文档库 最新最全的文档下载
当前位置:文档库 › 关于力的外文文献翻译、中英文翻译

关于力的外文文献翻译、中英文翻译

关于力的外文文献翻译、中英文翻译
关于力的外文文献翻译、中英文翻译

五、外文资料翻译

Stress and Strain

1.Introduction to Mechanics of Materials

Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body.

Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theories (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory.

The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

our study of the subject③. In this section we will begin by discussing some fundamental concepts , such as stress and strain , and then we will investigate bathe behaving of simple structural elements subjected to tension , compression , and shear.

2.Stress

The concepts of stress and strain can be illustrated in elementary way by considering the extension of a prismatic bar [see Fig.1.4(a)]. A prismatic bar is one that has cross section throughout its length and a straight axis. In this illustration the bar is assumed to be loaded at its ends by axis forces P that produce a uniform stretching , or tension , of the bar . By making an artificial cut (section mm) through the bar at right angles to its axis , we can isolate part of the bar as a free body[Fig.1.4(b)]. At the right-hand end the force P is applied , and at the other end there are forces representing the action of the removed portion of the bar upon the part that remain . These forces will be continuously distributed over the cross section , analogous to the continuous distribution of hydrostatic pressure over a submerged surface . The intensity of force , that is , the per unit area, is called the stress and is commonly denoted by the Greek letter б. Assuming that the stress has a uniform distribution over the cross section[see Fig.1.4(b)], we can readily see that its resultant is equal to the intensity бtimes the cross-sectional area A of the bar. Furthermore , from the equilibrium of the body show in Fig.1.4(b),

Fig.1.4 Prismatic bar in tension

we can also see that this resultant must be equal in magnitude and opposite in direction to the force P. Hence, we obtain

б=P/A ( 1.3 )

as the equation for the uniform stress in a prismatic bar . This equation shows that

stress has units of force divided by area --------for example , Newtons per square millimeter(N/mm2) or pounds of per square inch (psi). When the bar is being stretched by the forces P ,as shown in the figure , the resulting stress is a tensile stress; if the force are reversed in direction, causing the bat to be compressed , they are called compressive stress.

A necessary condition for Eq.(1.3) to be valid is that the stressбmust be uniform over the cross section of the bat . This condition will be realized if the axial force p acts through the centroid of the cross section , as can be demonstrated by statics. When the load P doses not act at thus centroid , bending of the bar will result, and a more complicated analysis is necessary . Throughout this book , however , it is assumed that all axial forces are applied at the centroid of the cross section unless specifically stated to the contrary ④. Also, unless stated otherwise, it is generally assumed that the weight of the object itself is neglected, as was done when discussing this bar in Fig.1.4.

3. Strain

The total elongation of a bar carrying force will be denoted by the Greek letterб[see Fig .1.4(a)], and the elongation per unit length , or strain , is then determined by the equation

ε=δ/L (1.4)

Where L is the total length of the bar . Now that the strain ε is a nondimensional quantity . It can be obtained accurately form Eq.(1.4) as long as the strain is uniform throughout the length of the bar . If the bar is in tension , the strain is a tensile strain , representing an elongation or a stretching of the material; if the bar is in compression , the strain is a compressive strain , which means that adjacent cross section of the bar move closer to one another.

( Selected from Stephen P.Timoshenko and James M. Gere, Mechanics of

Materials,Van NostrandReinhold Company Ltd.,1978.)

应力应变

1、材料力学的介绍

材料力学是应用力学的分支,它是研究受到各种类型载荷作用的固体物。材料力学所用的方面就我们所知道的类型名称包括:材料强度和可变形物体的力学。在本书中考虑的固体物有受轴向载荷的杆、轴、梁和柱以及用这些构件所组成的结构。通常我们分析物体由于载荷所引起的应力集中、应变和变形作为目的。如果这些是能够获得增长直到超载的重要性。我们就能够获得这种物体的完整的机械行为图。

理论分析和实验结论是研究材料力学的相当重要的角色。在许多场合,我们要做出逻辑推理获得机械行为的公式和方程。但是同时我们必须认识到这些公式除非已知这些材料的性质,否则不能用于实际方法中,这些性质只有通过一些合适的实验之后才能用。同样的,许多重要的问题也不能用理论的方法有效的处理,只有通过实验测量才能实际应用。材料力学的发展历史是理论与实验极有趣的结合。在一些情况下是指明了得以有用结果的道路,在另一些情况下则是理论来做这些事。例如著名人物莱昂纳多?达?芬奇(1452-1519)和伽利略?加能(1564-1642)做实验以确定铁丝、杆、梁的强度。尽管他们没有得出足够的理论(以今天的标准)来解释他们的那些实验结果。相反的,著名的数学家利昴哈德?尤勒(1707-1783)在1744年就提出了柱体的数学理论计算出其极限载荷,而过了很久才有实验证明其结果的重要性。虽然其理论结果并没有留存多少年,但是在今天他仍是柱体理论的基本形式。

随着研究的不断深入,把理论推导和在实验上已确定的材料性质结合起来形容的重要性是很显然的。然后,调查研究简单结构元件承受拉力、压力和剪切的性质。

2、应力

应力和应变的概念可以用图解这种方法。考虑等截面杆发生的延伸。[如图1.4(a)].等截面杆沿长度方向和轴线方向延伸。在这个图中的杆假设在它的两端承受轴向载荷P致使产生一致的延伸,即杆的拉力。通过杆的假想(mm)截面是垂直于轴的直角面。我们可以分离出杆的一个自由体作为研究对象[图1.4(b)]. 在右边的端点上是拉力P的作用,而在另一端是被移走的杆上的一部分作用在这部分上的力。这些力分布在水的表面上。强度就是单位面积上的载荷叫应力,用希腊字母ζ表示。假设应力均匀连续分布在横截面上[看图1.4(b)]。而且在图1.4(b)中看到物体的平衡,我们能够得出这样的合力在大小上必须等于相反方向的载荷P。我们得到等截面杆的应力均匀分布的方程式:ζ=P/A

这个方程式表明应力是在面积上分成微分载荷。例如 N/mm或psi。当杆被载荷P拉伸,可以用数值来表示。因此产生的应力为拉应力。如果载荷是相反的方向,造成杆的压缩,这就叫压应力。

方程(1.3)所必须具备的条件就是应力ζ均匀分布在杆的面上。轴向载荷P 通过截面的形心,这个条件必须实现。可以用静力学来说明:当加载P不能经过形心,将会导致杆的弯曲,而且有一个更复杂的分析。在本书过程中,如果没有特别说明,我们假定的所有轴向力都作用在横截面的形心上。同样的,除另外的状态,当我们对图1.4讨论时同,对于一般地物体本身是重可忽略。

3、应变

由于轴向载荷使杆伸长的总量是用希腊字母ζ表示[看图1.4(a)]。单位长度的伸长即应变。得到方程式ε=ζ/L L为杆的长度。

注意到应变是非空间的量,从方程(1.4)可以获得准确的应变。应变在整个杆的长度上是一致的。如果拉伸,应变庄稼汉叫拉应变,它使材料伸长或延长;如果杆是缩短的,应变就叫压应变,将会使杆的两端距离缩小。

(从选出:史蒂芬.Timoshenko 和詹姆士M.盖尔,材料力学,NostrandReinhold厢式客货两用车有限公司,1978)

Shear Force and Bending Moment in Beams

Let us now consider, as an example , a cantilever beam acted upon by an inclined load P at its free end [Fig.1.5(a)]. If we cut through the beam at a cross section mn and isolate the left-hand part of the beam as free body [Fig.1.5(b)], we see that the action of the removed part of the beam (that is , the right-hand part)upon the left-hand part must as to hold the left-hand in equilibrium. The distribution of stresses over the cross section mn is not known at this stage in our study , but wee do know that the resultant of these stresses must be such as to equilibrate the load P. It is convenient to resolve to the resultant into an axial force N acting normal to the cross section and passing through the centriod of the cross section , a shear force V acting parallel to the cross section , and a bending moment M acting in the plane of the beam.

The axial force , shear force , and bending moment acting at a cross section of a beam are known as stress resultants. For a statically determinate beam, the stress resultants can be determined from equations of equilibrium. Thus , for the cantilever beam pictured in Fig.1.5, we may writer three equations of stactics for the free-body diagram shown in the second part of the figure. From summations of forces in the horizontal and vertical directions we find, respectively,

N=PcosβV=Psinβ

and ,from a summation of moments about an axis through the centroid of cross section mn, we obtain M=Pxsinβ

where x is the distance from the free end to section mn. Thus ,through the use of a free-body diagram and equations of static equilibrium, we are able to calculate the stress resultants without difficulty. The stress in the beam due to the axial force N acting alone have been discussed in the text of Unit.2; Now we will see how to obtain the stresses associated with bending moment M and the shear force V.

The stress resultants N, V and M will be assumed to be positive when the they act

in the directions shown in Fig.1.5(b). This sign convention is only useful, however , when we are discussing the equilibrium of the left-hand part of the beam is considered, we will find that the stress resultants have the same magnitudes but opposite directions[see Fig.1.5(c)]. Therefore , we must recognize that the algebraic sign of a stress resultant does not depend upon its direction in space , such as to the left or to the right, but rather it depends upon its direction with respect to the material against , which it acts. To illustrate this fact, the sign conventions for N, V and M are repeated in Fig.1.6, where the stress resultants are shown acting on an element of the beam.

We see that a positive axial force is directed away from the surface upon which is acts(tension), a positive shear force acts clockwise about the surface upon which it acts , and a positive bending moment is one that compresses the upper part of the

beam.

Example

A simple beam A

B carries two loads , a concentrated force P and a couple Mo, acting as shown in Fig.1.7(a). Find the shear force and bending moment in the beam at cross sections located as follows: (a) a small distance to the left of the middle of the beam and (b) a small distance to the right of the middle of the beam .

Solution

The first step in the analysis of this beam is to find the reactions R A and R B. Taking moments about ends A and B gives two equations of equilibrium, from which we find

R A=3P/4 – Mo/L R B=P/4+mo/L

Next, the beam is cut at a cross section just to the left of the middle, and a free-body diagram is drawn of either half of the beam. In this example we choose the left-hand half of the bean, and the corresponding diagram is shown in Fig.1.7(b). The force p and the reaction R A appear in this diagram, as also do the unknown shear force V and bending moment M, both of which are shown in their positive directions. The

couple Mo does not appear in the figure because the beam is cut to the left of the point where M o is applied. A summation of forces in the vertical direction gives V=R – P= -P/4-M0/L

Which shown that the shear force is negative; hence, it acts in the opposite direction to that assumed in Fig.1.7(b). Taking moments about an axis through the cross section where the beam is cut [Fig.1.7(b)] gives

M = R A L/2-PL/4=PL/8-M o/2

Depending upon the relative magnitudes of the terms in this equation, we see that the bending moment M may be either positive or negative .

To obtain the stress resultants at a cross section just to the right of the middle, we cut the beam at that section and again draw an appropriate free-body diagram [Fig.1.7(c)]. The only difference between this diagram and the former one is that the couple M o now acts on the part of the beam to the left of the cut section. Again summing force in the vertical direction, and also taking moments about an axis through the cut section , we obtain

V= - P/4- M o/L M=PL/8+M o/2

We see from these results that the shear force does not change when the section is shifted from left to right of the couple M o, but the bending moment increases algebraically by an amount equal to M o .

( Selected from: Stephen P.Timosheko and James M. Gere,Mechanics of

materials, Van Nostrand reinhold Company Ltd.,1978.)

平面设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文翻译 平面设计 任何时期平面设计可以参照一些艺术和专业学科侧重于视觉传达和介绍。采用多种方式相结合,创造和符号,图像和语句创建一个代表性的想法和信息。平面设计师可以使用印刷,视觉艺术和排版技术产生的最终结果。平面设计常常提到的进程,其中沟通是创造和产品设计。 共同使用的平面设计包括杂志,广告,产品包装和网页设计。例如,可能包括产品包装的标志或其他艺术作品,举办文字和纯粹的设计元素,如形状和颜色统一件。组成的一个最重要的特点,尤其是平面设计在使用前现有材料或不同的元素。 平面设计涵盖了人类历史上诸多领域,在此漫长的历史和在相对最近爆炸视觉传达中的第20和21世纪,人们有时是模糊的区别和重叠的广告艺术,平面设计和美术。毕竟,他们有着许多相同的内容,理论,原则,做法和语言,有时同样的客人或客户。广告艺术的最终目标是出售的商品和服务。在平面

设计,“其实质是使以信息,形成以思想,言论和感觉的经验”。 在唐朝( 618-906 )之间的第4和第7世纪的木块被切断打印纺织品和后重现佛典。阿藏印在868是已知最早的印刷书籍。 在19世纪后期欧洲,尤其是在英国,平面设计开始以独立的运动从美术中分离出来。蒙德里安称为父亲的图形设计。他是一个很好的艺术家,但是他在现代广告中利用现代电网系统在广告、印刷和网络布局网格。 于1849年,在大不列颠亨利科尔成为的主要力量之一在设计教育界,该国政府通告设计在杂志设计和制造的重要性。他组织了大型的展览作为庆祝现代工业技术和维多利亚式的设计。 从1892年至1896年威廉?莫里斯凯尔姆斯科特出版社出版的书籍的一些最重要的平面设计产品和工艺美术运动,并提出了一个非常赚钱的商机就是出版伟大文本论的图书并以高价出售给富人。莫里斯证明了市场的存在使平面设计在他们自己拥有的权利,并帮助开拓者从生产和美术分离设计。这历史相对论是,然而,重要的,因为它为第一次重大的反应对于十九世纪的陈旧的平面设计。莫里斯的工作,以及与其他私营新闻运动,直接影响新艺术风格和间接负责20世纪初非专业性平面设计的事态发展。 谁创造了最初的“平面设计”似乎存在争议。这被归因于英国的设计师和大学教授Richard Guyatt,但另一消息来源于20世纪初美国图书设计师William Addison Dwiggins。 伦敦地铁的标志设计是爱德华约翰斯顿于1916年设计的一个经典的现代而且使用了系统字体设计。 在20世纪20年代,苏联的建构主义应用于“智能生产”在不同领域的生产。个性化的运动艺术在俄罗斯大革命是没有价值的,从而走向以创造物体的功利为目的。他们设计的建筑、剧院集、海报、面料、服装、家具、徽标、菜单等。 Jan Tschichold 在他的1928年书中编纂了新的现代印刷原则,他后来否认他在这本书的法西斯主义哲学主张,但它仍然是非常有影响力。 Tschichold ,包豪斯印刷专家如赫伯特拜耳和拉斯洛莫霍伊一纳吉,和El Lissitzky 是平面设计之父都被我们今天所知。 他们首创的生产技术和文体设备,主要用于整个二十世纪。随后的几年看到平面设计在现代风格获得广泛的接受和应用。第二次世界大战结束后,美国经济的建立更需要平面设计,主要是广告和包装等。移居国外的德国包豪斯设计学院于1937年到芝加哥带来了“大规模生产”极简到美国;引发野火的“现代”建筑和设计。值得注意的名称世纪中叶现代设计包括阿德里安Frutiger ,设计师和Frutiger字体大学;保兰德,从20世纪30年代后期,直到他去世于1996年,采取的原则和适用包豪斯他们受欢迎的广告和标志设计,帮助创造一个独特的办法,美国的欧洲简约而成为一个主要的先驱。平面设计称为企业形象;约瑟夫米勒,罗克曼,设计的海报严重尚未获取1950年代和1960年代时代典型。 从道路标志到技术图表,从备忘录到参考手册,增强了平面设计的知识转让。可读性增强了文字的视觉效果。 设计还可以通过理念或有效的视觉传播帮助销售产品。将它应用到产品和公司识别系统的要素像标志、颜色和文字。连同这些被定义为品牌。品牌已日益成为重要的提供的服务范围,许多平面设计师,企业形象和条件往往是同时交替使用。

中英文文献翻译

毕业设计(论文)外文参考文献及译文 英文题目Component-based Safety Computer of Railway Signal Interlocking System 中文题目模块化安全铁路信号计算机联锁系统 学院自动化与电气工程学院 专业自动控制 姓名葛彦宁 学号 200808746 指导教师贺清 2012年5月30日

Component-based Safety Computer of Railway Signal Interlocking System 1 Introduction Signal Interlocking System is the critical equipment which can guarantee traffic safety and enhance operational efficiency in railway transportation. For a long time, the core control computer adopts in interlocking system is the special customized high-grade safety computer, for example, the SIMIS of Siemens, the EI32 of Nippon Signal, and so on. Along with the rapid development of electronic technology, the customized safety computer is facing severe challenges, for instance, the high development costs, poor usability, weak expansibility and slow technology update. To overcome the flaws of the high-grade special customized computer, the U.S. Department of Defense has put forward the concept:we should adopt commercial standards to replace military norms and standards for meeting consumers’demand [1]. In the meantime, there are several explorations and practices about adopting open system architecture in avionics. The United Stated and Europe have do much research about utilizing cost-effective fault-tolerant computer to replace the dedicated computer in aerospace and other safety-critical fields. In recent years, it is gradually becoming a new trend that the utilization of standardized components in aerospace, industry, transportation and other safety-critical fields. 2 Railways signal interlocking system 2.1 Functions of signal interlocking system The basic function of signal interlocking system is to protect train safety by controlling signal equipments, such as switch points, signals and track units in a station, and it handles routes via a certain interlocking regulation. Since the birth of the railway transportation, signal interlocking system has gone through manual signal, mechanical signal, relay-based interlocking, and the modern computer-based Interlocking System. 2.2 Architecture of signal interlocking system Generally, the Interlocking System has a hierarchical structure. According to the function of equipments, the system can be divided to the function of equipments; the system

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

文献翻译英文原文

https://www.wendangku.net/doc/8a1197115.html,/finance/company/consumer.html Consumer finance company The consumer finance division of the SG group of France has become highly active within India. They plan to offer finance for vehicles and two-wheelers to consumers, aiming to provide close to Rs. 400 billion in India in the next few years of its operations. The SG group is also dealing in stock broking, asset management, investment banking, private banking, information technology and business processing. SG group has ventured into the rapidly growing consumer credit market in India, and have plans to construct a headquarters at Kolkata. The AIG Group has been approved by the RBI to set up a non-banking finance company (NBFC). AIG seeks to introduce its consumer finance and asset management businesses in India. AIG Capital India plans to emphasize credit cards, mortgage financing, consumer durable financing and personal loans. Leading Indian and international concerns like the HSBC, Deutsche Bank, Goldman Sachs, Barclays and HDFC Bank are also waiting to be approved by the Reserve Bank of India to initiate similar operations. AIG is presently involved in insurance and financial services in more than one hundred countries. The affiliates of the AIG Group also provide retirement and asset management services all over the world. Many international companies have been looking at NBFC business because of the growing consumer finance market. Unlike foreign banks, there are no strictures on branch openings for the NBFCs. GE Consumer Finance is a section of General Electric. It is responsible for looking after the retail finance operations. GE Consumer Finance also governs the GE Capital Asia. Outside the United States, GE Consumer Finance performs its operations under the GE Money brand. GE Consumer Finance currently offers financial services in more than fifty countries. The company deals in credit cards, personal finance, mortgages and automobile solutions. It has a client base of more than 118 million customers throughout the world

人力资源管理外文文献翻译

文献信息: 文献标题:Challenges and opportunities affecting the future of human resource management(影响人力资源管理未来的挑战和机遇) 国外作者:Dianna L. Stone,Diana L. Deadrick 文献出处:《Human Resource Management Review》, 2015, 25(2):139-145 字数统计:英文3725单词,21193字符;中文6933汉字 外文文献: Challenges and opportunities affecting the future of human resource management Abstract Today, the field of Human Resource Management (HR) is experiencing numerous pressures for change. Shifts in the economy, globalization, domestic diversity, and technology have created new demands for organizations, and propelled the field in some completely new directions. However, we believe that these challenges also create numerous opportunities for HR and organizations as a whole. Thus, the primary purposes of this article are to examine some of the challenges and opportunities that should influence the future of HR. We also consider implications for future research and practice in the field. Keywords: Future of human resource management, Globalization, Knowledge economy Diversity, Technology 1.Change from a manufacturing to a service or knowledge economy One of the major challenges influencing the future of HR processes is the change from a manufacturing to a service or knowledgebased economy. This new economy is characterized by a decline in manufacturing and a growth in service or knowledge as the core of the economic base. A service economy can be defined as a system based on buying and selling of services or providing something for others (Oxford

环境设计城市与景观毕业设计外文翻译中英文

I. City and The Landscape (1) Overview of Landscape Design Landscape design, first, is a people's thinking activity, performed as an art activity.Diversified thoughts formed complex diverse landscape art style. Contemporary landscape design apparently see is the diversity of the landscape forms,in fact its essence is to keep the closing up to the natural order system, reflected the more respect for human beings, more in-depth perspective of the nature of human's reality and need, not to try to conquer the nature.it is not even imitating natural, but produce a sense of belonging. Landscape is not only a phenomenon but the human visual scene. So the earliest landscape implications is actually city scene. Landscape design and creation is actually to build the city. (2) The Relationship Between Landscape and Urban City is a product of human social, economic and cultural development, and the most complex type. It is vulnerable to the artificial and natural environmental conditions of interference. In recent decades, with worldwide the acceleration of urbanization, the urban population intensive, heavy traffic, resource shortage,

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

毕业论文外文翻译模板

农村社会养老保险的现状、问题与对策研究社会保障对国家安定和经济发展具有重要作用,“城乡二元经济”现象日益凸现,农村社会保障问题客观上成为社会保障体系中极为重要的部分。建立和完善农村社会保障制度关系到农村乃至整个社会的经济发展,并且对我国和谐社会的构建至关重要。我国农村社会保障制度尚不完善,因此有必要加强对农村独立社会保障制度的构建,尤其对农村养老制度的改革,建立健全我国社会保障体系。从户籍制度上看,我国居民养老问题可分为城市居民养老和农村居民养老两部分。对于城市居民我国政府已有比较充足的政策与资金投人,使他们在物质和精神方面都能得到较好地照顾,基本实现了社会化养老。而农村居民的养老问题却日益突出,成为摆在我国政府面前的一个紧迫而又棘手的问题。 一、我国农村社会养老保险的现状 关于农村养老,许多地区还没有建立农村社会养老体系,已建立的地区也存在很多缺陷,运行中出现了很多问题,所以完善农村社会养老保险体系的必要性与紧迫性日益体现出来。 (一)人口老龄化加快 随着城市化步伐的加快和农村劳动力的输出,越来越多的农村青壮年人口进入城市,年龄结构出现“两头大,中间小”的局面。中国农村进入老龄社会的步伐日渐加快。第五次人口普查显示:中国65岁以上的人中农村为5938万,占老龄总人口的67.4%.在这种严峻的现实面前,农村社会养老保险的徘徊显得极其不协调。 (二)农村社会养老保险覆盖面太小 中国拥有世界上数量最多的老年人口,且大多在农村。据统计,未纳入社会保障的农村人口还很多,截止2000年底,全国7400多万农村居民参加了保险,占全部农村居民的11.18%,占成年农村居民的11.59%.另外,据国家统计局统计,我国进城务工者已从改革开放之初的不到200万人增加到2003年的1.14亿人。而基本方案中没有体现出对留在农村的农民和进城务工的农民给予区别对待。进城务工的农民既没被纳入到农村养老保险体系中,也没被纳入到城市养老保险体系中,处于法律保护的空白地带。所以很有必要考虑这个特殊群体的养老保险问题。

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

客户关系管理外文文献翻译(2017)

XXX学院 毕业设计(论文)外文资料翻译 学院:计算机与软件工程学院 专业:计算机科学技术(软件工程方向) 姓名: 学号: 外文出处:GoyKakus.THE RESEARCH OFCUSTOMER RELATIONSHIP MANAGEMENT STRATEGY [J]. International Journal of Management Research & Review, 2017, 1(9): 624-635. 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 客户关系管理战略研究 Goy Kakus 摘要 客户关系管理解决方案,通过为你提供客户业务数据来帮助你提供客户想要的服务或产品,提供更好的客户服务、交叉销售和更有效的销售,达成交易,保留现有客户并更好地理解你的客户是谁。本文探讨了客户关系管理模型在获得、保持与发展策略方面的优势。然而,我们对其定义和意义还存在一些困惑。本文通过考察关系营销和其他学科方面的相关文献,解释了客户关系管理的概念基础,从而对客户关系管理的知识作出了贡献。 关键词:客户关系管理模型, 客户关系管理的博弈改变者与关键策略 引言 CRM 是客户关系管理的简称。它的特征在于公司与客户的沟通,无论是销售还是服务相关的。客户关系管理这一术语经常用来解释企业客户关系,客户关系管理系统也以同样的方式被用来处理商业联系, 赢得客户,达成合同和赢得销售。 客户关系管理通常被考虑作为一个业务策略,从而使企业能够: *了解客户 *通过更好的客户体验留住客户 *吸引新客户 *赢得新客户和达成合同 *提高盈利 *减少客户管理成本 *通过服务台等工具软件,电子邮件组织者和不同类型的企业应用程序,企业业务经常寻求个性化的在线体验。 设计精良的客户关系管理包括以下特征: 1.客户关系管理是一种以顾客为中心并以客户投入为基础的服务响应,一对一的解决客户的必需品, 买家和卖家服务中心直接在线互动,帮助客户解决他

建筑景观语言(英文翻译)

Cover封面 Content目录 Design Explanation设计说明 Master Plan总平面 Space Sequence Analysis景观空间分析 Function Analysis功能分析 Landscape Theme Analysis景观景点主题分析图 Traffic Analysis交通分析 Vertical Plan竖向平面布置图 Lighting Furniture Layout灯光平面布置示意图 Marker/Background Music/Garbage Bin标识牌/背景音乐/垃圾桶布置图Plan平面图 Hand Drawing手绘效果图 Section剖面图 Detail详图 Central Axis中心公共主轴 Reference Picture参考图片 Planting Reference Picture植物选样 材料类: aluminum铝 asphalt沥青 alpine rock轻质岗石 boasted ashlars粗凿 ceramic陶瓷、陶瓷制品 cobble小圆石、小鹅卵石 clay粘土 crushed gravel碎砾石 crushed stone concrete碎石混凝土 crushed stone碎石 cement石灰 enamel陶瓷、瓷釉 frosted glass磨砂玻璃 grit stone/sand stone砂岩 glazed colored glass/colored glazed glass彩釉玻璃 granite花岗石、花岗岩 gravel卵石 galleting碎石片 ground pavement material墙面地砖材料 light-gauge steel section/hollow steel section薄壁型钢 light slates轻质板岩 lime earth灰土 masonry砝石结构

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.wendangku.net/doc/8a1197115.html, Overview https://www.wendangku.net/doc/8a1197115.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.wendangku.net/doc/8a1197115.html, is part of https://www.wendangku.net/doc/8a1197115.html, Framework,and when coding https://www.wendangku.net/doc/8a1197115.html, applications you have access to classes in https://www.wendangku.net/doc/8a1197115.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.wendangku.net/doc/8a1197115.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.wendangku.net/doc/8a1197115.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.wendangku.net/doc/8a1197115.html, Framework.All of these are tools that you use to create https://www.wendangku.net/doc/8a1197115.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.wendangku.net/doc/8a1197115.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.wendangku.net/doc/8a1197115.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/8a1197115.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/8a1197115.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.wendangku.net/doc/8a1197115.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/8a1197115.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/8a1197115.html, Web pages on your own computer.

相关文档
相关文档 最新文档