文档库 最新最全的文档下载
当前位置:文档库 › 晶体三极管的结构和类型

晶体三极管的结构和类型

晶体三极管的结构和类型
晶体三极管的结构和类型

晶体三极管的结构和类型

晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN

结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。

三极管的封装形式和管脚识别

常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

晶体三极管的电流放大作用

晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。

晶体三极管的三种工作状态

截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为

零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=

ΔIc/ΔIb,这时三极管处放大状态。

饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。

使用多用电表检测三极管

三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN

结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k 挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。

三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。

电子三极管

在弗莱明为改进无线电检波器而发明二极管的同时,美国物理学博士弗雷斯特也在潜心研究检波器。正当他的研究步步深入时,传来了英国的弗莱明发明成功真空二极管的消息,使他大受震动。是改弦易辙还是继续下去呢?他想到弗莱明的二极管可用于整流和检波,但还不能放大电信号。于是,德弗雷斯特又经过两年的研制,终于改进了弗莱明的二极管,作出了新的发明。在二极管的阴极和阳极中间插入第三个具有控制电子运动功能的电极(棚极)。棚极上电压的微弱信号变化,可以调制从阴极流向阳极的电流,因此可以得到与输入信号变化相同,但强度大大增加的电流。这就是德弗雷斯特发明的三极管的“放大”作用。

1912年,德弗雷斯特又成功地做了几个三极管的连接实验,得到了比单个三极管大得多的放大能力。很快,德弗雷斯特研制出第一个电子放大器用于电话中继器,放大微弱的电话信号,他是在电话中使用电子产品的第一人。此外,三极管还可振荡产生电磁波,也就是说,所以,国外许多人都将三极管的发明看作是

电子工业真正的诞生。

MOS场效应管

即金属-氧化物-半导体型场效应管,英文缩写为MOSFET

(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。

国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。

MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。

1.准备工作

测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。

2.判定电极

将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。

3.检查放大能力(跨导)

将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。

目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。

VMOS场效应管

VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS 场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。

众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。

国内生产VMOS场效应管的主要厂家有877厂、天津半导体器件四厂、杭州电子管厂等,典型产品有VN401、VN672、VMPT2等。表1列出六种VMOS管的

主要参数。其中,IRFPC50的外型如图3所示。

下面介绍检测VMOS管的方法。

1.判定栅极G

将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。

2.判定源极S、漏极D

由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D 极。

3.测量漏-源通态电阻RDS(on)

将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。

由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。

4.检查跨导

将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。

注意事项:

(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P 沟道管,测量时应交换表笔的位置。

(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。

(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。

(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。适用于高速开关电路和广播、通信设备中。

(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W

场效应晶体管

场效应晶体管(FET)简称场效应管,它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。

按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方

式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见附图1。

MOS场效应晶体管使用注意事项。

MOS场效应晶体管在使用时应注意分类,不能随意互换。MOS场效应晶体管由于输入阻抗高(包括MOS集成电路)极易被静电击穿,使用时应注意以下规则:

1. MOS器件出厂时通常装在黑色的导电泡沫塑料袋中,切勿自行随便拿个塑料袋装。也可用细铜线把各个引脚连接在一起,或用锡纸包装

2.取出的MOS器件不能在塑料板上滑动,应用金属盘来盛放待用器件。

3. 焊接用的电烙铁必须良好接地。

4. 在焊接前应把电路板的电源线与地线短接,再MOS器件焊接完成后在分开。

5. MOS器件各引脚的焊接顺序是漏极、源极、栅极。拆机时顺序相反。

6.电路板在装机之前,要用接地的线夹子去碰一下机器的各接线端子,再把电路板接上去。

7. MOS场效应晶体管的栅极在允许条件下,最好接入保护二极管。在检修电路时应注意查证原有的保护二极管是否损坏。

场效应管的测试。

下面以常用的3DJ型N沟道结型场效应管为例解释其测试方法:

3DJ型结型场效应管可看作一只NPN型的晶体三极管,栅极G对应基极b,漏极D对应集电极c,源极S对应发射极e。所以只要像测量晶体三极管那样测PN结的正、反向电阻既可。把万用表拨在R*100挡用黑表笔接场效应管其中一个电极,红表笔分别接另外两极,当出现两次低电阻时,黑表笔接的就是场效应管的栅极。红表笔接的就是漏极或源极。对结型场效应管而言,漏极和源极可以互换。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。

目前常用的结型场效应管和MOS型绝缘栅场效应管的管脚顺序如图2所示。

场效应晶体管的好坏的判断。

先用MF10型万用表R*100KΩ挡(内置有15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再该用万用表R*1Ω挡,将负表笔接漏极(D),正表笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。

硅管、锗管的判别

硅管和锗管在特性上有很大不同,使用时应加以区别。我们知道,硅管和锗管的PN结正向电阻是不一样的,即硅管的正向电阻大,锗管的小。利用这一特性就可以用万用表来判别一只晶体管是硅管还是锗管。

判别方法如下:

将万用表拨到R*100挡或R*1K挡。测量二极管时,万用表的正端接二极管的负极,负端接二极管的正极;测量NPN型的三极管时,万用表的负端接基极,正端接集电极或发射极;测量PNP型的三极管时,万用表的正端接基极,负端接集电极或发射极。

按上述方法接好后,如果万用表的表针指示在表盘的右端或靠近满刻度的位置上(即阻值较小),那么所测的管子是锗管;如果万用表的表针在表盘的中间或偏右一点的位置上(即阻值较大),那么所测的管子是硅管。

测判三极管的口诀

三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。

一、三颠倒,找基极

大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、 PN结,定管型

找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方

向来确定管子的导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN

型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大

找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。

四、测不出,动嘴巴

若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

高频管和低频管的判别

高频管和低频管因其特性和用途不同而一般不能互相代用。

这里介绍如何用万用表来快速判别它高频管与低频管。判别方法为:

首先用万用表测量三极管发射极的反向电阻,如果是测量PNP型管,万用表的负端接基极,正端接发射极;如果是测量NPN型管,万用表的正端接基极,负端接发射极。然后用万用表的R*1KΩ挡测量,此时万用表的表针指示的阻值应当很大,一般不超过满刻度值的1/10。再将万用表转换到R*10KΩ挡,如果表针指示的阻值变化很大,超过满刻度值的1/3,则此管为高频管;反之,如果万用表转换到R*10KΩ挡后,表针指示的阻值变化不大,不超过满刻度值的1/3,则所测的管子为低频管。

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

第二章晶体三极管和场效晶体管

课题第一章晶体=极管和场效晶体管 2.1.1—2.1.3三极管的基本特性 课型 新课 投课班级17机电授课时数2课时 教学目标 1.掌握三极管的结构、分类和符号 2.理解三极管的工作电压和基本连接方式 3.理解三极管电流的分配和放大作用、掌握电流的放大作用 教学重点三极管结构、分类、电流分配和放大作用教学难点电流分配和放大作用 学情分析学生已经了解了PN结及特性学生已熟练掌握晶体二极管的基本特性 教学方法讲授法、引导法、图示法、对比法、多媒体演示法 教后记 通过对本次课的学习,学生了解了三极管的基本特性,了解三极管中的PN结与二极皆中PN结的区别,同时掌握了三极管的基本连接方式和放大倍数的讣算方法,并能进行实际应用,利用査表法说出三极管的型号

A.引入 在电子线路中,经常用的基本器件除二极管外,还有三引脚的三极管。B?新授课 2.1,1三极管的结构、分类和符号 一、晶体三极管的基本结构 1?观察外形 2.三极管的结构图 (1〉发射区掺杂浓度较大,以利于发射区向基区发肘载流子。(2)基区很薄,掺杂少,载流子易于通过。 <3)集电区比发射区体枳大且掺杂少,收集载流子。 注意:三极管并不是两个PN结的简单组合,不能用两个二极管代替。 二、图形符号 a. NPN 型 三.分类 1?内部三个区的半导体分类:NPN型、PNP型 2.工作频率分类:低频管和高频管 3.以半导体材料分:错、硅 2.1.2三极管的工作电压和基本连接方式 一、三极管的工作电压 1?三极笛工作时,发射结加正向电压?集电结加反向电压。 2?偏置电压:基极与发射极之间的电压。 二.三极管在电路中的基本连接方式 1?共发射极接法(讲解) 三极:发射极、 两结:发射结、基极、集电极 集电结 基区、集电区 (引导: 比较两种符 号,箭头说 明发射结导 通的方向) C b V e b. PNP 型 集 C电 极 集 C电 极 b V

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

晶体学基础知识点及思维导图教学内容

晶体学基础知识点及 思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群 point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义 它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见 的晶体的对称性,所以它才被 引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

三极管的基极判断和类型

判断基极和三极管的类型 三极管的脚位判断,三极管的脚位有两种封装排列形式,如右图: 三极管是一种结型电阻器件,它的三个引脚都有明显的电阻数据,测试时(以数字万用表为例,红笔+,黒笔-)我们将测试档位切换至二极管档(蜂鸣档)标志符号如右图: 正常的NPN结构三极管的基极(B)对集电极(C)、发射极(E)的正向电阻是430Ω-680Ω(根据型号的不同,放大倍数的差异,这个值有所不同)反向电阻无穷大;正常的PNP 结构的三极管的基极(B)对集电极(C)、发射极(E)的反向电阻是430Ω-680Ω,正向电阻无穷大。集电极C对发射极E在不加偏流的情况下,电阻为无穷大。基极对集电极的测试电阻约等于基极对发射极的测试电阻,通常情况下,基极对集电极的测试电阻要比基极对发射极的测试电阻小5-100Ω左右(大功率管比较明显),如果超出这个值,这个元件的性能已经变坏,请不要再使用。如果误使用于电路中可能会导致整个或部分电路的工作点变坏,这个元件也可能不久就会损坏,大功率电路和高频电路对这种劣质元件反应比较明显。 尽管封装结构不同,但与同参数的其它型号的管子功能和性能是一样的,不同的封装结构只是应用于电路设计中特定的使用场合的需要。 要注意有些厂家生产一些不规范元件,例如C945正常的脚位是BCE,但有的厂家出的此元件脚位排列却是EBC,这会造成那些粗心的工作人员将新元件在未检测的情况下装入电路,导致电路不能工作,严重时烧毁相关联的元器件,比如电视机上用的开关电源。 在我们常用的万用表中,测试三极管的脚位排列图: 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表

晶体三极管的结构特性与参数(精)

一、三极管的结构类型与工作原理 半导体三极管又称为晶体管、三极管、双极型晶体管、BJT 。它由2个背靠背的PN结组成,分为NPN型、PNP型。由制造的材料又分为硅三极管、锗三极管。 NPN型三极管:c:collector 集电极;b:base 基极;e:emitter 发射极 采用平面管制造工艺,在N+型底层上形成两个PN结。 工艺特点:三个区,二个结,引出三根电极杂质浓度(e区掺杂浓度最高,b区较高,c 区最低);面积大小( c区最大,e区大,b区窄)。 PNP型三极管:在P+型底层上形成两个PN结。

NPN管的工作原理:为使NPN管正常放大时的条件:射结正偏(VBE>0),集电结反偏(VCB>0)。 发射区向基区大量发射电子(多子),进入基区的电子成为基区的少子,其中小部分与基区的多子( 空穴)复合,形成IB电流,绝大部分继续向集电结扩散并达到集电结边缘。因集电结反偏,这些少子将非常容易漂移到集电区,形成集电集电流的一部分ICN。而基区和集电区本身的少子也要漂移到对方,形成反向饱和电流ICBO。 ,, 晶体管的四种工作状态: 1、发射结正偏,集电结反偏:放大工作状态用在模拟电子电路 2、发射结反偏,集电结反偏:截止工作状态 3、发射结正偏,集电结正偏:饱和工作状态用在开关电路中 4、发射结反偏,集电结正偏:倒置工作状态较少应用 三种基本组态:集电极不能作为输入端,基极不能作为输出端。

1、共基组态(CB) 输入:发射极端:基极公共(此处接地) 。输出:集电极。 VBE>0,发射结正偏,VCB>0(∵VCC>VBB),集电结反偏。所以三极管工作在放大状态。 发射极组态(CE): 共集电极组态(CC):

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

。高中化学晶体的结构与性质知识点及相关例题讲解

高中化学晶体的结构与性质知识点及相关例题 讲解 自然界中的固体可以分为两种存在形式:晶体和非 晶体。晶体是经过结晶过程而形成的具有规则的几何外形的 固体。晶体中原子或分子在空间按一定规律周期性重复的排 列,从而使晶体内部各个部分的宏观性质是相同的,而且具 有固定的熔点和规则的几何外形。 一、晶体 固体可以分为两种存在形式:晶体和非晶体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数 是晶体。气体、液体和非晶体在一定条件下也可转变为晶体。 晶体是经过结晶过程而形成的具有规则的几何外形的 固体。晶体中原子或分子在空间按一定规律周期性重复的排 列,从而使晶体内部各个部分的宏观性质是相同的,而且具 有固定的熔点和规则的几何外形。 二、晶体结构 1.几种晶体的结构、性质比较 2.几种典型的晶体结构: (1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。 (2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+

有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。 (3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展, 键角都是109o28',最小的碳环上有六个碳原子。 (4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有 两个碳原子。片层间存在范德华力,是混合型晶体。熔点比 金刚石高。 (5)干冰(如图6):分子晶体,每个CO2分子周围紧邻其他12个CO2分子。

晶体三极管的三极判断

《晶体三极管的三极判断》说课稿 我说课的题目是:《晶体三极管的三极判断》。我主要从说教材、说教法、说学法、说教学过程从四个方面进行阐述。 一、说教材 1、教材分析 教材:中等职业教育规划教材 国防科技大学出版社《电子技术基础》 主编:侯寅珊教授 根据教育部颁发的中等职业教育《电子技术基础》教学大纲进行编写。同时参照电气类职业技能规范,同时从目前中等职业教育学生的实际出发,淡化了理论教学,着重培养学生的学习能力、问题的能力,应用知识解决问题的能力。本书作为中等职业学校电子技术的基础教材,将课程的理论知识与实践能力相结合。 2、教学重点与难点 重点:三极管类型、及用不同符号表示 难点:三极管的内部结构、如何判别三极管的三个极的极性 3、教学目标 知识目标:了解晶体三极管的分类、符号;明确三极管的三个极的判断方法; 能力目标:培养学生观察、分析等逻辑思维能力; 独立解决问题的能力; 培养和提高口头表达能力; 培养学生的团队意识; 锻炼学生的自学能力、设计能力、手工操作能力。 情感目标:培养学生参与、合作意识,激发学生学习兴趣和乐于探究的精神。 4、教学理念 摈弃简单的说教,以生为本,紧密联系生活,关注学生实际,引导学生积极参与学习实践,在合作学习中不断提升专业理论和专业技能。

二、说教法 1、灵活多样的教学方法 对基本要了解的知识点采用直观教学法(如:三极管的分类)。 为落实重点采用开放活动式教学,引导思考法教法(如:三极管的类型和符号)。 为突破难点采用启发式,课堂互动式,多媒体辅助教学法,实践操作巩固法教法等等(三极管的极性判断)。 2、教学手段 情境导入式、活动式教学,引导思考法、实践操作巩固法。利用多媒体教学手段的优势,借助元器件实物图及使用万用表来判断三极管的极性等直观形象的画面,设计丰富有趣的课堂实践,创设宽松活泼的情景,为学生提供丰富的想象、表现、创新的空间,使学生在这种情境教学中深刻体会增强集体凝聚力、加强团队合作的重要性。 导入 话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。 放大电路又称放大器,是指能把微弱的电信号转换为较强的电信号的电子线路。放大器的核心元件(即放大元件)是半导体三极管。 这节课我们就来学习三极管的基础知识。 塑封型三极管大功率三极管 调整管中功率三极管 声音 图 1 扩音器示意图

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ) Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小 做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团? X射线照射到物质上将产生散射。晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。 绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其X射线衍射图。 XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大 小等)最有力的方法。 XRD 特别适用于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析; XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。 目前XRD主要适用于无机物,对于有机物应用较少。 关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。 如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分? 三者并无严格明晰的分界。 在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在 该衍射方向上的厚度。 非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

晶体三极管的结构及封装

晶体三极管的结构及封装 晶体三极管是各种电子设备中的核心器件。其突出特点是在一定条件下具有电流放大作用,可用做电子开关,在电子电路中被广泛应用。 晶体三极管由两个PN结和三个电极构成,用途及功率不同,封装尺寸也不同。常用的有平面型小功率、中功率及大功率三极管。 小功率三极管的封装尺寸及实物图如下图(a)所示。 中功率三极管的封装尺寸及实物图如下图(b)所示。 大功率三极管的封装尺寸及实物图如下图(c)所示。 贴片式三极管的封装尺寸及实物图如下图(d)所示。 常用的合金型小功率、中功率、大功率三极管有以下几种: 小功率合金型三极管实物图如下图(e)所示。 中功率合金型三极管实物图如下图(f)所示。 大功率合金型三极管实物图如下图(g)所示。

常见的三极管结构有平面型和合金型两类,分别如图5-15(a)和(b)所示。硅管主要是平面型,锗管主要是合金型。 不同类型的三极管虽然制造方法不同,但在结构上都分成PNP或NPN三层。因此又将三极管分为NPN型和PNP型两种。国产硅三极管主要是NPN型,锗管主要是PNP型下图是它们的结构示意图和电路符号。晶体三极管在电路中的表示方法有:国内最早用BG表示,彩色电视机电路中用Q和V表示。目前的电子电路中用VT来表示。 各种三极管都分为发射区、基区和集电区等三个区域。三个区域的引出线分别称为发射极、基极和集电极,并分别用E,B和C表示。发射区与基区之间的PN结称为发射结,基区与集电区之间的P-N结称为集电结。 NPN型三极管和PNP型三极管的工作原理相同,不同的只是使用连接电源的极性不同,管子各极之间的电流方向也不同。下面以NPN晶体三极管为例进行介绍。

晶体管放大器结构原理图解

晶体管放大器结构原理图解 功率放大器的作用是将来自前置放大器的信号放大到足够能推动相应扬声器系统所需的功率。就其功率来说远比前置放大器简单,就其消耗的电功率来说远比前置放大器为大,因为功率放大器的本质就是将交流电能“转化”为音频信号,当然其中不可避免地会有能量损失,其中尤以甲类放大和电子管放大器为甚。 一、功率放大器的结构 功率放大器的方框图如图1-1所示。 1、差分对管输入级 输入级主要起缓冲作用。输入输入阻抗较高时,通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。 前置激励级的作用是控制其后的激励级和功劳输出级两推挽管的直流平衡,并提供足够的电压增益。 激励级则给功率输出级提供足够大的激励电流及稳定的静态偏压。激励级和功率输出级则向扬声器提供足够的激励电流,以保证扬声器正确放音。此外,功率输出级还向保护电路、指示电路提供控制信号和向输入级提供负反馈信号(有必要时)。 一、放大器的输入级功率放大器的输入级几乎一律都采用差分对管放大电路。由于它处理的信号很弱,由电压差分输入给出的是与输入端口处电压基本上无关的电流输出,加之他的直流失调量很小,固定电流不再必须通过反馈网络,所以其线性问题容易处理。事实上,它的线性远比单管输入级为好。图1-2示出了3 种最常用的差分对管输入级电路图。

图1-2种差分对管输入级电路 1、加有电流反射镜的输入级 在输入级电路中,输入对管的直流平衡是极其重要的。为了取得精确的平衡,在输入级中加上一个电流反射镜结构,如图1-3所示。它能够迫使对管两集电极电流近于相等,从而可以对二次谐波准确地加以抵消。此外,流经输入电阻与反馈电阻的两基极电流因不相等所造成的直流失调也变得更小了,三次谐波失真 也降为不加电流反射镜时的四分之一。 在平衡良好的输入级中,加上一个电流反射镜,至少可把总的开环增益提高6Db。而对于事先未能取得足够好平衡的输入级,加上电流反射镜后,则提高量最大可达15dB。另一个结果是,起转换速度在加电流反射镜后,大致提高了一倍。 2、改进输入级线性的方法 在输入级中,即使是差分对管采用了电流反射镜结构,也仍然有必要采取一定措施,以见效她的高频失真。下面简述几钟常用的方法。 1)、恒顶互导负反馈法 图1-4示出了标准输入级(a)和加有恒定互导(gm)负反馈输入级(b)的电路原理图。经计算,各管加入的负反馈电阻值为22Ω当输入电压级为-40dB条件下,经测试失真由0.32%减小到了0.032%。同时,在保持gm为恒定的情况下,电流增大两倍,并可提高转换速率(10~20)V/us。

晶体结构,配合物结构知识点与习题1-1

晶体结构 一、基本概念(The Basic Concepts ): 1.晶体(Crystals ): (1)物质的质点(分子、离子或原子)在空间有规则地排列而成的、具有整齐外形的、以多面体出现的固体物质,称为 晶体。 (2) 晶体有同质多象性 由同样的分子(或原子)可以以不同的方式堆积成不同的晶体,这种现象叫做同质多象性。但 同一种物质的气态、液态只存在一种结构。 (3) 晶体的几何度量和物理效应常随方向不同而表现出量上的差异,这种性质称为各向异性。 2.晶格(Crystal lattices ) (1) 以确定位置的点在空间作有规则的排列所具有一定的几何形状,称为晶体格子,简称为晶格。 Fig. 8.10 The 14 Bravais unit cells 3.晶胞(Unit cells ) (1) 在晶格中,含有晶体结构,具有代表性的最小单元,称为单元晶胞,简称晶胞。 (2) 在晶胞中的各结点上的内容必须相同。 (3) 晶胞参数 晶胞参数:a 、b 、c 、α、β、γ (4) 分数坐标 用来表示晶胞中质点的位置 例如: 简单立方 立方体心 立方面心 (0, 0, 0) , (0, 0, 0), ( 21,21,21) (0, 0, 0) (21,21,0), (21,0,21), (0,21,2 1 ) 在分数坐标中,绝对不能出现1,因为1即0。这说明晶胞是可以前后、左右、上下平移的。等价点只需要一个坐标来表 α βγb c a

118 示即可,上述三个晶胞中所含的质点分别为1、2、4,所以分数坐标分别为1组、2组和4组。 (5) 晶面指数 晶面在三维空间坐标上的截距的倒数(h 、k 、l )来表示晶体中的晶面,称为晶面指数,如立方晶系中 (100),(110),(111)面分别为 (100) (110) (111) l Fig. 8.12 Selected planes and their Miller indices for cubic system 用X-ray 的衍射可以测量晶体中的面间距,2d ·sin θ = n ·λ。 d -晶体的面间距,θ-衍射角,n -衍射级数,λ-X-ray 的波长。 对于立方晶系,面间距(d )晶胞参数(a )之间的关系式: 222l k,h,/l k h a d ++= 4.根据晶体中质点内容的不同,晶体可分类成:金属晶体(metallic crystals )、离子晶体(ionic crystals)、原子晶体(atomic crystals)、分子晶体(molecular crystals)、混合晶体(mixture crystals) 二、金属键与金属晶体(Metallic Bond and Metallic Crystals ) 1.金属键理论(Metallic bond ) (1) 改性的共价键理论 (2) 能带理论(band theory )(以分子轨道理论为基础) (a) 能带理论的基本要点 (i) 按照分子轨道理论,把整个金属晶体看作一个大分子,把金属 中能级相同的原子轨道线性组合(原子轨道重叠)起来,成为整个金属晶体共有的若干分子 轨道,合称为能带(energy band),即金属晶体中的n 个原子中的每一种能量相等的原子轨道重叠所形成的n 个分子轨道,称为一个 能带; Fig. 8.15 Bands of molecular orbitals in a metal crystal. Fig 8.14 Arrangement of atoms in a lithium crystal

晶体三极管的结构和类型

晶体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN 结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。 目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。

三极管型号判断

一、晶体三极管的命名方法及型号字母意义 晶体三极管的命名方法见图5-18,型号字母意义见表5-6 二、晶体三极管的种类 晶体三极管主要有NPN 型和PNP型两大类,一般我们可以从晶体管上标出的型号来识别。详见表5-6。晶体三极管的种类划分如下。 ①按设计结构分为 : 点接触型、面接触型。 ②按工作频率分为 : 高频管、低频管、开关管。 ③按功率大小分为 : 大功率、中功率、小功率。 ④从封装形式分为 : 金属封装、塑料封装。 三、三极管的主要参数 一般情况晶体管的参数可分为直流参数、交流参数、极限参数三大类。 ①直流参数 : 集电极 -基极反向电流 I CBO。此值越小说明晶体管温度稳定性越好。一般小功率管约10μA左右,硅晶体管更小。 集电极-发射极反向电流I CEO, 也称穿透电流。此值越小说明晶体管稳定性越好。过大说明这个晶体管不宜使用。 ②极限参数:晶体管的极限参数有: 集电极最大允许电流I CM;集电极最大允许耗散功率I CM;集电极-发射极反向击穿电压V(BR)CEO。 ③晶体管的电流放大系数:晶体管的直流放大系数和交流放大系数近似相等,在实际使用时一般不再区分,都用β表示,也可用h FE表示。 为了能直观地表明三极管的放大倍数 , 常在三极管的外壳上标注不同的色标。锗、硅开关管 , 高、低频小功率管 , 硅低频大功率管所用的色标标志如表 2-9-6 所示。 表5-7 部分三极管β值色标表示 ④特性频率f T:晶体三极管的β值随工作频率的升高而下降,三极管的特性频率f

是当β下降到 1 时的频率值。也就是说 , 在这个频率下的三极管,己失去放大能力,因为晶体管的工作频率必须小于晶体管特性频率的一半以下。 四、常用晶体三极管的外形识别 ①小功率晶体三极管外形电极识别:对于小功率晶体三极管来说,有金属外壳和塑料外壳封装两种,如图5-25 所示。 图5-25小功率晶体三极管电极识别 ②大功率晶体三极管外形电极识别:对于大功率晶体三极管,外形一般分为F型,G 型两种,如图5-26(a) 所示。F型管从外形上只能看到两个电极。将管脚底面朝上,两个电极管脚置于左侧,上面为e极,下为b极,底座为C极。G型管的三个电极的分布如图5-26(b) 所示。

晶体结构与性质知识总结(完善)

3-1、晶体的常识 一、晶体和非晶体 1、概述——自然界中绝大多数物质是固体,固体分为和两大类。 2、对比——

* 自范性——晶体能自发地呈现多面体外形的性质。本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象。 * 晶体不因颗粒大小而改变,许多固体粉末用肉眼看不到规则的晶体外形,但在显微镜下仍可看到。 * 晶体呈现自范性的条件之一是晶体生长的速率适当,熔融态物质凝固速率过

快常得到粉末或没有规则外形的块状物。 * 各向异性——晶体的许多物理性质如强度、热导性和光导性等存在各向异性即在各个方向上的性质是不同的 二、晶胞 1、定义——描述晶体结构的基本单元。 2、特征—— (1)习惯采用的晶胞都是体,同种晶体所有的晶胞大小形状及内部的原子种类、个数和几何排列完全相同。 (2)整个晶体可以看作是数量巨大的晶胞“无隙并置”而成。 <1> 所谓“无隙”是指相邻晶胞之间没有任何间隙; <2> 所谓“并置”是指所有晶胞都是平行排列的,取向相同。 3、确定晶胞所含粒子数和晶体的化学式——均摊法分析晶胞与粒子数值的关系 (1)处于内部的粒子,属于晶胞,有几个算几个均属于某一晶胞。 (2)处于面上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 (3)处于90度棱上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。

(4)处于90度顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于60度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于120度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 4、例举 三、分类 晶体根据组成粒子和粒子之间的作用分为分子晶体、原子晶体、金属晶体和离子晶体四种类型。 3-2、分子晶体和原子晶体 一、分子晶体 1、定义——只含分子的晶体。 2、组成粒子——。 3、存在作用——组成粒子间的作用为(),多原子分子内部原子间的作用为。 * 分子晶体中定含有分子间作用力,定含有共价键。 * 分子间作用力于化学键。 4、物理性质 (1)熔沸点与硬度——融化和变形只需要克服,所以熔沸点、

晶体三极管的判别

晶体三极管的工作状态、管脚和类型的判别电子教案加入时间:2008-9-11 15:02:55 陈岳惠点击:104 摘要:晶体三极管三个工作状态的条件和特点,运用三种分析方法,判断管子工作状态。 关键词:工作状态;电位分析法;电流分析法;计算分析法。 晶体三极管是晶体管电子电路的核心器件,具有电流放大和开关作用。在模拟电子电路中,它起放大作用,基本放大电路、正弦波振荡器以及串联型稳压电源中的三极管均工作在放大状态;在脉冲和数字电路中,它起开关作用,脉冲振荡器、逻辑门电路、触发器中的三极管则工作在截止状态和饱和状态。正确理解三极管是学习电子技术入门的关键,而掌握三极管的三种工作状态是其主要内容。下表是NPN晶体三极管工作状态的特点、条件。

根据上述特点和条件设计合适题目供学生练习,以巩固知识,加深对三极管的理解。常见的题目便是晶体三极管的工作状态、类型和管脚的判别。 一、电位分析法 (一)、已知管子类型和各极电位判断三极管的工作状态。 先判断管子是否处于放大状态,如果满足,即对NPN:V C>V B>V E,对PNP:V C<V B<V E ,该管子处于放大状态。如果不满足,管子便处于截止状态或饱和状态,凡V C和V E接近便为饱和状态;凡V C和V E相差较大,管子处于截止状态。 例1、各三极管的每个电极对地的电位,如图1所示,试判断各三极管处于何种工作状态?(NPN型为硅管,PNP型为锗管)。 分析:先判断管子是否处于放大状态,仅a图符合PNP:V C<V B<V E,处于放大状态;b图和c图管子比较,前者V C和V E十分接近,处于饱和状态,后者V C和V E 相差较大,处于截止状态。 例2、判断图2三极管I B、I C和VCE。该三极管处于何种 状态? 分析:该管为NPN型,由于V B<V E,所以管子处于截止 状态,故I B≈0,I C≈0,V CE≈12V。 (二)、已知管子处于放大状态和各极电位,判断三极管各电极名称、类型。

三极管结构图

三极管结构图 导体二极管内部只有一个PN结,若在半导体二极管P型半导体的旁边,再加上一块N型半导体如图5-1(a)所示。由图5-1(a)可见,这种结构的器件内部有两个PN结,且N型半导体和P型半导体交错排列形成三个区,分别称为发射区,基区和集电区。从三个区引出的引脚分别称为发射极,基极和集电极,用符号e、b、c来表示。处在发射区和基区交界处的PN结称为发射结;处在基区和集电区交界处的PN结称为集电结。具有这种结构特性的器件称为三极管。 三极管通常也称双极型晶体管(BJT),简称晶体管或三极管。三极管在电路中常用字母T来表示。因三极管内部的两个PN结相互影响,使三极管呈现出单个PN结所没有的电流放大的功能,开拓了PN结应用的新领域,促进了电子技术的发展。 因图5-1(a)所示三极管的三个区分别由NPN型半导体材料组成,所以,这种结构的三极管称为NPN型三极管,图5-1(b)是NPN型三极管的符号,符号中箭头的指向表示发射结处在正向偏置时电流的流向。 根据同样的原理,也可以组成PNP型三极管,图5-2(a)、(b)分别为PNP型三极管的内部结构和符号。 由图5-1和图5-2可见,两种类型三极管符号的差别仅在发射结箭头的方向上,理解箭头的指向是代表发射结处在正向偏置时电流的流向,有利于记忆NPN和PNP型三极管的符号,同时还可根据箭头的方向来判别三极管的类型。

例如,当大家看到“”符号时,因为该符号的箭头是由基极指向发射极的,说明当发射结处在正向偏置时,电流是由基极流向发射极。根据前面所讨论的内容已知,当PN结处在正向偏置时,电流是由P型半导体流向N型半导体,由此可得,该三极管的基区是P型半导体,其它的两个区都是N型半导体,所以该三极管为NPN型三极管。

相关文档