文档库 最新最全的文档下载
当前位置:文档库 › 双曲线第一定义

双曲线第一定义

双曲线第一定义

第三讲---双曲线的第二定义

第三讲 双曲线的第二定义
知识梳理
(一)双曲线的第二定义:平面内一动点 的比为常数 e ? 到一定点 F (c, 0) 的距离与到一定直线 L : x ?
a2 的距离 c
c (e>1) a
定点 F (c, 0) 是双曲线的焦点,定直线 L 是双曲线的准线,常数 e 是双曲线的离心率。 (二)焦点三角形的面积公式。
S?
1 ? r1r2 sin ? ? b 2 tan 2 2
3.双曲线的方程,图形,渐进线方程,准线方程和焦半径公式: 标准方程 图像 渐进线方程
x2 y 2 ? ? 1(a ? 0.b ? 0) a 2 b2
b x a a2 x?? c M 在右支上 r左 =|MF1 |=ex0 ? a y??
y 2 x2 ? ? 1(a ? 0.b ? 0) a 2 b2
a x b a2 y?? c y??
准线方程
半径公式
r右 =|MF2 |=ex 0 ? a M 在左支上 r左 =|MF|=-ex 1 0 ?a r右 =|MF2 |=-ex 0 ? a
典例分析 题型一:与双曲线准线有关的问题 例 1.(1)若双曲线
x2 y 2 ? ? 1 上一点 P 到右焦点的距离等于 13 ,则点 P 到右准线的距离为______ 13 12
x2 y 2 ? ? 1 的离心率为 2,则该双曲线的两条准线间的距离为________ A.若双曲线 m 3
练习:已知双曲线的渐进线方程为 3x ? 2 y ? 0 ,两条准线间的距离为 解:双曲线渐进线方程为 y ? ?
16 13 ,求双曲线的标准方程。 13
3 x 2
1

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

双曲线的定义、标准方程及几何性质

高二数学学案 序号 112-113高二年级 班 教师 毕 环 学生 复习三十五 双曲线的定义、标准方程及几何性质 〖学习目的〗1、掌握双曲线的定义、标准方程及几何性质 2、会用定义和几何性质解决简单问题;会求双曲线的标准方程; 〖重点难点〗定义、几何性质的理解及应用 〖学习过程〗 一、复习归纳 1、双曲线的定义:到两定点距离之差的绝对值等于一个常数(小于两定点间距离)的动点 的轨迹为双曲线。 即:当21212F F a PF PF <=-时,P 的轨迹为双曲线;21F F 是焦距,c F F 221= 注: 1)双曲线有两支,设21,F F 分别是左、右焦点,则当a PF PF 221=-时表示右支; 当a PF PF 212=-时表示左支; 2)当21212F F a PF PF ==-时,P 的轨迹为以1F 、2F 为端点的两条射线; 3) 当21212F F a PF PF >=-时,P 的轨迹不存在; 2、双曲线的标准方程 1)当焦点在x 轴上时,双曲线的标准方程为)0,0(12222>>=-b a b y a x ,其中:焦点坐标是)0,(c ± 2)当焦点在y 轴上时,双曲线的标准方程为 )0,0(12 2 22>>=-b a b x a y ,其中:焦点坐标是),0(c ± 注意:(1)222 b a c += 注意与椭圆的区别。 (2)方程特征:左边是平方差的结构,右边是1;分母均大于0,但大小不定; (3)根据方程判断焦点的位置的方法:看系数的符号(正负); 即2x 的系数大于0则在x 轴上,且2x 的分母即是2a ; 反之,2y 的系数大于0则在y 轴上,且2y 的分母即是2a 。 3、求双曲线方程,先要判断焦点的位置,若两种均有可能,则分两种情况讨论; 有的问题也可用两种标准方程的统一形式:)0(122 <=+mn ny mx 来设方程。 4、常用小结论: 1)与双曲线 122 22 =-b y a x 共渐近线的双曲线系方程为:)0(22 22 ≠=-λλb y a x 2)、以x a b y ±= 渐近线的双曲线可设为:)0(2222≠=-λλb y a x 5、双曲线的标准方程与几何性质 二、例题讲解 例1、(1)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足126PF PF -=,求动点P 的轨迹方程 (2)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足1210PF PF -=,求动点P 的轨迹方程. (3)已知双曲线C 与双曲线14 162 2=-y x 有公共焦点,且过点)2,23(,求该双曲线的方程。 例2、方程 1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

高中数学解析几何双曲线性质与定义

双曲线 双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。 双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义 一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。 取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。 设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。 将这个方程移项,两边平方得: 两边再平方,整理得:()() 22222222a c a y a x a c -=-- 由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得: 双曲线的标准方程:122 22=-b y a x 两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上 的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义 与椭圆的方法类似:对于双曲线的标准方程:122 22=-b y a x ,我们将222b a c +=代入, 可得:()a c c a x c x y =± ±+2 2 所以有:双曲线的第二定义可描述为: 平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c a x 2 ±=)的距离之比为 常数()0c e c a a =>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双 曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e == 22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122222-=-=-==e a c a a c a b k ; 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=,相对于右焦点 )0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相对于上焦点),0(2c F 对 应着上准线 a y l 2 2:=。

圆锥曲线-基本定义-第一定义

学术正刊 圆锥曲线 基本定义 高中 1 LeO 著 第一定义 定义1.0(椭圆第一定义):平面内到两定点F 1、F 2的距离的和等于常数2a (2a >|F 1F 2|)的动点P 的轨迹称之为椭圆。即:|PF 1|+|PF 2|=2a 。 定义1.1(椭圆焦点):两定点F 1、F 2称作椭圆的左右焦点。 定义1.2(椭圆焦距):两焦点距离|F 1F 2|=2c 称作椭圆的焦距。 解:如图1,建立直角坐标系,设两焦点坐标F 1(?c,0)、F 2(c,0),动点坐标P (x,y ),依题意有: √(x +c )2+y 2+√(x ?c )2+y 2=2a ??1? ?1?式移项后再平方: (x +c )2+y 2=4a 2?4a√(x ?c )2+y 2+(x ?c )2+y 2 继续化简: (a 2?c 2)x 2+a 2y 2=a 2(a 2?c 2) ??2? ?2?式中令b 2=a 2?c 2,化简得: x 2a 2+y 2 b 2 =1 证毕。 图1 图2 定义2.0(双曲线第一定义):平面内到两定点F 1、F 2的距离的差等于常数2a (2a <|F 1F 2|)的动点P 的轨迹称之为双曲线。即:||PF 1|?|PF 2||=2a 。 定义2.1(双曲线焦点):两定点F 2、F 1称作双曲线的左右焦点。 定义2.2(双曲线焦距):两焦点距离|F 1F 2|=2c 称作双曲线的焦距。 解:如图2,建立直角坐标系,设两焦点坐标F 2(?c,0)、F 1(c,0),动点坐标P (x,y ),依题意有: √(x +c )2+y 2?√(x ?c )2+y 2=±2a ??1? ?1?式移项后再平方: (x +c )2+y 2=4a 2±4a√(x ?c )2+y 2+(x ?c )2+y 2 继续化简: (c 2?a 2)x 2?a 2y 2=a 2(c 2?a 2) ??2? ?2?式中令b 2=c 2?a 2,化简得: x 2a 2?y 2 b 2 =1 证毕。

双曲线的定义应用举例(太好了)

双曲线的定义应用举例 1.已知方程{ EMBED Equation.3 | k 3x 2 ++=1表示双曲线,则k 的取值范 围是 。 2. 若方程=1表示双曲线,则实数m 的取值范围是( )。 (A )m <-2或25 (D )m >5 3 设双曲线与椭圆有共同的焦点,且与椭圆相交,一个交点的纵坐标为,求双曲线的方程。 由已知得两焦点分别为、点 则得,由于得,因此方程为所求。 点评:双曲线上的点必满足双曲线的定义,本题抓住“交点”满足第一定义,从而应用第一定义求出了双曲线方程中的基本量,显然它比其它方法要简单、方便; 4 如图,双曲线其焦点为,过作直线交双曲线的左支于两点,且,则的周长为 。 简解:由 又由, 那么的周长为 点评:图形,具有直观性;本题借助图形,利用第一定义,首先求出,尔后,再求周长,显然是求解问题的一种策略;假若本题未给图形,条件“过作直线交双曲线的左支于两点”中,再去掉“左支”两字,情况就大不相同,请试一下。 5、解方程 简解:原方程可变为,令 则方程以变为显然,点在以,为焦点,实轴长为的双曲线上,易得其方程为 由得 6.在中,已知,若,则点C 的轨迹方程为 A . B . C .)0(≥x D . 7.一个动圆与两个圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D ) 抛物线 8、双曲线上一点与左右焦点构成, 求的内切圆与边的切点的坐标。 9已知双曲线的左右焦点分别为,为双曲线上任意一点,的内角平分线的垂线,设垂足为,求点的轨迹。 练习题 1、P 是双曲线x 29|-y 2 16|=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( ) A .6 B .7 C .8 D .9 2、 双曲线x 2a 2|-y 2 b 2|=1的左焦点为F 1,与x 轴交点为A 1,A 2,P 是该双曲线右支上任意一点,则分别以线段PF 1,A 1A 2为直径的两圆一定( ) A .相交 B .内切 C .外切 D .相离 3、 已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( ) A .x 2 -y 28|=1(x <-1) B .x 2-y 2 8|=1(x >0) C .x 2 +y 28|=1(x > 0) D .x 2 -y 210|=1(x >1) 4、设F 1、F 2为双曲线x 2sin 2 θ|-y 2b 2|=1(0<θ≤π 2|,b >0)的两个焦点,过F 1的直线交双曲线的同支于A 、B 两点,如果|AB |=m ,则△AF 2B 的周长的最大值是( D ) A .4-m B .4 C .4+ m D .4+2 m

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

第10讲椭圆及双曲线的第二定义

第10讲 椭圆及双曲线的第二定义 一. 椭圆 1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (01),则动点M 的 轨迹叫做双曲线。 定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c a 2 x :l ±=),常数e 是双曲线的离心率。 2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径 设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则 0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则 0201-a ,a ex PF ex PF +=+=。 3. 通径:过双曲线的焦点与双曲线的实轴垂直的直线被双曲线所截得的线段称为双曲线的通径,其长 a 2212 b H H = 4. 共轭双曲线:

双曲线的定义及应用

一、双曲线的定义及应用 1、动点P 到定点)0,1(1F 的距离比它到点)0,3(2F 的距离小2,则点的轨迹是 2、已知两圆2)4(:2 2 1=++y x C ,2) 4(:2 2 2=+-y x C ,动圆M 与两圆都相 切,则动圆圆心M 的轨迹方程。 3、若双曲线 12 2 =-y m x 上的点到左准线的距离是到左焦点距离的 3 1,则=m 4、点P 是双曲线 116 9 2 2 =- x y 上支上的一点,1F 、2F 分别是双曲线的上、下焦点, 则21F PF ?的内切圆圆心M 的坐标一定适合的方程是 5、已知1F 、2F 分别是双曲线 12 22 2=- b y a x 的左右焦点,P 为双曲线左支上任意一 点,若1 22 PF PF 的最小值为a 8,则双曲线的离心率的范围是 6、已知定点A 、B 且4=AB ,动点P 满足3=-PB PA ,则PA 的最小值是 7、设双曲线1449162 2 =-y x 的右焦点为2F ,M 是双曲线的任意一点,点A 的 坐标为)2,9(,则2 5 3MF MA +的最小值是 二、求双曲线方程 1、与双曲线222 2 =-y x 有公共渐近线,且过点)2,2(-M 的双曲线的方程是 2、已知双曲线的中心在原点,焦点1F 、2F 在坐标轴,离心率为 2,且过点 )10,4(- ,则此双曲线的方程是 3、已知双曲线的右准线为4=x ,右焦点)0,10(F ,离心率为2,则此双曲线方程是 三、双曲线的性质 1、在给定的双曲线中,过焦点且垂直于实轴的弦长是2,焦点到相应的准线的

距离是 2 1,则此双曲线的离心率是 2、若在双曲线 12 22 2=- b y a x )0,0(>>b a 的右支上到原点和右焦点距离相等的点 有两个,则双曲线的离心率的取值范围是 3、双曲线 12 22 2=- b y a x 的一条准线被它的两条渐近线所截得的线段长度恰好等于 它的一个焦点到一条渐近线的距离,则此双曲线的离心率是 四、焦点半径的应用 1、已知点P 是双曲线 19 16 2 2 =- y x 上的一点,且点P 到双曲线右准线的距离是P 到两个焦点的距离的等差中项,则点P 的横坐标是 2、设1F 、2F 是双曲线 14 2 2 =-y x 的两个焦点,点P 在双曲线上,当21F PF ?的 面积是1时,PF PF ?1的值是 五、中点问题 1、过点)1,8(P 的直线与双曲线442 2 =-y x 相交于A 、B 两点,且P 是线段AB 的中点,求直线AB 的方程 六、直线与双曲线的交点问题 1、已知双曲线 14 12 2 2 =- y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只 有一个交点,则此直线斜率的取值范围是 2、直线1:+=kx y m 和双曲线12 2 =-y x 的左支交于A 、B 两点,直线l 过点 )0,2(-P 和线段AB 的中点,求l 在y 轴上的截距b 的取值范围。

双曲线的定义、方程和性质(精)

双曲线的定义、方程和性质 执教:钱如平班级:高二(3) 地点:本教室时间:2000.4.6 一、学习目标: 掌握双曲线的定义、方程和性质,注意与椭圆的区别和联系。 二、知识要点: 1.定义 (1)第一定义:平面内到两定点F1、F2的距离之差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线。 说明: ①||PF1|-|PF2||=2a(2a<|F1F2|)是双曲线; 若2a=|F1F2|,轨迹是以F1、F2为端点的射线;2a>|F1F2|时无轨迹。 ②设M是双曲线上任意一点,若M点在双曲线右边一支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a; 若M在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,故|MF1|-|MF2|=±2a,这是与椭圆不同的地方。 (2)第二定义:平面内动点到定点F的距离与到定直线L的距离之比是常数e(e>1)的点的轨迹叫双曲线,定点叫焦点,定直线L叫相应的准线。 3.几个概念 (1)等轴双曲线:实、虚轴相等的双曲线。等轴双曲线的渐近线为y=±x,离心率为2。

(2) 共轴双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴的双曲线叫原双曲线的共轴 双曲线,例:12222=-b y a x 的共轴双曲线是122 22-=-b y a x 。 ① 双曲线及其共轴双曲线有共同的渐近线。但有共同的渐近线的两双曲线,不一定是共 轴双曲线;②双曲线和它的共轴双曲线的四个焦点在同一个圆周上。 三、 解题方法指导: 例1.设双曲线方程为12 22 =-y x ,则中心坐标为 ,焦点坐标为 ,顶点坐标为 ,实轴长为 ,虚轴长为 ,离心率为 ,准线方程为 ,渐近线方程 ,对称轴方程为 ,实轴方程为 ,共轴双曲线方程为 。 解:中心(0,0),焦点坐标(±3 ,0),顶点坐标(±2 ,0),实轴长为22,虚轴 长为2,离心率为 26,准线方程为332±=x ,准线间距离为3 3 4,渐近线方程为x y 2 2 ± =,对称轴方程x=0,y=0,实轴方程y=0, (22≤≤-x ),共轴双曲线1222-=-y x ,即12 22 =-x y 。 说明:根据双曲线的方程熟练地写出其性质,是学习双曲线基本要求,也是一项重要基本功,对知识要点中的性质部分要熟记。 例2.设曲线C 的方程为Ax 2+By 2=|(A·B ≠0),则 ① C 表示椭圆的充要条件是 ②C 表示焦点在X 轴上的椭圆的充要条件是 ③C 表示焦点在Y 轴上的椭圆的充要条件是 ④C 表示双曲线的充要条件是 ⑤C 表示焦点在X 轴上的双曲线的充要条件是 ⑥C 表示焦点在Y 轴上的双曲线的充要条件是 ⑦C 表示圆的充要条件是 解:C 的方程可化为)0(1112 2≠=+AB B y A x 则①C 表示椭圆的充要条件是B 1 A 1 ,0B 1 ,0A 1 ≠>>,即B A ,0B ,0A ≠>>, ②B >A >0, ③A >B >0, ④AB <0, ⑤A >0,B <0, ⑥A <0,B >0, ⑦A =B >0,

高中数学双曲线的第二定义

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗 双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数()0c e c a a = >>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e ==22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122 222-=-=-==e a c a a c a b k ; 因此e 的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相 对于上焦点),0(2c F 对应着上准线c a y l 2 2:=。 3

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗双曲线上任意一点M 与双曲线焦点12F F 、的连线段,叫做双曲线的焦半径。 设双曲线)0,0( 122 22>>=-b a b y a x ,21,F F 是其左右焦点, e d MF =11 , ∴ e c a x MF =+ 2 01,∴10MF a ex =+;同理 20MF a ex =-; 即:焦点在x 轴上的双曲线的焦半径公式:1020 MF a ex MF a ex ?=+?? =-?? 同理:焦点在y 轴上的双曲线的焦半径公式:1020 MF a ey MF a ey ?=+??=-??( 其中12F F 、分 别是双曲线的下、上焦点) 点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果 要去绝对值,需要对点的位置进行讨论。两种形式的区别可以记为:左加右减,下加上减(带绝对值号)。 4、焦点弦: 过焦点的直线截双曲线所成的弦。 焦点弦公式:可以通过两次焦半径公式得到,设两交点()()1122,,A x y B x y 、, (1)当双曲线焦点在x 轴上时,焦点弦只和两交点的横坐标有关, ①过左焦点与左支交于两点时:()122c AB a x x a =-- +; ②过右焦点与右支交于两点时:()122c AB a x x a =-++。 (2)当双曲线焦点在y 轴上时,焦点弦只和两交点的纵坐标有关, ①过下焦点与下支交于两点时:()122c AB a y y a =--+; ②过上焦点与上支交于两点时:()122c AB a y y a =-++。 5、通径:过焦点且垂直于对称轴的弦。直接应用焦点弦公式,得到a b d 2 2=。

双曲线的性质及应用

双曲线的性质及应用 教学目标 (一)知识教学点 使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. (二)能力训练点 在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题. 教学重点:双曲线的几何性质及初步运用. (解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 教学难点:双曲线的渐近线方程的导出和论证. (解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.) 教学疑点:双曲线的渐近线的证明. (解决办法:通过详细讲解.) 活动设计 提问、类比、重点讲解、演板、讲解并归纳、小结. 教学过程 (一)复习提问引入新课 1.椭圆有哪些几何性质,是如何探讨的? 请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么? 再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标 下面我们类比椭圆的几何性质来研究它的几何性质. (二)类比联想得出性质(性质1~3) 引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页> (三)问题之中导出渐近线(性质4) 在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计 仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想. 接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么? 下面,我们来证明它:

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结 知识点精讲 一、双曲线的定义 平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为 {})20(22121F F a a MF MF M <<=-. 注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支. (2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线. (3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点: ①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用. 二、双曲线的方程、图形及性质 双曲线的方程、图形及性质如表10-2所示.

题型归纳及思路提示 题型1 双曲线的定义与标准方程 思路提示 求双曲线的方程问题,一般有如下两种解决途径: (1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程. (2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程. 例10.11 设椭圆1C 的离心率为 13 5 ,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( ) A. 13422 22=-y x B. 151322 22=-y x C. 14322 22=-y x D. 112 1322 22=-y x 解析 设1C 的方程为)0(122 22>>=+b a b y a x , 则?????==13 5262a c a ,得???==513c a .

双曲线的定义及其基本性质

双曲线的定义及其基本性质 一、双曲线的定义: (1)到两个定点F 1与F 2的距离之差的绝对值等于定长(< 2 1F F )的点的轨迹。两定点叫双曲线的焦点。 a PF PF 221=-<2 1F F (2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。 二、双曲线的方程: 双曲线标准方程的两种形式: ① 12 222=-b y a x ,2 2b a c +=,焦点是 F 1(-c,0),F 2(c,0) 12222=-b x a y , 22b a c +=, 焦点是F 1(0, -c),F 2(0, c) 三、双曲线的性质: (1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长2b,且a 2+b 2=c 2 (2)双曲线的离心率为e= a c ,e>1恒成立。 (3)焦点到渐近线的距离:虚半轴长b ,通径长EF = a b 2 2 (4)有两条准线,c a x l 21:- =c a x l 2 2:= 四、双曲线的渐近线: (1)若双曲线为12222=-b y a x ?渐近线方程为x a b y ±=, (2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22 22b y a x , (3)特别地当a=b 时?2=e ?两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线 五、共轭双曲线: 双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11 122=+B A e e 。 K 2 O F 1 F 2 x y O F 1F 2 x y

第50讲 双曲线(讲)(解析版)

第50讲双曲线 思维导图 知识梳理 1.双曲线的定义 平面内到两个定点F1,F2的距离的差的绝对值等于常数2a(2a<|F1F2|)的点P的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程 (1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 a2-y2 b2=1(a>0,b>0). (2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2 a2-x2 b2=1(a>0,b>0).3.双曲线的几何性质

题型归纳 题型1 双曲线的标准方程 【例1-1】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3 4x ,且其右焦点为(5,0),则双曲线 C 的标准方程为( ) A.x 29-y 2 16=1 B.x 216-y 2 9=1 C.x 23-y 2 4 =1 D.x 24-y 2 3 =1 【解析】选B 由题意得b a =34,c 2=a 2+b 2=25,所以a =4,b =3,所以所求双曲线的标准方程为x 2 16- y 2 9 =1. 【例1-2】与椭圆x 24+y 2 =1共焦点且过点P (2,1)的双曲线标准方程是( ) A.x 24-y 2 =1 B.x 22-y 2 =1 C.x 23-y 2 3 =1 D .x 2- y 2 2 =1 【解析】选B 法一:椭圆x 24+y 2 =1的焦点坐标是(±3,0). 设双曲线标准方程为x 2a 2-y 2 b 2=1(a >0,b >0), 因为双曲线过点P (2,1), 所以4a 2-1 b 2=1,又a 2+b 2=3, 解得 a 2=2, b 2=1,所以所求双曲线标准方程是 x 22 -y 2 =1. 法二:设所求双曲线标准方程为x 24-λ+y 2 1-λ=1(1<λ<4), 将点P (2,1)的坐标代入可得 44-λ+11-λ =1,

双曲线的第二定义及其应用(精)

双曲线的第二定义及其应用 课题:双曲线的第二定义及其应用 课型:新课 班级:高二(1)班 时间:2002年12月31日 授课人:潘际栋 【教学目标】 1、知识目标:进一步学习双曲线的几何性质,理解并掌握双曲线的第二定义,能运用双曲线的第二定义优化解题方法。 2、能力目标:在与椭圆的第二定义的类比中获得双曲线的第二定义,能对知识进行归纳与迁移,从而培养学生分析、归纳、推理等能力。 3、情感目标:通过发挥类比联想的同时,注意培养学生有根有据、求同存异、实事求是的科学态度和品质,并从中去领略数学中的美。 【教材分析】 1、重点:双曲线的第二定义的的概念及推导。(解决方法:通过与椭圆的第二定义进行类比联想,使学生掌握它们的区别与联系) 2、难点:正确运用双曲线的第二定义于解题中。(解决方法:通过变换题目、一题多解等手段进行巩固、归纳) 【教学方法】 直观发现和严格证明相结合,诱思探究的方法。 【教学手段】 多媒体演示 【教学过程】 (一)知识回顾 椭圆的第二定义:平面内点M 与一个定点F 的距离和它到一定直线的距离的比是常数e (01,这时点的轨迹又是什么呢? (二)探索研究 1、平面内,点M (x,y )与定点F (c,0)的距离和它到直线2 :a l x c =的距离的比是常数(0)c c a a >>,求点M 的轨迹。 首先通过《几何画板》演示,让学生有一个感性的认识,并从中观察出点的轨迹,然后进行求解。 解:设d 是点M 到直线l 的距离,根据题意,所求的轨迹就是 2222222222 222 22||,.,()(). ,1(0,0).MF c c P M d a a c a x a y a c a x y c a b a b a b ??===????--=--=-=>>集合化简得设就可化为 这是双曲线的标准方程,所以点M 的轨迹是实轴长、虚轴长分别为2a 、2b 的双曲线。

高中数学双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质 一、双曲线的标准方程及其几何性质. 1.双曲线的定义:平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零,小于|F 1F 2|)的点的轨迹叫双曲线。两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示,常数用2a 表示。 (1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|-|MF 2|=-2a 时,曲线只表示焦点F 1所对应的一支双曲线. (3)若2a =2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线. (4)若2a >2c 时,动点的轨迹不存在. 2.双曲线的标准方程:22 a x -22b y =1(a >0,b >0)表示焦点在x 轴上的双曲线; 22a y -2 2b x =1(a >0,b >0)表示焦点在y 轴上的双曲线. 判定焦点在哪条坐标轴上,不像椭圆似的比较x 2 、y 2 的分母的大小,而是x 2 、y 2 的系数 的符号,焦点在系数正的那条轴上. 4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。 (1)通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式?,则有:?>?0直线与双曲线相交于两个点;?=?0直线与双曲线相交于一个点;?

(3)直线l 被双曲线截得的弦长2 212))(1(x x k AB -+=或2 212 ))(11(y y k -+ ,其中k 是直线l 的斜率,),(11y x ,),(22y x 是直线与双曲线的两个交点A ,B 的坐标,且 212212214)()(x x x x x x -+=-,21x x +,21x x 可由韦达定理整体给出. 二、例题选讲 例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距 离为2,则双曲线方程为 ( ) A .x 2-y 2=1 B .x 2-y 2=2 C .x 2-y 2= 2 D .x 2-y 2=1 2 解析:由题意,设双曲线方程为x 2a 2-y 2 a 2=1(a >0),则c =2a ,渐近线y =x , ∴ |2a | 2 =2,∴a 2=2.∴双曲线方程为x 2-y 2=2. 答案:B 例2、根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率2 5= e . (2)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,双曲线离心率为2且 ?=∠6021PF F ,31221=?F PF S . 解:(1)依题意,双曲线的实轴可能在x 轴上,也可能在y 轴上,分别讨论如下. 如双曲线的实轴在x 轴上,设122 22=-b y a x 为所求. 由25=e ,得4522=a c . ① 由点)2,3(-P 在双曲线上,得 12 922 =-b a .②, 又222c b a =+,由①、②得12=a ,4 1 2= b . ③ 若双曲线的实轴在y 轴上,设12222=-b y a x 为所求. 同理有4522=a c ,19 222=-b a , 222c b a =+.解之,得2 17 2- =b (不合,舍去). ∴双曲线的实轴只能在x 轴上,所求双曲线方程为142 2 =-y x . (2)设双曲线方程为12222=-b y a x ,因c F F 221=,而2==a c e ,由双曲线的定义,得

相关文档
相关文档 最新文档