文档库 最新最全的文档下载
当前位置:文档库 › 固体线胀系数的测定讲义(新)

固体线胀系数的测定讲义(新)

固体线胀系数的测定讲义(新)
固体线胀系数的测定讲义(新)

固体线胀系数的测定

绝大多数物体都具有 “热胀冷缩” 的特性, 这是由于构成物体的微观粒子热运动随温度的升、 降而加剧或减弱造成的。

固体材料的线胀系数是反映固体材料受热膨胀时, 在一维方向上伸长性质的重要参数。 线胀 系数是选用材料的一项重要指标, 是材料工程、 热力工程和自动控制技术中的一个重要技术参数, 在工程设计(如桥梁和过江电缆工程) 、精密仪表设计,材料的焊接和加工中都必须加以考虑。

、实验目的

1. 学会一种测定金属线胀系数的方法。

2. 掌握光杠杆法测量长度微小变化量的原理和方法。 3. 学会用最小二乘法处理数据。

、实验原理

设金属棒在温度 t o 时的长度为 L o ,当其温度上升到 t 时,它的长度 L t 可由下式表示:

L t =L o 1 t t o

(1)

式中, 即为该物体的线胀系数。可将式( 1)改写成:

L t L o L L o t t o

L o t t o

由此可见,线胀系数 的物理意义是温度每升高 1 o C 时物体的伸长量 L 与原长之比。 般 随温度有微小的变化,但在温度变化不太大时,可把它当作常量。

由式( 2)可以看出,测量线胀系数的关键是准确测量长度的微小变化量

估算一下 L 的大小。若 L o 500mm ,温度变化 t t o 100 C ,金属线胀系数 的数量级 为10 5 C 1 ,则可估算出 L 0.50mm 。对于这么微小的长度变化量,用普通量具如钢尺 和游标卡尺无法进行精确测量,一般采用千分表法(分度值为

0.001mm ),光杠杆法,光学干涉

本实验采用光杠杆法, 整套实验装置由固体线胀系数测定仪, 光杠杆和尺读望远镜等几部分 组成,如图 1 所示。

2)

L 。我们先粗略

图 1 测定固体线胀系数的实验装置

光杠杆测微小长度改变量的原理:

参照图 2,假定开始时光杠杆平面镜 M 的法线 on o 在水平位置,则标尺 S 上的标度线 n o 发 出的光通过平面镜 M 反射进入望远镜,在望远镜中形成

n o 的象而被观察到。当被测金属杆因加

热伸长后, 光杠杆的后尖脚 b 因金属杆上表面的升高而升高 ΔL,带动 M 转过一角α而至 M ‘,法 线 on o 也转过同一角度α至 oa 。根据光的反射定律,从 n o 发出的光将反射至 n ,且∠ n o oa=∠ noa=α 。由光线的可逆性,从 n 发出的光经平面镜反射后进入望远镜而被观察到。 从图 2 可以看到:

2 光杠杆法测长度微小变化量原理图 tg

L , tg2

n

(on o =D ) (Δ n=∣ n-n 0∣)。

b

D

,得 L b n 。

由于 很小,所以有:

L n 2 。消去

b

D

2D

当望远镜标尺读数由

n 0 变为 n 时, 被测金属杆长度的微小变化量为:

L bn n 0 L

2D

其中, b 为光杠杆常数,即光杠杆后足至两前足连线的垂直距离;

(3)

D 为光杠杆镜面到标尺间的距

4)

313

离;

n 0为温度 t 0时望远镜中标尺读数;

n 为温度 t 时望远镜中标尺读数 (所谓标尺读数是指望远 镜水平叉丝在标

尺像中的位置读数) 。将式( 3)代入式( 2),得:

bn n

0 2DL 0 t t 0

本实验就是根据公式( 4),通过长度和温度的测量,从而测定出金属棒的线 胀系数。

三、实验仪器

固体线胀系数测定仪(包括温度计及夹子,待测金属棒) ,光杠杆,尺读望远镜,钢卷尺, 游标卡尺。 本仪器采用电热法测定金属线胀系数,其优点是结构紧凑,性能稳定,克服了汽热法温场 不均匀,误差大等缺点。它主要由散热罩、加热器、支杆、温度计、光杠杆等几部分组成,底座 平台上, 有电源开关、 指示灯以及加温速度控制旋钮 (指示灯亮度的强弱反映加温速度的快慢) , 其主要结构如图 3。

尺读望远镜是用光学方法测量长度微小变化量的一种仪器, 一般与光杠杆合用。 尺读望远镜 的外形结构见图

4,其主要结构有:立柱,底座,标尺 (7),标尺架及标尺架锁紧手轮 (8),望远 镜及其锁紧手轮 (6)。望远镜的结

构有:目镜 (1) ,物镜 (2),叉丝及叉丝套筒,调焦手轮 (3),俯仰 螺丝(4) ,准星(5)(物镜上面的圆锥准星和目镜上面的

V 形缺口准星) 。望远镜的使用方法是: 旋

转目镜看清叉丝;调整镜身的方位,在镜身上方沿两准星连线方向应看到观察物(此时,两准星

图 3 固体线胀系数测定仪结构图

图 4 尺读望远镜

及观察物应共线,通过V 形缺口准星的缺口应看到圆锥准星);调整俯仰螺丝,使观察物处在望远镜的光轴上;眼睛通过目镜观察,同时调节调焦手轮,直到看清物体,物体像与叉丝之间不应有视差。

四、实验步骤

1.将被测金属棒取出,用钢卷尺测量金属棒在室温下的长度L 0;将被测金

属棒慢慢放入加热管中,直到被测棒的底端接触到底面;调节温度计的锁紧螺钉,使温度计下端长度约为

150~200mm ,然后小心放入被测金属棒的孔内。

2.仪器调整

(1)把光杠杆放在线胀系数测定仪平台上,要求:后足置于金属棒上表面,两前足置于凹沟内;镜面与平台大致垂直。

(2)调节尺读望远镜,步骤如下:

①镜尺调整。在距光杠杆平面镜前约100cm(不少于100cm)处,放置尺读

望远镜,物镜对准平面镜;调节望远镜镜筒成水平状态,且与光杠杆平面镜在同一高度。

②调节目镜,看清叉丝。

③从望远镜上方沿两个准星连线方向观察平面镜,并左右移动尺读望远

镜,最后要能从平面镜中观察到标尺的像(如果无论怎样移动望远镜,都不能看到平面镜中有标

尺的像,一般是因为光杠杆镜面过于朝上或朝下倾斜,则应反向调节镜面,再重复前述步骤)。

④缓缓地改变望远镜的位置或平面镜的法线方向,使眼睛观察到像的视线方位逐渐与望远镜光轴一致;这时再从望远镜内观察,同时调节调焦手轮(即改变物镜和目镜间的距离,俗称调焦),使标尺成像清晰,而且像与叉丝间无视差。

3. 测量

(1)测出室温t0 ,从望远镜中读出标尺读数n0。

(2)将金属线胀系数测定仪电源接通,加热至100o C (为防止温度过高损坏温度计,应在加热至90o C 时,将加温速度调小,使温度缓慢升至100o C ,避免超出100o C ),关闭电源、记

下标尺读数n ,开始冷却,并每隔10o C 记录一次温度及标尺读数n,直至40o C 。

(3)用钢卷尺准确测出D;用游标卡尺测出光杠杆常数b 实验中回答或者注意下列问题:

①t0、n0的数值应该与L0对应的,因此应该是在加热之后测量还是加热之前测量?

②D 是调整好的光学系统中标尺到光杠杆平面镜的间距, 因此应该是调整好光学系统之前测

量还是调整好之后测量?

④为了避免碰撞光杠杆平面镜,测量 D 时应该如何正确测量? 提示:平面镜镜面与平台凹沟是在同一铅直面上。

4.用最小二乘法求出

令 X t t 0, Y

n

,则( 4)式可改写成:

Y kX ,其中,

根据最小二乘法原理,有:

nn

x i y i

i 1 i 1 n

2

(

x i )2

n

i 1 i

n

2 n x

i

i 1

可以检验一下

五、数据记录 2DL 0

5)

x i y i

1

2

x i

1

nn

n

x i y i x i

i 1 i 1

nn 22

( x i )2

][ n

y i 2

i 1 i 1 n

y

i

i 1

n

(

i 1

y i )2]

6)

r 的绝对值是否接近 1, 根据( 5)

6)则可得:

kb i 1

x

i 2DL 0

nn

y i

n x i y i

i 1 i 1 n n

2

( x i )2

n

i 1 i

2

x

i

1

b

2DL

7)

D=

次数

项目 ( 室温 ) 1

2

3

4

5

6

7

t (o C )

n(cm)

b=

六、注意事项

1.测量过程中,要注意保持光杠杆及望远镜位置的稳定,如果不慎造成任何变动,则应重新进行测量。

2.测温度计读数时,可将温度计提起,看后迅速放入;由于测量读数是在温度连续变化过程中进行的,因此,每一次测量读数操作要求快而且准确,力求在最短时间内完成;每次读数时,要保证眼睛观察方位的一致。

3.注意保护温度计和光杠杆,避免跌落或碰碎。

七、思考

比较公式(2)或(4)中各个测量量对测量结果误差的影响,说明为什么对(n-

n o)的测量要

精确?

固体导热系数的测定实验报告

学生物理实验报告 实验名称固体导热系数的测定 学院专业班级报告人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

实验仪器 1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数, 散热盘参数

可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则可以通过铜盘C 在稳定温度2T 附近的散热速率 2 T t t Q =δδ,求出样品的导热速率 dt dQ 。 在稳定传热时,C 散热盘的外表面积πR c 2 +2πR c h c ,移去A 盘后,C 盘的散热 外表面积C C C h R R ππ222 + 因为物体的散热速率与散热面积成正比, 所以 t Q h R h R t h R R h R R dt dQ C C c C c C C c c C ???++=???++?=)(22)(2)2(θππ, 由比热容定义dt dT C m dt dT mc t Q U U C C ?=??=??, 所以, dt dT h R h R m dt dQ C C c C C u ?++??=)(22, 所以,dt dT T T h R R h R h C m C C B C C B C C u U ?-++=))(()2(212 πλ 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置图

金属线胀系数的测量1

实验3-16 金属线胀系数的测定 兰州大学大学物理实验教学示范中心 王心华 一、实验目的 1、了解GXZ-3型金属线膨胀系数测量仪的工作原理; 2、掌握测量微小位移的方法; 3、学会测量金属的线膨胀系数。 二、实验仪器 GXZ-3线膨胀系数测量仪、样品、千分表(配固定支架)、米尺 三、实验原理 当温度升高时,一般固体中原子的热运动随固体温度的升高而加剧,把这种由于温度升高而引起固体中原子间平均距离增大,进而引起固体体积增大的现象称为固体的热膨胀。固体的热膨胀又可分为体膨胀和线膨胀,本实验主要研究线膨胀。 实验表明,在一定的温度范围内,固体的长度一般随温度的升高而增加,其长度和温度之间的关系为 )1(20 +++=t t L L βα (1) 式中,式中L 0为温度t=0℃时的长度,α、β、…是和被测物质有关的常数,都是很小的数值。而β及以下各系数和α相比甚小,所以在常温下可以忽略,则(1)式可写成 )1(0t L L α+= (2) 此处α就是通常称为的固体的线膨胀系数(简称线胀系数),单位为℃-1。不同材料具有不同 的线胀系数。 表1 几种材料的线胀系数 实验发现,同一材料在不同的温度区域,其线胀系数未必相同。在某些特殊的情况下,某些合金会出现线胀系数的突变。当然,在一般情况下,在温度变化不大的范围内,线胀系数仍可认为是一常量。 对于条状或杆状的固体材料,设温度为t 1℃时,其长度为L 1;当温度升高到t 2时,其长度增加ΔL 。则有 )1(101t L L α+= (3) )1(201t L L L α+=?+ (4) 由(3)、(4)两式相比消去L 0得 ()1121t L t t L L ?--?=α (5) 由于ΔL 与L 1相比甚小,L 1(t 2 - t 1)>> ΔL t 1,所以上式可以近似为

实验11电热法测固体的线胀系数

实验11 电热法测固体的线胀系数 当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩 ,这就是“热胀冷缩”现象。任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。 【实验目的】 1.学习测定金属杆的线膨胀系数的方法; 2.进一步熟悉用光杠杆测定微小伸长量的原理和方法。 【预习检测题】 1.本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什 么?与直接测量量的关系如何? 2.光杠杆利用了什么原理?有什么优点? 3.如何才能在望远镜中迅速找到标尺的像? 【实验原理】 1.固体的线膨胀系数 固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。 设在温度为t 0℃时金属杆的长度为L 0,当温度升至t ℃时其长度为L ,则金属杆的伸长量ΔL 正比于原长度和温差。即: ΔL=L -L 0=αL 0(t -t 0)=αL 0Δt (5.3.1) 式中α称为固体的线膨胀系数。不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为: t L L ??= α (5.3.2) 由⑵式可以看出物体线胀系数α的物理意义是:在数值上等于当温度每升高1℃时,金属杆每单位原长度的伸长量。实验过程中,只要侧出ΔL 、L 0和相应的Δt 值,就可以求得线胀系数α的值。 由于固体的长度变化量ΔL 很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量ΔL 。 2.光杠杆测量法 由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2) 实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

金属线胀系数的测定实验报告

实验5 金属线胀系数的测定 测量固体的线胀系数,实验上归结为测量在某一问题范围内固体的相对伸长量。此相对伸长量的测量与杨氏弹性模量的测定一样,有光杠杆、测微螺旋和千分表等方法。而加热固体办法,也有通入蒸气法和电热法。一般认为,用电热丝同电加热,用千分表测量相对伸长量,是比较经济又准确可靠的方法。 一、实验目的 1.学会用千分表法测量金属杆长度的微小变化。 2.测量金属杆的线膨胀系数。 二、实验原理 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀。设物体的温度改变t ?时,其长度改变量为L ?,如果t ?足够小,则t ?与L ?成正比,并且也与物体原长L 成正比,因此有 t L L ?=?α (1) 式(1)中比例系数α称为固体的线膨胀系数,其物理意义是温度每升高1℃时物体的伸长量与它在0℃时长度之比。设在温度为0℃时,固体的长度为0L ,当温度升高为t ℃时,其长度为t L ,则有 t L L L t α=-00/)( 即 )1(0t L L t α+= (2) 如果金属杆在温度为1t ,2t 时,其长度分别为1L ,2L ,则可写出 )1(101t L L α+= (3) )1(202t L L α+= (4) 将式(3)代入式(4),又因1L 与2L 非常接近,所以,1/12=L L ,于是可得到如下

结果: )(12112t t L L L --=α (5) 由式(5),测得1L ,2L ,1t 和2t ,就可求得α值。 三、仪器介绍 (一)加热箱的结构和使用要求 1.结构如图5-1。 2.使用要求 (1)被测物体控制于mm 4008?φ尺寸; (2)整体要求平稳,因伸长量极小,故仪器不应有振动; (3)千分表安装须适当固定(以表头无转动为准)且与被测物体有良好的接触(读数在0.2~0.3mm 处较为适宜,然后再转动表壳校零); (4)被测物体与千分表探头需保持在同一直线。 (二)恒温控制仪使用说明

固体线胀系数测定

SUES大学物理选择性实验讲义Typeset by L A T E X2ε 固体线胀系数测定? 一实验目的 本实验通过固体线胀系数测定仪测定不同金属的线胀系数,要求达到: 1.掌握使用千分表和温度控制仪的操作方法; 2.分析影响测量精度的诸因素; 3.观察合金材料在金相组织发生变化温度附近,出现线膨胀量的突变现象。二实验原理 绝大多数物质具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪表的制造中,在材料的加工(如焊接)中都应考虑到。否则,将影响结构的稳定性和仪表的精度,考虑失当,甚至会造成工程结构的毁损,仪表的失灵以及加工焊接中的缺陷和失败等等。 固体材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。线胀系数是选用材料的一项重要指标,在研制新材料中,测量其线胀系数更是必不可少的。SLE-1固体线胀系数测定仪通过加热温度控制仪,精确地控制实验样品在一定的温度下,由千分表直接读出实验样品的伸长量,实现对固体线胀系数测定。 SLE-1固体线胀系数测定仪的恒温控制由高精度数字温度传感器与HTC-1加热温度控制仪组成,可加热温度控制在室温至80.0?C之间。HTC-1加热温度控制?修订于2009年2月4日 1

仪自动检测实测温度与目标温度的差距,确定加热策略,并以一定的加热输出电压维持实测温度的稳度,分别由四位数码管显示设定温度和实验样品实测温度,读数精度为±0.1?C。专用加热部件的加热电压为12V。 物质在一定温度范围内,原长为l的物体受热后伸长量?l与其温度的增加量?t近似成正比,与原长l也成正比,即:?l=α·l·?t。式中α为固体的线胀系数。实验证明:不同材料的线膨胀系数是不同的。本实验配备的实验样品为铁棒、铜棒、铝棒(加工成6×400mm的圆棒)。 三仪器技术指标 1、温度读数精度:±0.1?C。 2、温度控制稳定度:±0.1?C/10分钟。 3、温度设定范围:?5.0?C~+85?C,四位数码管显示。 4、实验样品实测温度:室温至82.0?C,四位数码管显示。 5、伸长量测量精度:0.001mm,量程:0~1mm。 6、HTC-1加热温度控制仪使用条件 1)输入电源:220V±10%50Hz~60Hz 2)湿度:<85% 3)温度:0~40?C 4)功耗:<70W 四仪器组成 由SLE-1固体线胀系数测定仪实验装置和HTC-1加热温度控制仪组成。 1、实验仪器如图1: 2、实验条件 2

固体导热系数测量

固体导热系数测量 1、服务范围 温度范围:-30℃~200℃ 各类形态的材料、样品。 2、测量方法及标准 3、样品形态 适用的样品状态可以是片状、块状、粉末颗粒、胶体及膏状物等:?块状:陶瓷,橡胶,塑料,木材,岩石,不锈钢,电子器件,建筑材料等; ?片状:各种薄片、薄膜等;

?粉末:秸秆,土壤,谷物,药品粉末; ?膏体:导热胶,导热脂,粘结剂,化妆品,凝胶,果冻等。 4、样品种类 可测量的固体种类包括但不限于: 天然材料:土壤(干燥、含湿)、岩石、岩沙、木材、生物质等; 无机材料:金属及合金材料、耐火材料、陶瓷、玻璃、水泥、碳化硅板等; 高分子材料:塑料、橡胶、纤维、织物、胶黏剂、树脂等; 复合材料:金属基复合材料、非金属基复合材料、聚合物基复合材料等; 功能材料:建筑材料、保温隔热材料、导热材料等; 纳米材料:如纳米管、纳米颗粒等; 其它材料:LED、气凝胶、食品等。 5、典型测试 导热硅胶 导热硅胶,又称导热胶、导热硅橡胶等,是以有机硅胶为主体,添加填充料、导热材料等高分子材料混炼而成的硅胶,具有较好的导热、电绝缘性能。作为绝缘和减震性能优越的硅橡胶基体而言,其热导率仅为0.2W/(m·K)左右,但通过在基体中加入高性能导热填料,包括金属类填料(如Al、Cu、MgO、AIN、BN)和非金属类材料(如SiC、石墨、炭黑等)后,其导热性能却可以得到几倍乃至几十倍的提高。导热硅胶材料的导热性能,由硅橡胶基体、填料性能、填料比例、填料分布情况、加工工艺等综合决定。 利用TC3000热线法导热系数仪,测试了几种不同添加剂成分的导热硅胶片的导热系数,可以看出,不同组分的导热硅胶,其导热性能具有明显的差异。同时,TC3000表现出了在测量不规则样品时具有的优势,无需对样品进行特殊处理,即可快速获得导热系数。 导热硅胶的导热系数实验数据

金属线胀系数

金属线胀系数的测定 实验目的:1)学会用千分表法测量金属杆长度的微小变化 2)测量金属杆的线胀系数,并判断此金属为何种金属 实验仪器: 实验原理:大家都知道热胀冷缩的现象,一般固体的长度或体积会随着温度的升高而膨胀,这就是固体的热膨胀。 设物体的温度改变Δt 时,其长度改变量为ΔL,如果Δt 足够小,则Δt 与ΔL 成正比,并且也与物体的原长有关系。因此它们三个量之间有: ΔL=αL Δt 式中的比例系数α称为固体的线胀系数,其物理意义是温度每升高1℃时其伸长量与它在0℃时长度的比。设金属在0℃时的长度是L0,当温度升高为t ℃时其长度为Lt,则有: (Lt-L0)/L0=αt 即Lt=L0(1+αt) 如果金属杆在温度为t1,t2时的长度分别为L1,L2,则可加热箱 恒温控制仪

以得到: L1=L0(1+αt1),L2=L0(1+αt2) 因为L1,L2非常接近,所以得到下式: α=(L2-L1)/L0(t2-t1) 由上式测得L1,L2,t1,t2就可以测得α值了。 实验过程: 1)接好电源和各个接口。 2)打开恒温控制仪,记录室温t1,再设定温度最大值,再记录此时千分表读数n1,最后按下确定键开始加热。 (实验所用金属杆0℃时长度为400mm) 3)每隔5℃读一次数tn ,同时记录千分表读数n n 。 4) 将数据整理填入设计好的表格中,待处理。 实验数据记录与处理: t1=21℃ L0=400mm n1=0.4012mm tn/℃ 26 31 36 41 46 51 tn-t1/℃ 5 10 15 20 25 30 n n /mm 0.4630 0.5119 0.553 0.591 0.624 0.658 n n -n1/mm 0.062 0.111 0.152 0.19 0.223 0.26

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: ()12t t L L -?= α

当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 l L D b b ?=-212()D l b b L 212-= ?()()k DL l t t DL b b l 221212=--= α

金属线胀系数的测量

实验十九 金属线胀系数的测量 【金属线胀系数】 金属杆的长度一般是温度的函数,在常温下,固体的长度L 与温度t 有如下关系: ( )01L L t α=+ (19-1) 式中0L 为固体在t =0℃时的长度;α称为线胀系数。其数值与材料性质有关,单位为℃-1 。要测量线胀系数α,需测量不同温度下金属杆的长度。 【实验仪器】 线胀系数测定仪(附光杠杆),望远镜直横尺,钢卷尺,蒸汽发生器,气压计(共用),温度计(50~100℃,准确到0.1℃),游标卡尺。 【实验方案】 设物体在t 1℃时的长度为L ,温度升到t 2℃时增加了ΔL 。根据(19-1)式可以写出 ( )01L L t α=+ (19-2) ()021L L L t α+?=+ (19-3) 从(19-2)、(19-3)式中消去L 0后,再经简单运算得 由于L L ? ,故(19-4)可以近似写成 显然,固体线胀系数的物理意义是当温度变化1℃时,固体长度的相对变化值。在(5)式中,L 、t 1、t 2都比较容易测量,但L ?很小,一般长度仪器不易测准,本实验中用光杠杆和望远镜标尺组来对其进行测量。关于光杠杆和望远镜标尺组测量微小长度变化原理可 以根据如图1所示进行推导,详细原理见实验五(杨氏模量的测定)。 【实验注意事项】 1、实验系统调好后,一旦开始测量,在实验过程中绝对不能对系统的任一部分进行任何调整。否则,所有数据将重新再测.

2、注意保护平面镜和望远镜,不能用手触摸镜面. 【实验目的】 掌握利用光杠杆测定线胀系数的方法。 【实验内容与步骤】 1、在室温下,用米尺测量待测金属棒的长度L 三次,取平均值。然后将其插入仪器的大圆柱形筒中。注意,棒的下端点要和基座紧密接触。 2、插入温度计,小心轻放,以免损坏。 3、将光杠杆放置到仪器平台上,其后脚尖踏到金属棒顶端,前两脚尖踏入凹槽内。平面镜要调到铅直方向。望远镜和标尺组要置于光杠杆前约1米距离处,标尺调到垂直方向。调节望远镜的目镜,使标尺的像最清晰并且与十字横线间无视差。记下标尺的读数d 1。 4、记下初温t 1后,给仪器通电加热,间隔10℃记录一次温度i t 以及望远镜中标尺的相应读数i d ()1,2,,6i = 。 5、停止加热。测出距离D 。取下光杠杆放在白纸上轻轻压出三个足尖痕迹,用铅笔通过前两足迹联成一直线,再由后足迹引到此直线的垂线,用标尺测出垂线的距离h 。 6、用逐差法或线性拟合法计算出金属杆温度每升高一摄氏度时金属杆的伸长量L ?,代入(19-5)计算金属杆的线胀系数,并计算出不确定度。 【实验数据记录】 1、数据测量记录: 单位:mm 光杆干平面镜到尺子的距离D= cm 光杆干前后足尖的垂直距离h = mm 2、金属杆伸长记录 【思考题】 1. 本实验所用仪器和用具有哪些?如何将仪器安装好?操作时应注意哪些问题? 2. 调节光杠杆的程序是什么?在调节中要特别注意哪些问题? 3. 分析本实验中各物理量的测量结果,哪一个对实验误差影响较大?

实验金属线胀系数的测定

实验十固体线胀系数的测定 一般情况下,物体当温度升高时,由于原子或分子的热运动加剧,粒子间的平均距 离发生变化,温度越高,其平均距离也越大,在宏观上体现出体积发生热膨胀。热膨胀 是物质的基本热学性质之一。物质的热膨胀不仅与物质的种类有关,而且对于同种物质 温度不同时其膨胀系数也不相同。因此,在生产、科研和生活中必须考虑物质“热胀冷 缩”的特性。测定其膨胀系数有着重要的实际意义。 尤其是对于固体而言,虽然固体的热膨胀非常小,但是物体发生很小形变时却产生 很大的应力。通常测量固体线胀系数是在某一温度范围内测量固体的微小深长量,测量 微小深长量的方法有光杠杆法、螺旋测微法等,在这里介绍用光杠杆方法测量金属的线 胀系数。 【实验目的】 1 ?学习固体热膨胀的原理和实验测量方法; 2 ?测量金属在一定温度范围内平均线膨胀系数; 3?掌握用光杠杆测量微小长度变化的原理和方法。 【实验仪器】 【实验原理】 L o t t 由(4-14-2 )式可见,〉的物理意义就是温度每升高 时的长 度之比(则物体长度的相对变化) 。严格地讲, 关的量,但是:随温度的变化一般很小。 当物体的温度变 化不太大时, 所确定的[视作在此温度范围内物体的平均线膨胀系数。 如图4-14-1所示,实际测量得到的是物体在温度 t 1时的长度L 1和温度升到t 2时的长 度L 2。以及在t 1至t 2间的伸长量 L ,设〉是常数,则有 L 1 = L o (1 +%1 ) L 2 二 L o (1 : t2 ) 厂1(1「I),简化为 1 "选 固体线胀系数测定仪、待测金属棒、 望远镜。 温度计、秒表、光杠杆、米尺、游标尺、尺读 设物体在温度t =0°C 时的长度为 L t = L o (1 式中:-为该物体的线膨胀系数。设物体的伸长量为 丄 昱 L t - L 。仁 a = ---------- L o ,则该物体在t °C 时的长度为 5) (4-14-1 ) 二L t -L o ,将式(4-14-1)改写成 (4-14-2 ) I C 时物体的伸长量:L 与它在0C :-不是一个常数,而是与温度 t 有 我们把式(4-14-2) (4-14-3 ) (4-14-4 ) 将(4-14-3 )式代入(4-15-4)式,得 L 2

固体导热系数的测定

固体导热系数的测定 实验仪器: YBF-5型导热系数测定仪(含加热盘A、散热盘P、数字电压表、计时秒表等)、测试材料(硅橡胶、胶木板)测温PT100、测试连接线、游标卡尺等。 实验原理: 热传导定律: 通过上部加热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布; 系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,则 由此得 ①实验步骤: (1)测量测试材料及散热盘的厚度及直径; (2)在加热盘和散热盘间夹入胶木板; (3)设置加热温度为90度,加热至上下两盘温度稳定,记录此时上下两盘温度T1、T2; (4)迅速将胶木板换成硅橡胶,重复步骤(3); (5)将散热盘加热至较高温度再使其自然冷却,测定其温度随时间的变化。 实验数据:

数据处理: 查阅铜密度ρ=8930kg·m-3,比热容c=0.385kJ·K-1·kg-1。根据铜盘直径及厚度,计算出散热盘质量m=537.6g。 由T-t表绘得T-t曲线如下: 由图得到T2处的斜率: k(胶木板)=-0.0425 K/s k(硅橡胶)=-0.0426 K/s 带入①得 (胶木板)==0.427 W/(m·K) (硅橡胶)==0.279 W/(m·K) 总结与讨论: 思考题: 1.测导热系数要满足:维持材料内部均匀的温度梯度以及测得传热速率。通过上部加

热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布;系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,求其在稳态温度处的斜率即为传热速率。 2.因为只有处于稳态温度时冷却速率与传热速率相等;通过在稳态温度附近使铜板自然然冷却绘制T-t曲线,取其在稳态温度处的斜率作为冷却速度。 3.测试材料具有一定侧面积,因而达到稳态时有少量热量从侧面散失,则上下铜盘的温度差略小于材料实际散失的热量,即(T1-T2)偏小,故计算所得导热系数可能偏小。

物理金属线膨胀系数测量实验报告

实验 (七) 项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为:) t L (L ???= α(2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为1 )C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 0 12≈-,金属的α数量级为105)C (10--?,则估算出 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 三、实验主要仪器设备和材料

导热系数的测试方法和装置-第四章

第四章 导热系数的测试方法和装置 一、测试方法分类 二、稳态法 1、 待测试样在一个不随时间而变化的温度场里,当达到热平衡后,一次测出导热系数公式中的值,即可得到导热系数。 2、稳态法实施过程中面对的问题 稳态法测量导热系数是面对的两个根本问题 -要得到一个与建立物理模型是所作的假设相符合的热流图像 1、设计一种装置,把热流约束在规定的方向(沿着一维方向流动) 2、设计各种形状式样,以便于数学描述 3、推导相应的数学公式描述便于制备的样品的热流图像 -待测样品的热流速率 1、测定流过试样的热量 2、测定用来加热试样的热量 稳态法 非稳态法 按热流的状态分 设计一种装置,把热流约束在规定的方向,又可把稳态法分为 纵向热流法 横向热流法 按是否直接测定热流量或功率 绝对法 包括平板法,圆柱体法,圆球体法,椭球体法 比较法 包括纵向热流发,径向热流法,比较器法 t F L Q ???==τλ t grad q -

3、同时测定全部或部分的输入热量和热损 4、使热量等同通过待测样和标样 三、非稳态法 试样的温度分布随时间变化,测试时往往是使试样的某一部分温度作突然的或周期性的变化。 测试中的标准样品: -必要性:为缩短研制周期并对测试装置的准确度或误差作必要的验证 -入选标样的要求:在宽广温度范围有良好的物理化学稳定性,易于加工,价格合适 -常用标样: 一种是作为非金属材料即导热系数较小的一类材料的标准样品——多晶32O Al -α 另一种是作为金属材料即导热系数较大的一类材料的标准样品——阿姆可工业纯铁 第三节 平板法 1、平板法是一种试样形状为圆盘形或方板型的纵向热流法,按其是否直接测定热流量或功率,又可分为绝对法和比较法两种。 2、平板法优缺点: 优点:试样容易制备,操作方便;具有相当高的测试准确度和实验温度。 缺点:试样太大,加工困难,径向热损很难减小到最低限度,测试周期长。 因此已被许多国家列为低导热系数材料的标准实验方法。 3、平板内纵向一维热流如何实现 (1)利用试样的低导热系数特点,把试样做的很薄,直径很大。 (2)把试样夹在带有加热器的热板和没有加热器的冷板间,试样冷面和热面的重心区域便有一较好的等温面,等温面之间产生均匀的热流。 4、测定Q 方法很多,直接测主发热器电功率,也可以在试样的冷面用水卡计测定。 5、平板法也可以测纤维或粉末材料的导热系数,试样需要用试样匣,匣盖和匣底均用高热导的金属或碳化硅簿圆片做成。 平板法还可以测导热系数较小的液态物质,注意防止对流传热,控制液体沿热流方向的厚度。 6、导热系数的测试误差随着不同试样和不同温度而变化。一般,热导高的材料,在较低温

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

材料导热系数测定

材料导热系数的测定 一、适用专业和课程 安全工程、工业工程 实验学时:2 二、本实验的目的 1. 加深对稳定导热过程基本理论的理解。 2. 掌握用球壁导热仪测定绝热材料导热系数的方法 ── 圆球法。 3. 确定材料导热系数与温度的关系。 4. 学会根据材料的导热系数判断其导热能力并进行导热计算。 三、实验原理 不同材料的导热系数相差很大,一般说,金属的导热系数在 2.3~417.6 W/m ·℃范围内,建筑材料的导热系数在0.16~2.2 W/m ·℃之间,液体的导热系数波动于0.093~0.7 W/m ·℃,而气体的导热系数则最小,在0.0058~0.58 W/m ·℃范围内。 即使是同一种材料,其导热系数还随温度、压强、湿度、物质结构和密度等因素而变化。 各种材料的导热系数数据均可从有关资料或手册中查到,但由于具体条件如 温度、结构、湿度和压强等条件的不同,这些数据往往与实际使用情况有出入,需进行修正。 导热系数低于0.22 W/m ·℃的一些固体材料称为绝热材料,由于它们具有多孔性结构,传热过程是固体和孔隙的复杂传热过程,其机理复杂。 为了工程计算的方便,常常把整个过程当作单纯的导热过程处理。 圆球法测定绝热材料的导热系数是以同心球壁稳定导热规律作为基础。在球坐标中,考虑到温度仅随半径 r 而变,故是一维稳定温度场导热。 实验时,在直径为 d1 和 d2 的两个同心圆球的圆壳之间均匀地填充被测材 料(可为粉状、粒状或纤维状),在内球中则装有球形电炉加热器。当加热时间足够长时,球壁导热仪将达到热稳定状态,内外壁面温度分别恒为 t1 和 t2 。根据这种状态,可以推导出导热系数λ的计算公式。 根据傅立叶定理,经过物体的热流量有如下的关系: (1) 式中 Q ── 单位时间内通过球面的热流量,W ; dr dt r dr dt A Q 24λπλ-=-=

测量金属的线胀系数

3.2 测量金属的线胀系数 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工中,都应考虑到,否则,将影响结构的稳定性和仪表的精度。材料的线膨胀系数是材料受热膨胀时,在一维方向上的伸长,线胀系数是选用材料的一项重要指标。 实验目的 1.测量金属在某一温度区域内的平均线膨胀系数; 2.学会测量长度微小变化的方法,千分表的使用; 3.熟悉FD-LEA 线膨胀系数测定仪的使用方法。 仪器用ν具 线胀系数测定仪、铁棒、铜棒、铝棒等。 实验原理 固体的长度一般是温度的函数,固体受热后发生体积膨胀,把分别在x 、y 、z 方向的膨胀称线膨胀。对于杆状物体,只研究在杆长方向的膨胀,在常温下,固体的长度L 与温度t 有如下关系:)1(0t L L α+=(3.2-1) 式中L0为固体在t =0℃时的长度;α称为线胀系数。其数值与材料性质有关,单位为℃-1。在温度变化不太大的情况下,对一定的物质材料,α是一个常量,材料不同,α值不同,如塑料α值很大,金属次之,熔凝石英α值很小。设物体在1t ℃时的长度为L ,温度升到2t ℃时增加了ΔL 。根据(3.2-1)式可以写出 )1(10t L L α+=(3.2-2) )1(20t L L α+=(3.2-3) 从(3.2-2)、(3.2-3)式中消去L 0后,再经简单运算得 211 ()L L t t Lt α?= --?(3.2-4) 由于ΔL <

显然,固体线胀系数的物理意义是当温度变化1℃时,固体长度的相对变化值。在(3.2-5)式中,L 、1t 、2t 都比较容易测量,但ΔL 很小,一般长度仪器不易测准,本实验 中用千分表对其进行测量。仪器介绍 电加热箱结构如图3.2-1所示。 图3.2-1 1、托架 2、隔热盘A 3、隔热顶尖 4、导热衬托A 5、加热器 6、导热均匀管 7、导向块 8、被测材料 9、隔热罩 10、温度传感器 11、导热衬托B 12、隔热棒 13、隔热盘B 14、固定架 15、千分表 16、支撑螺钉 17、坚固螺钉 恒温控制仪使用说明面板操作简图如图3.2-2所示。 图 3.2-2 1.当面板电源接通数字显示为FdHc ,表示公司符号,随即自动转向A××.×,表示当前传感器温度,b= =.=表示等待设定温度。2.按升温键,数字即由零逐渐增大至用户所需的设定值,最高可选80℃。 3.如果数字显示值高于用户所需要的温度值,可按降温键,直至用户所需要的设定值。 4. 当数字设定值达到用户所需的值时,即可按确定键,开始对样品加热,同时指示灯亮,发光频闪与加热速率成正比。

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定 【实验目的】 材料的线膨胀指的是材料受热后一维长度的伸长。当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。热膨胀是物质的基本热学性质之一。物体的热膨胀不仅与物质种类有关。对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。它们的线膨胀在各个方向均相同。 虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。 1. 掌握测量固体线热膨胀系数的基本原理。测量铁、铜、铝棒的线热膨胀系数。 2. 学会使用千分表,掌握温度控制仪的操作。 3. 学习图解图示法处理实验数据。 【实验原理】 设为物体在温度时的长度,则该物体在时的长度可由下式表示: (1) 其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。将式(23-1)改写为: (2) 可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。 实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有: (3) 由式(6)即可求得物体在温度之间的平均线膨胀系数。其 中,微小长度变化量可直接用千分表测量。本实验对金属铁、铜、 铝进行测量求出不同金属的线膨胀系数。 【实验仪器】 FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分 表、温控仪)金属棒、电源线、加热线、传感器及电缆 仪器介绍 1.千分表是一种测定微小长度变化量的仪表,其外形结构如图

固体导热系数的测定实验报告

学生物理实验报告 实验名称_____________ 固体导热系数的测定____________________________ 学院_________________ 专业_________________ 班级______________ 报告人_____________ 学号________________ 同组人_____________ 学号___________________ 理论课任课教师____________________________ 实验课指导教师____________________________ 实验日期__________________________________ 报告日期_______________________________ 实验成绩__________________________________ 批改日期__________________________________ 实验目的

用稳态法测出不良导热体的导热系数,并与理论值进行比较 实验仪器 1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数,散热盘参数

实验原理 傅里叶在研究了固体的热传定律后,建立了导热定律。他指出,当物体的内部有 温度梯度存在时,热量将从高温处传向低温处。如果在物体内部取两个垂直于热传导 方向,彼此相距为h 的两个平面,其面积元为D ,温度分别为T i 和T 2,则有 式中dQ 为导热速率,dT 为与面积元ds 相垂直方向的温度梯度,“一”表示热量由高 dt dx 温区域传向低温区域,■即为导热系数,是一种物性参数,表征的是材料导热性能的 优劣,其单位为 W/(m ?K),对于各项异性材料,各个方向的导热系数是不同的,常要 用张量来表示。 如图所示,A 、C 是传热盘和散热盘,B 为样品盘,设样品盘的厚度为h B ,上下表 面的面积 各为S B =二R B ,维持上下表面有稳定的温度 %和T 2,这时通过样品的导热速率为 在稳定导热条件下(「和T 2值恒定不变) 可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则 FD-TX-FPZ-II 导热系数电压表 图4-9-1 稳态法测定导热系数实验装置图 dQ dt ■ dT dS dx ' .............. 1 貝 77777T 9 1 r 1 _____________________________ 呂 1 rr T 导热系数测定仪 * 电源 i ? ① 输入数字电压表 调零 dQ =- dt 测1 ABC 测1 表测2风扇.f 220V 1 日 110V 冰水混合物

相关文档
相关文档 最新文档