器。湿空气由送风机到翅片型空气加热器升温到108℃后进入干燥器, 经过与悬浮物料接触进行传热传质后温度降到72.5℃。废气经旋风分离器净化后由抽风机排至大气。空气加热器以392.9kPa 的饱和水蒸汽作热载体。流程中采用前送后抽式供气系统, 维持干燥器在略负压下操作。

(二)物料和热量衡算

1、物料衡算

C G =1G (1-

1W )= ×(1-0.005)=1900kg/h

1X =111ωω-=05

.0105.0-=0.052632

2X =221ωω-=005

.01005

.0-≈0.005

W=C G (21X X -)=1900(0.052632-0.005)=90.5kg/h

10

L=

12H H W -=013

.05

.902-H 2、空气和物料出口温度的确定

空气的进口温度2t 应比出口处湿球温度高出20~50℃( 这里取35℃) , 即 2t =2w t +35

由1t =108℃及1H =0.013查湿度图得1w t =37.5℃, 近似取12w w t t ==37.5℃, 于是2t =37.5+35=72.5℃

物料离开干燥器的温度2θ由《化工原理课程设计》( 以下引用均出自此书) 式 6-1计算 , 即

)

()())(()(22*)

()(*

*

222*

2222

2211*22w s C t t t C X X r C w s t w t t c X X r X X X X t t c X X r t t t w w S C w t w --------=

----θ

由水蒸气表查得2w t r =2406.75kJ/kg 。 将有关数据代入上式, 即

)

5.375.72(25

6.1013.075.2406)

013.0005

.0)(5.375.72(256.1005.075.24065.375.725.72)

5.375.72(25

6.1013

.075.24062--?--?=---?θ

解得 2θ=44.2℃ 3、干燥器的热量衡算

干燥器中不补充热量, D Q =0, 因而可用式( 6-13a) 进行衡算, 即

L P Q Q Q Q Q Q +++==321

式中)5.7288.175.2406(5.90)88.175.2406(23?+=+=t W Q

11

=230146kJ/h=63.93KW

))(187.4()(122122θθθθ-+=-=X c G c G Q s C m C

=2406.75(1.256+4.187×0.005)(44.2-30) =43640kJ/h=12.12KW

))(88.101.1(0201t t H L Q -+=

=L(1.01+1.88×0.013)(72.5-25) =49.13LkJ/h=0.01365LKW

))(88.101.1(020t t H L Q P -+=

=L(1.01+1.88×0.013)(108-25) =85.86LkJ/h=0.02385LKW

取干燥器的热损失为有消耗热量)(32Q Q +的15%, 即

KW Q Q Q L 4.11)12.1293.63(15.0)(5.132=+=+=

将上面各值代入式( 6-13a) , 便可解得空气耗用量, 即 0.02385L=0.01365L+63.93+12.12+11.4 解得L=8574kg 绝干气/h

有式( 6-3) 可求得空气离开干燥器的湿度2H , 即

绝干气水kg kg H /0259.02=

4、预热器的热负荷和加热蒸汽消耗量

KW h kg t t H L Q P 1.197/709543)25105)(013.088.101.1(8574))(88.101.1(010==-?+=-+=

由水蒸气表查得, 392.9kPa 水蒸气的温度℃143=S T , 冷凝热

12

kg kJ r /7.2140=。

取预热器的热损失为有效传热量的15%, 则蒸汽消耗量为

s kg s kg W h /390/10832.085

.07.21401

.197==?=

干燥器的热效率为

%44.321

.19793.63%1001==?=P h Q Q η

(三)干燥器的设计

(一)流化速度的确定

(五)临界流化速度mf u 的计算

13

在108℃下空气的有关参数为密度3

/927.0m kg =ρ, 黏度

s Pa ??=-51023.2μ, 导热系数℃??=-m W /102612.32λ。

52

.92)1023.2(81.9927.0)927.01500()1015.0()(25332

3=???-?=

-=

--μρρρg

d Ar s

取球形颗粒床层在临界流化点4.0=mf ε。由mf ε和Ar 数值查图6-10得

6101.2-?=mf Ly 。

临界流化速度由式( 6-16) 计算, 即

s m g

Ly u s mf mf /009297.0927

.081.915001023.2101.232

5

63

2

=?????==--ρμρ

14

2、 颗粒带出速度t u 由1=ε

及Ar 值查图6-10得6.0=mf Ly

带出速度由式( 6-17) 计算, 即

s m u t /6119.0927

.081.915001023.26.032

5

=????=- 3、操作流化速度u

取操作流化速度为t u 65.0, 即

s m u /3977.06119.065.0=?=

(二)流化床层底面积的计算

1、干燥第一阶段所需要的底面积1A 由式( 6-25) 计算, 即

1

)()()88.101.1()88.101.1(21111000---++=

W

t C w a r X X G t t A L H L

H Z α

式中有关参数计算如下: 取静止床层厚度m Z 1.00= 干空气的质量流率取为u ρ, 即

)

/(3687.03977.0927.02s m kg u L ?=?==ρ323

0/240001015.0)4.01(6)

1(m m a a m

=?-?=-=

-εσ 48.210

23.23977.0927.01015.0Re 5

3=????==

--μ

ρ

u d m

15

)/(396.3)48.2(

10

15.0032612.0104(Re)1045

.13

35.13

℃?=??

?=?=---m W d m

λ

α由于mm mm d m 9.015.0<=, 所得a α值应予校正, 由m d 值从图6-11查得C=0.11.

)/(54.89665.8151411.03℃?=?='m W a

α 1

4444.038139

.0175.2406)005.0052632.0(3600

1900

)

5.37108(3687.0)013.088.101.1(3687.0)013.088.101.1(1.054.896611-=

-?--??+??+=

?A A 解得 2

125.2m A =

2、物料升温阶段所需底面积2A ,由式( 6-26) 计算, 即

化工原理课程设计流化床干燥器汇总

目录 设计任务书.................................................................................................................. II 第一章概述 (2) 1.1流化床干燥器简介 (2) 1.2设计方案简介 (6) 第二章设计计算 (8) 2.1 物料衡算 (8) 2.2空气和物料出口温度的确定 (9) 2.3干燥器的热量衡算 (11) 2.4干燥器的热效率 (12) 第三章干燥器工艺尺寸设计 (13) 3.1流化速度的确定 (13) 3.2流化床层底面积的计算 (13) 3.3干燥器长度和宽度 (15) 3.4停留时间 (15) 3.5干燥器高度 (15) 3.6干燥器结构设计 (16) 第四章附属设备的设计与选型 (19) 4.1风机的选择 (19) 4.2气固分离器 (19) 4.3加料器 (21) 第五章设计结果列表 (22) 附录 (24) 主要参数说明 (24) I

设计任务书 一、设计题目 2.2万吨/年流化床干燥器设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量) 2.2万吨/年(以干燥产品计) 操作周期260 天/年 进料湿含量13%(湿基) 出口湿含量1%(湿基) 2.操作条件 干燥介质湿空气(110℃含湿量取0.01kg/kg干空气) 湿空气离开预热器温度(即干燥器进口温度)110℃ 气体出口温度自选 热源饱和蒸汽,压力自选 物料进口温度15 ℃ 物料出口温度自选 操作压力常压 颗粒平均粒径0.4 mm 3.设备型式流化床干燥器 4.厂址合肥 三、设计内容: 1、设计方案的选择及流程说明 2、工艺计算 3、主要设备工艺尺寸设计 (1)硫化床层底面积的确定; (2)干燥器的宽度、长度和高度的确定及结构设计 4、辅助设备选型与计算 5、设计结果汇总 6、工艺流程图、干燥器设备图、平面布置图 7、设计评述 II

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工原理课程设计流化床干燥器

化工原理课程设计流 化床干燥器 Revised on November 25, 2020

目录 I 设计任务书 一、设计题目 万吨/年流化床干燥器设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)万吨/年(以干燥产品计) 操作周期260天/年 进料湿含量13%(湿基) 出口湿含量1%(湿基) 2.操作条件 干燥介质湿空气(110℃含湿量取kg干空气) 湿空气离开预热器温度(即干燥器进口温度)110℃

气体出口温度自选 热源饱和蒸汽,压力自选 物料进口温度15℃ 物料出口温度自选 操作压力常压 颗粒平均粒径 3.设备型式流化床干燥器 4.厂址合肥 三、设计内容: 1、设计方案的选择及流程说明 2、工艺计算 3、主要设备工艺尺寸设计 (1)硫化床层底面积的确定; (2)干燥器的宽度、长度和高度的确定及结构设计 4、辅助设备选型与计算 5、设计结果汇总 6、工艺流程图、干燥器设备图、平面布置图 7、设计评述 II 第一章概述 流化床干燥器简介 将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化。 流化床干燥器就是将流态化技术应用于固体颗粒干燥的一种工业设备,目前在化工、轻工、医学、食品以及建材工业中都得到了广泛应用。 1)流态化现象 图1流态化现象图 空气流速和床内压降的关系为:

图2空气流速和床内压降关系图 空气流速和床层高度的关系为: 流化床的操作范围:u mf ~u t 图3空气流速和床层高度关系图 2)流化床干燥器的特征 优点: (1)床层温度均匀,体积传热系数大(2300~7000W/m3·℃)。生产能力大,可在小装置中处理大量的物料。 (2)由于气固相间激烈的混合和分散以及两者间快速的给热,使物料床层温度均一且易于调节,为得到干燥均一的产品提供了良好的外部条件。 Velocity Heig ht0fb ed Fixed Fluidized A D B C E U mf Velocity ured rop U mf

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

喷雾干燥器设计计算

广东工业大学课程设计任务书 一、课程设计的内容 1.设计任务与要求 设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。 2.概述、原理、优点、流程 通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 3.根据计算的最主要尺寸绘制流程示意图 二、课程设计的要求与数据 料液处理量1G =300h kg / 料液含水量1ω=80%(湿基,质量分数) 产品含水量ω=2%(湿基,质量分数) 料液密度L ρ=11003/m kg 产品密度D ρ=9003/m kg 热风入塔温度 t 1=300℃ 热风出塔温度t 2=100℃ 料液入塔温度1θ=20℃ 产品出塔温度2θ=90℃ 产品平均粒径dp =125μm 干物料比容热m c =2.5kJ/(kg.·℃) 加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa 年平均空气温度12℃ 年平均空气相对湿度 70% 注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。

三、课程设计应完成的工作 1、通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 2、工艺计算 3、主要设备尺寸的设计 4、绘制工艺流程 5、撰写课程设计说明书 四、课程设计进程安排 五、应收集的资料及主要参考文献 陈英南刘玉兰主编. 常用化工单元设备的设计. 华东理工大学出版社2005年第一版。 发出任务书日期:2009年6月22日 指导教师签名:

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

流化床干燥器

流化床干燥器设计说明书 设计者: 学号: 班级: 指导老师: 设计日期:

第一节 概述 将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化。 流化床干燥器就是将流态化技术应用于固体颗粒干燥的一种工业设备,目前在化工、轻工、医学、食品以及建材工业中都得到了广泛应用。 一、 流态化现象 空气流速和床内压降的关系为: 空气流速和床层高度的关系为: Press ure drop U mf

流化床的操作范围:u mf ~u t 二、 流化床干燥器的特征 优点: (1)床层温度均匀,体积传热系数大(2300~7000W /m3·℃)。生产能力大,可在小装置中处理大量的物料。 (2)由于气固相间激烈的混合和分散以及两者间快速的给热,使物料床层温度均一且易于调节,为得到干燥均一的产品提供了良好的外部条件。 (3)物料干燥速度大,在干燥器中停留时间短,所以适用于某些热敏性物料的干燥。 (4)物料在床内的停留时间可根据工艺要求任意调节,故对难干燥或要求干燥产品含湿量低的过程非常适用。 (5)设备结构简单,造价低,可动部件少,便于制造、操作和维修。 (6)在同一设备内,既可进行连续操作,又可进行间歇操作。 缺点: (1)床层内物料返混严重,对单级式连续干燥器,物料在设备内停留时间不均匀,有可能使部分未干燥的物料随着产品一起排出床层外。 (2)一般不适用于易粘结或结块、含湿量过高物料的干燥,因为容易发生物料粘结到设备壁面上或堵床现象。 (3)对被干燥物料的粒度有一定限制,一般要求不小于30、不大于6mm 。 (4)对产品外观要求严格的物料不宜采用。干燥贵重和有毒的物料时,对回收装量要求苛刻。 (5)不适用于易粘结获结块的物料。 三、流化床干燥器的形式 1、单层圆筒形流化床干燥器 连续操作的单层流化床干燥器可用于初步干燥大量的物料,特别适用于表面水分的干燥。然而,为了获得均匀的干燥产品,则需延长物料在床层内的停留时间,与此相应的是提高床层高度从而造成较大的压强降。在内部迁移控制干燥阶段, Velocity Heigh t 0f bed Fixed Fluidized A D B C E U mf

化工原理课程设计--脉冲气流干燥器设计

化工原理课程设计--脉冲气流干燥器设计

化工原理课程设计 题目: 脉冲气流干燥器设计 系别: 化学材料与工程系 专业:_ 学号: 姓名: 指导教师: 二零一四年一月二十七日

目录 设计任务书 (5) 1.概述 (5) 1.1气流干燥的特点 (5) 1.2设计方案简介 (5) 2.工艺计算及主体设备设计 (6) 2.1已知的基本条件 (6) 2.2物料衡算和热量衡算 (6) 2.2.1物料衡算 (6) 2.2.2热量衡算 (7) t (7) 2.2.3校核假设的物料出口温度2m 2.3气流干燥管直径的计算 (8) 2.3.1加速段气流干燥管直径的计算 (8) 2.3.2加速运动段管高的计算 (8) 2.3.3减速段管高的计算 (13) 2.4总的干燥管的高度 (21) 3.辅助设备的选择与计算 (21) 3.1管路的选择与计算 (21) 3.2加料装置 (22) 3.3风机 (22)

3.4热风加热装置 (22) 3.5分离装置 (23) 4.主要符号和单位 (23) 5. 干燥装置的工艺流程 (25) 6.设计评价 (25) 附录 (25) 参考文献 (28)

设计任务书 本次以重油燃烧气为干燥介质,对物料进行干燥,分离,保证品质,在设计过程中涉及工艺计算及主体设备设计,风机的选择,热风加热装置,加料装置的选择等,通过循环让物料及过程中产生的中间物及废料达到最高利用率。 1.概述 1.1气流干燥的特点 气流干燥在我国是一种应用最广发最久远的干燥器,随着不同新型气流干燥器的开发成功,气流干燥我干燥领域方兴未艾。由于干燥时间短适合容易受高温变质物料的干燥;不适合粘性大的物料干燥,管道较厂一般超过20米,安装的限制制约了其发展。 气流干燥器的主要缺点在于干燥管太高,为降低其高度,近年来出现了几种新型的气流干燥器:①多级气流干燥器。将几个较短的干燥管串联使用,每个干燥管都单独设置旋风分离器和风机,从而增加了入口段的总长度。②脉冲式气流干燥器。采用直径交替缩小和扩大的干燥管(脉冲管),由于管内气速交替变化,从而增大了气流与颗粒的相对速度。③旋风式气流干燥器。使携带物料颗粒的气流,从切线方向进入旋风干燥室,以增大气体与颗粒之间的相对速度,也降低了气流干燥器的高度。 在气流干燥器中,主要除去表面水分,物料的停留时间短,温升不高,所以适宜于处理热敏性、易氧化、易燃烧的细粒物料。但不能用于处理不允许损伤晶粒的物料。目前,气流干燥在制药、塑料、食品、化肥和染料等工业中应用较广。 1.2设计方案简介 。 物料呈颗粒状,圆球形,处理量为3000kg/h,颗粒平均直径在200m 本设计采用脉冲式气流干燥器来干燥物料,可以减少干燥管的高度和节省设备的成本。脉冲式干燥器由于其不断变化的管径,可以使颗粒在管内保持与干燥气流的相对快速运动,增强了干燥的效果并减少了干燥的时间。

流化床干燥机

◎食品级流化床干燥机 工作原理 系列振动流化床干燥机将所要处理的物料通过适当的铺料机构,如星型布料器、摆动带、粉碎机或造粒机等,分布在布料孔板上,布料孔板穿过一个或几个加热单元组成的通道,每个加热单元均配有空气加热和循环系统,每一个通道有一个或几个排湿系统,物料在布料孔板上通过时,在 激振力作用下,物料沿水平方向抛掷向前连续运动,热空气从上往下或从下往上通过不赖哦孔板上的物料,从而使物料能均匀干燥,热风穿过流化床孔板向上穿过同物料换热后,由排风口排出,干燥物料由排料口排出。

特点 ● 物料受热均匀,热交换充分,干燥强度高,比普通干燥机节15%~30%左右。 ● 振动源始采用振动电机驱动,运转平稳、维修方便、噪音低、寿命长。 ● 流态化平稳,无死角和吹穿现象。 ● 可调性好,使用面宽,料层厚度和在机内移动以及振幅变更均可实现无级调节。 ● 对物料表面损伤小,可用于易碎物料的干燥,物料颗粒不规则时亦不影响工作效果。● 采用全封闭式的结构,有效的防止了物料与空气间的交叉感染,作业环境影响。 应用范围 ● 无机物:过硫酸盐、漂粉精、偏硅酸钠、硅砂、过硼硼砂、硼酸、溴化钾。 ● 有机物:苯二酚、草酸、对苯二酚、富马酸、古龙酸酒石酸、氰尿酸、盐。 ● 食品和饲料添加剂:大豆分离蛋白、谷氨酸、焦糖色葡萄糖、乳酸、砂糖。 ●还可用于物料的冷却、增湿等。 机型Model 硫化床 面(M2) Area of Fluidzed -bed 进风 温度 temp eratu re of inlet air 出风温 度 tempra ture of outlet 蒸发水份能 力(kg/h) capacity to vapor moisture 振动电vabration 型号model 功率 power(kw) ZLG3×0.30 0.9 70~140 401~ 70 20~35 ZDS31-6 0.8×2 ZLG4.5×0.30 1.35 35~50 ZDS31-6 0.8×2 ZLG4.5×0.45 2.025 50~70 ZDS32-6 1.1×2 ZLG4.5×0.60 2.7 70~90 ZDS32-6 1.1×2 ZLG6×0.45 2.7 80~100 ZDS41-6 1.5×2 ZLG6×0.60 3.6 100~130 ZDS41-6 1.5×2 ZLG6×0.75 4.5 120~140 ZDS42-6 2.2×2 ZLG6×0.9 5.4 140~170 ZDS42-6 2.2×2 ZLG7.5×6.0 4.5 130~150 ZDS42-6 2.2×2 ZLG7.5×0.75 5.625 150~180 ZDS51-6 3.0×2 ZLG7.5×0.9 6.75 160~210 ZDS51-6 3.0×2 ZLG7.5×1.2 9 200~260 ZDS51-6 3.0×2 流化床干燥机 流化床干燥机是20世纪60年代发展起来的一种新型干燥技术,又称为沸腾床干燥机。 流化床干燥是指粉状或颗粒状物料呈沸腾状态被通入的气流干燥。这种沸腾料层称为流化床,而采用这种方法干燥物料的设备,称为流化床干燥机。 在食品、轻工、化工、医药以及建材等行业都得到了广泛的应用。流化床在食品工业上用于干燥果汁型饮料、速溶乳粉、砂糖、葡萄糖、汤料粉等。 流化床干燥机呈长方形或长槽状箱体结构。流化床工作部位为多孔板,由薄钢板冲孔、细钢丝编织网或氧化铝烧结成多孔陶瓷板制成,多孔板下方是热空气强制通风室。干燥时,颗粒状食品原料由供料装置散布在多孔板上,形成一定料层厚度,热空气穿过多孔板,对板上物

化工原理课程设计流化床干燥器

化工原理课程设计 目录 设计任务书................................................................. 第一章概述................................................................. 3.. 1.1流化床干燥器简介................................................... 3. 1.2设计方案简介........................................................ 7.第二章设计计算............................................................. 9. 2.1物料衡算............................................................ 9. 2.2空气和物料出口温度的确定......................................... 1.0 2.3干燥器的热量衡算 (12) 2.4干燥器的热效率.................................................... 1.3第三章干燥器工艺尺寸设计 (14) 3.1流化速度的确定.................................................... 1.4 3.2流化床层底面积的计算 (14) 3.3干燥器长度和宽度 (16) 3.4停留时间.......................................................... 1.6 3.5干燥器高度........................................................ 1.6 3.6干燥器结构设计 (17) 第四章附属设备的设计与选型 (20) 4.1风机的选择 (20) 4.2气固分离器 (20) 4.3加料器 (22) 第五章设计结果列表 (23) 附录 (25) 主要参数说明 (25) 设计任务书 一、设计题目 2.2万吨/年流化床干燥器设计 二、设计任务及操作条件 1?设计任务 生产能力(进料量)22万吨/年(以干燥产品计) 操作周期__________ 260 天/年 进料湿含量_______ 13% (湿基) 出口湿含量1% (湿基) I

化工原理干燥器课程设计

目录 1 概述 (3) 1.1干燥技术现状及进展 (3) 1.1.1干燥技术的概况 (3) 1.1.2干燥技术现状 (3) 1.2气流干燥器的简介 (4) 1.2.1气流干燥器的简介 (4) 1.2.2脉冲式气流干燥器的简介 (5) 2.设计任务及要求 (5) 2.1设计题目 (5) 2.2设计任务及操作条件 (5) 2.3设计内容 (5) 3.干燥器主体工艺尺寸计算计算 (6) 3.1基本参数的确定 (6) 3.2 物料衡算和能量衡算 (6) 3.2.1物料衡算和热量衡算 (6) 3.2.2气流干燥管直径的计算 (7) 3.2.3气流干燥管长度的计算 (8) 4.辅助设备的选型及核算 (17) 4.1鼓风机 (18) 4.2加热器 (18) 4.3进料器 (18) 4.4分离器 (19) 4.5除尘器 (19) 5.设计结果汇总 (19) 6 结论 (19) 参考文献 (19) 致谢……………………………………………………………………………… 附图 一. 概述:

1.1 干燥技术现状及进展 人们通常把采用热物理方式将热量传给含水的物料并将此热量作为潜热而是水分蒸发、分离操作的过程称为干燥。其特征是采用加热、降温、减压或其他能量传递的方式使物料中的水分挥发,冷凝、升华等相变过程与物料分离以达到去湿的目的。 干燥技术的应用,在我国具有十分悠久的历史,文明于世界的造纸技术,就显示了干燥技术的应用,现代干燥技术在国民生产中应用的程度与一个国家的综合国力和国民生活质量的水平密切相关,从某种意义上来说,它标志着这个国家国民经济和社会文明的发达程度。 1.1.1干燥技术的概况 干燥技术的目的是除去某些原料、半成品中的水分或溶剂,就化学工业而言目的哦在于,使物料便于包装、运输、加工和使用,具体为 (1)悬浮液和滤饼状的化工原料和产品,可经干燥成为固体,便于包装和运输。 (2)不少的化工原料和产品,由于水分的存在,有利于微生物的繁殖,易霉烂、虫蛀或变质,这类物料经过干燥便于贮藏,例如生物化学制品、抗生素及食品等,若含水量超过规定标准,易于变质影响使用期限,需要经干燥后才有利于贮藏。 (3)为了使用方便。例如食盐、尿素和硫胺等,当其干燥至含水率为0.2-0.5%左右时,物料不易结块,使用比较方便。 (4)便于加工。一些化工原料,由于加工工艺要求,需要粉碎到一定的粒度范围和含水率,以利于在加工和使用。 (5)为了提高产品的质量。某些化工原料和产品,其质量的高低和含水量有关,物料经过干燥处理,水分除去后,有效成分相应增加,提高了产品质量。 1.1.2干燥技术现状 干燥技术有很宽的服务领域,面对众多的产业,理化性质各不相同的物料,产品质量及其他方面千差万别的要求,干燥技术是一门跨学科、跨行业、具有实验性科学性的技术。 干燥时比较古老。通用和必不可少的化工单元操作。据报道,到目前为止已有400多种形式的干燥器,其中,有100多种形式应用较多。由于高的汽化潜热和以热空气为干燥介质(最通用)导致了固有的热效率低,使干燥成为可与蒸馏相比的高能耗单元操作。一般工业发达的国家(美国、英国等)干燥能耗占全国总能耗的10%-15%。同时它又是一个缺乏能够精确指导实践的科学理论和设计方法。在实际中,依靠经验和小规模实验的数据来指导设计、制造、生产还是主要的方法。因此,往往导致其结局是装臵效果不佳、甚至于报废。因此,在建设工业装臵时,尤其是在设备安装之前,一定要进行充分的、有说服力的实验,以试验作为工业装臵建设的依据。这就是干燥技术应用的显著特点。 1.1.3 干燥技术的进展 传统的干燥器主要有厢式干燥器、隧道干燥器、转筒干燥器、转鼓干燥器、带式干燥器、盘式干燥器、桨叶式干燥器、流化床干燥器、喷动床干燥器、喷雾干燥器、气流干燥器、真空冷冻干燥器、太阳能干燥器、微波和高频干燥器、红外热辐射干燥器等。此外,在各个行业,例如谷物、水果和蔬菜、石油化工、燃料和颜料、食品、乳制品、中药材等行业也由适合自身特点的专用干燥技术和和干燥器。这些传统干燥技术发展历史较长、成熟可靠,在世界各国已经得到广泛

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

振动流化床干燥机操作规程完整

振动流化床干燥机操作规程 1.目的:规振动流化床干燥机的操作,确保生产设备的安全正常运转。 2.适用围:适用振动流化床干燥机的操作和管理。 3.责任人:车间操作人员和设备管理员。 4.振动流化床干燥机使用操作 4.1.开机前先对主机及附属设备仔细检查,确保设备良好状态。 4.2.调节震动电机的振幅,使设备达到最佳状态。 4.3.打开蒸汽阀门,仪表压力根据干燥温度规定值设定压力。 4.4.打开旋风分离引风机,再开鼓风机,调节好引风送风阀门。 4.5.待温度达到要求开提料机再开下料机进料,调速好下料机绞龙速度使物料均匀的分 布到流化床干燥板上。 4.6.干燥过程时刻注意机身的振动情况及机身温度,确保干燥物料均匀。 4.7.设备运行要注意机身螺栓松动、声音有无异常,蒸汽压力是否正常。出现异常及时 停止给料停机报修。 4.8.停止给料,使机物料全部出来。 4.9.关闭蒸汽关流化床电机继续通风5-10分钟待流化床降温后关闭鼓风机关 旋风分离引风机最后关闭所用附属设备电源并拉下空气开关。 5.注意事项: 5.1.每班检查设备主体、附属设备有无异常。固定螺栓是否松动。 5.2.每班干燥结束对设备外部进行清扫,保证设备整洁无积尘、无油污、无杂物。清扫 一定切断电源。 5.3.按照工艺要求清洗设备部,清洁后按技术要求检测。 5.4.每班按要求清理旋风引风机物料,每周更换水槽喷淋水。 1开机前先对主机及附属设备仔细检查,确保设备 2 调节震动电机的振幅,使设备达到良好状态。最佳状态

3打开蒸汽阀门,仪表压力根据干燥温度规 4打开旋风分离引风机,再开鼓风机 定值设定压力

5待温度达到要求开提料机再开下料机进料, 6干燥过程时刻注意机身的振动情况及机身 调速好下料机绞龙速度使物料均匀的分布到 温度,确保干燥物料均匀。 流化床干燥板上。

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

流化床干燥说明书样本

流化床干燥操作实验装置 说 明 书 天津大学化工学院 化工基础实验中心 2月

目录 一.实验设备的特点 二.设备的主要技术数据 三.实验设备的基本情况 四.实验方法及步骤 五.实验装置注意事项 六.附录

一.实验设备的特点 ⒈本实验属操作型实验。其主要目的是让学生了解和掌握湿物料连续流化干燥的方法及干燥操作中物料、 热量衡算和体积对流传热系数(αv )的估算方法。同时也可证明流化干燥的明显优点之一是气-固间对流传热效果好(αv 大)。 ⒉主体设备全透明。用透明膜加热新技术保温设备, 实验过程中可清晰地观察颗粒的流化状况。选用变色硅胶作物料, 使干燥情况更直观、 形象。 ⒊装置小型化, 选用新型旋涡气泵, 能耗低、 噪声小, 且便于学生动手操作。 二.设备的主要技术数据 ㈠ 流化床干燥器( 玻璃制品, 用透明膜加热新技术保温) 流化床层直径D: Φ80×2毫米( 内径76毫米) 床层有效流化高度h:80毫米( 固料出口) 总高度: 530毫米 流化床气流分布器: 80目不锈钢丝网(二层) ㈡ 物料 变色硅胶: 1.0 ─ 1.6毫米粒径 绝干料比热Cs =0.783kJ /kg ·℃ (t =57℃)(查无机盐工业手册) 每次实验用量:400-500克(加水量30-40毫升) ㈢ 空气流量测定 ⒈用自制孔板流量计, 材质─铜板; 孔径─17.0毫米。 ⒉实际的气体体积流量随操作的压强和温度而变化, 测量时需作校正。具体方法: ① 流量计处的体积流量0V : )(2 210 00P P A C V -=ρ (m 3 /s) 0C —孔板流量计的流量系数, 0C =0.67;

化工原理课程设计流化床干燥器

化工原理课程设计 计算说明书 (2013 ~2014 学年第一学期) 设计题目卧式多室流化床干燥器 院系生命科学学院 专业班级生物工程1101 姓名 学号 指导教师 成绩 日期:2013年12月 7日

目录 一、设计任务书 0 二、干燥原理 (2) (一)干燥概述 (2) (二)干燥原理 (2) 三、干燥流程的确定与说明 (4) (一)干燥器的选择方法 (4) (二)几种常见干燥器 (4) (三)干燥中主要设备和机器的确定 (6) (四)干燥流程的说明 (7) 四、流化床干燥器的工艺计算 (9) (一)干燥流程的确定 (9) (二)物料和热量衡算 (9) (三)干燥器的设计 (12) 五、辅助设备的设计与选型 (18) (一)送风机和排风机 (18) (二)气——固分离器 (20) (三)供料装置 (21) 六、设计计算汇总结果 (21) 七、认识与体会 (23) 八、参考文献 (24) 九、主要符号及说明 (25)

一、设计任务书

二、干燥原理 (一)干燥概述 干燥通常是指将热量加于湿物料并排除挥发湿分(大多数情况下是水),而获得一定湿含量固体产品的过程。湿分以松散的化学结合或以液态溶液存在于固体中,或积集在固体的毛细微结构中。 当湿物料作热力干燥时,以下两种过程相继发生: 过程1.能量(大多数是热量)从周围环境传递至物料表面使湿分蒸发。 过程2.内部湿分传递到物料表面,随之由于上述过程而蒸发。 干燥速率由上述两个过程中较慢的一个速率控制,从周围环境将热能传递到湿物料的方式有对流、传导或辐射。在某些情况下可能是这些传热方式联合作用,工业干燥器在型式和设计上的差别与采用的主要传热方法有关。在大多数情况下,热量先传到湿物料的表面热按后传入物料内部,但是,介电、射频或微波干燥时供应的能量在物料内部产生热量后传至外表面。 整个干燥过程中两个过程相继发生,并先后控制干燥速率。 (二)干燥原理 .外部条件控制的干燥过程(过程 ) 在干燥过程中基本的外部变量为温度、湿度、空气的流速和方向、物料的物理形态、搅动状况,以及在干燥操作时干燥器的持料方法。外部干燥条件在干燥的初始阶段,因为物料表面的水分以蒸汽形式通过物料表面的气膜向周围扩散,这种传质过程伴随传热进行,故强化传热便可加速干燥。

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程的学习及进一步培养学生的工程意识、实践意识和创新意识打下基础。 二、课程设计的基本要求 (1)在设计过程中进一步掌握和正确运用所学基本理论和基本知识,了解工程设计的基本内容,掌握设计的程序和方法,培养发现问题、分析问题和解决问题的独立工作能力。 (2)在设计中要体现兼顾技术上的先进性、可行性和经济上的合理性,注意劳动条件和环境保护,树立正确的设计思想,培养严谨、求实和科学的工作作风。 (3)正确查阅文献资料和选用计算公式,准确而迅速地进行过程计算及主要设备的工艺设计计算。 (4)用简洁的文字和清晰的图表表达设计思想和计算结果。 三、设计题目 题目Ⅰ:在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。

化工原理课程设计列管式换热器设计示例

列管式换热器设计说明书 设计者:班级: 姓名: 学号: 日期: 指导教师设计成绩日期

目录 一、方案简介 (3) 二、方案设计 (4) 1、确定设计方案 (4) 2、确定物性数据 (4) 3、计算总传热系数 (4) 4、计算传热面积 (5) 5、工艺结构尺寸 (5) 6、换热器核算 (7) 三、设计结果一览表 (10) 四、对设计的评述 (11) 五、附图(主体设备设计条件图)(详情参见图纸)································· 六、参考文献 (12) 七、主要符号说明 (12) 附图··········································································

一、方案简介 本设计任务是利用冷流体(水)给硝基苯降温。利用热传递过程中对流传热原则,制成换热器,以供生产需要。下图(图1)是工业生产中用到的列管式换热器. 选择换热器时,要遵循经济,传热效果优,方便清洗,复合实际需要等原则。换热器分为几大类:夹套式换热器,沉浸式蛇管换热器,喷淋式换热器,套管式换热器,螺旋板式换热器,板翅式换热器,热管式换热器,列管式换热器等。不同的换热器适用于不同的场合。而列管式换热器在生产中被广泛利用。它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。尤其在高压、高温和大型装置中使用更为普遍。所以首选列管式换热器作为设计基础。 二、方案设计 某厂在生产过程中,需将硝基苯液体从93℃冷却到50℃。处理能力为1×105吨/年。 冷却介质采用自来水,入口温度27℃,出口温度37℃。要求换热器的管程和壳程的压降不大于10kPa。试设计能完成上述任务的列管式换热器。(每年按300天,每天24小时连续运行) 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况: 热流体进口温度93℃,出口温度50℃冷流体。 冷流体进口温度27℃,出口温度37℃。 从两流体温度来看,估计换热器的管壁温度和壳体壁温之差不会很大,因此初步确定选用固定管板式换热器。 (2)流动空间及流速的确定 由于硝基苯的粘度比水的大,因此冷却水走管程,硝基苯走壳程。另外,这样的选择可以使硝基苯通过壳体壁面向空气中散热,提高冷却效果。同时,在此选择逆流。选用ф25×2.5的碳钢管,管内流速取ui=0.5m/s。 2、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程硝基苯的定性温度为: ℃ = + =5. 71 2 50 93 T 管程流体的定性温度为: ℃ = + =32 2 37 27 t 管内流体流态最好完全 湍流。Re>10000,d=0.02, μ=0.001,ρ=1000,故 u i ≥0.5m/s 出口水温是可以自行改动的。 冷却水温差最好在5~10℃ 一年的工作日一般 300~340天。可以自行 选定。 流程安排说理要充分。

相关文档
相关文档 最新文档