文档库 最新最全的文档下载
当前位置:文档库 › 移动通信室内路径损耗传播模型

移动通信室内路径损耗传播模型

移动通信室内路径损耗传播模型
移动通信室内路径损耗传播模型

移动通信室内路径损耗传播模型

——苏华鸿—— 在室内电磁波传播受影响的因素很多,在有限的空间内环境变化大,墙、顶、地、人和室内物体等都会引起电磁的反射、折射、散射和吸收,电磁场分布十分复杂,电波传播模型相应多种多样。本文着重介绍在测试的基础上总结出来的三种传播模型,可供移动通信室覆盖预测参考用。

一、室内小尺度路径损耗

室内小尺度路径损耗是指短距离、短时间内快速衰落(衰落深度达20~40dB ),其传播模型表达式为:

δX d d n d P d P L L +??+=)log(10)()(00 (dB) (式1)

式中:)(d P L 表示路径d 的总损耗值;

)(0d P L 表示近地参考距离(30=d ~λ10),自由空间衰减值 n 表示环境和建筑物传播损耗指数(1.6~3.3)

δX 表示标准偏差6(3~14)的正态随机变量

二、室内路径损耗因子模型

这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB 衰减因子模型表达试为:

)()log(10)()(00dB FAF d d n d P d P SF L L +??+= (式2)

式中:SF n 表示同层损耗因子(1.6~3.3)

FAF 表示不同层路径损耗附加值(10~20dB )

三、室内自由空间路径损耗附加因子模型

在室内可以认为是自由空间受限的传播路径,这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB ,其传播模型表达式为:

))log(20)()(00dB d d d P d P L L (?++=αβ (式3)

式中:β为路径损耗因子(-0.2~1.6dB/m )

最后,我们利用上述三种模型进行一下室内电波场强覆盖预测:

由于式1中X 与的正态随机变量关系式没有多种,因此实际工程采用式2和式3较多,本文举出二例供工程设计参考用。 例1:假设本工程为某一宾馆的室内分布系统工程,天线输入口功率dBm Pt 5=,吸顶天线增益为dBm Gm 1.2=,同层预测距离15=d 米,0d 设定为1米。)900(5.31)(0MHz f dB d P L ==,)1800(5.37)(0MHz F dB d P L ==。

采用式2先计算出)15(m d P L =、MHz f

900=时总路径损耗值,

其中SF n 取2.8代入式2得:

0)1

15log(8.210)1()15(+?==m P m P L L 9.325.31+=

dB 4.64= 预测出距离信号源15米处的场强:

R m P G P P L M T dBm --+=)15( (衰减储备dBm 10)

dB dB dB dBm 104.641.25--+=

dBm 3.67-=

例2:假定本工程室内分布系统工程同例1 即: dBm P T 5=;dBi G m 1.2=;15=d 米;10=T d 米;

)900(5.31)(0MHt f dB d P L ==;)1800(5.37)(0MHt f dB d P L ==采用式

3先计算出)15(m d P L =,MHz f

900=总路径损耗值,其中β取m dB /6.0,代入式3得:

156.0)115log(

20)1()15(?++=m P m P L L dB dB dB 95.235.31++=

dB 64=

预测出距离信号源15米处的场强

R m P G P P L m t dBm --+=)15( (衰减储备dB 10)

dB dB dB dBm 10641.25--+=

dBb 9.66-=

上述二例用式2和式3预测出覆盖区(15m 米)场强相差不大,但是由于室内传播非常复杂,预测出的场强和实际测量值存在一定偏差,工程设计时需用实测值对传播模型进行修正。

室内传播和路径损耗计算及实例(完整版)

室内传播与路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗得估算来预测无线通信系统在其工作环境下得性能;解释了自由空间传播损耗得计算;电磁波在介质中得发射与反射系数得理论计算就是预测反射与发射系数得工具。下面得一些实例与模型就是在2、4GHz工作频率时给出得。 ------------------------------------------------------------------------------------------- 1、简介 大多数无线应用设计人员最关心得问题就是系统能否正常工作在无线信道得最大距离。最简单得方法就是计算与预测:a)系统得动态范围;b)电磁波得传播损耗。 动态范围对设计者而言就是一个重要得系统指标。它决定了传输信道上(收发信机之间)允许得最大功率损耗。决定动态范围得主要指标就是发射功率与接收灵敏度。例如:某系统有80dB得动态范围就是指接收机可以检测到比发射功率低80dB得信号电平。传播损耗就是指传输路径上损失得能量,传播路径就是电磁波传输得路径(从发射机到接收机)。例:如果某路径得传播损耗就是50dB,发射机得功率就是10dB,那末接收机得接收信号电平就是-40dB。 2.自由空间中电磁波得传播 如上所述,当电磁波在自由空间传播时,其路径可认为就是连接收发信机得一条射线,可用Ferris公式计算自由空间得电波传播损耗: Pr/Pt= Gt、Gr、 (λ/4πR)2 (2、1) 式中Pr就是接收功率,Pt就是发射功率,Gt与Gr分别就是发射与接收天线得增益,R就是收发信机之间得距离,功率损耗与收发信机之间得距离R得平方成反比。公式2、1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2、2) 式中Gr与Gt分别代表接收天线与发射天线增益(dB),R就是收发信机之间得距离,λ就是波长。 当λ=12、3cm时(f=2、44GHz)可得出: PL2、44=-Gr-Gt+40、2+20log(R) (2、3) R得单位为米。 图2-1表示了信号频率2、44GHz,天线得增益为0dBi时得自由空间得损耗曲线。 注意:在此公式中收发天线得极化要一致(匹配),天线得极化不同会产生另一损耗系数。一般情况下对于理想得线极化天线,极化损耗同两个天线得极化方向得夹角得余弦得平方成正比。例如:两个偶极天线得方向夹角为45°时,极化损耗系数为-3dB左右。

简化的路径损耗模型

简化的路径损耗模型 信号传播的复杂性使得用一个单一的模型准确描述信号穿越一系列不同的环境的路径损耗的特征非常困难。准确的路径损耗模型可以通过复杂的射线追踪模型或者经验测量获得,其中必须满足严格的系统规范,或者基站和接入点的布局必须在最佳的位置。然而,出于对不同系统设计的通用权衡分析,有时候最好的方式是用一个简单的模型抓住信号传播的本质特征,而不是求助于复杂的路径损耗模型,后者也仅仅是真实的信道的近似。这样,下面这个路径损耗(以距离为自变量的函数)的简单模型成为系统设计的常用方法。 (2.20) 如果用dB衰减的形式表达,则为: (2.21) 在这个近似公式中,K是无单位常数,取值取决于传播、天线参数和阻塞引起的平均衰减,d0是天线远场的参考距离,γ是路径损耗指数。由于在天线近场存在散射现象,模型(2.20)通常只适用于传播距离d>d0,其中室内环境下假设d0的范围是1-10米,室外环境下假设d0的范围是10-100米。K的值小于1,而且通常被设定为在距离d0处的自由空间路径损耗(这个设定已经被经验测试数据证实): (2.22) 或者K也可以由在d0处的测量数据决定,并且进行进一步的优化,以便模型或者经验数据之间的均方误差(MSE)能够最小化。γ的值取决于传播环境:对于近似遵循自由空间模型或者双路径模型的传播来说,γ值相应地取为2—4。在更复杂的环境中,γ值可以通过拟合经验测试数据的最小均方误差(MMSE,Mimimum Mean Square Error)来取得(如下面的例子所示)。或者γ值也可以由考虑了载频和天线高度的经验模型(如Hata模型、Okumura模型等)来取得。表格2.1概括了900MHz下不同的室内环境和室外环境下的γ值。如果载频更高,则路径损耗指数γ也会更高。主要指出的是,室内环境下γ的取值范围变化比较大,这是由地板、隔墙和物体引起的信号衰减导致的。

几种典型的无线传播模型介绍

几种典型的无线传播模型介绍 传播模型是非常重要的。传播模型是移动通信网小区规划的基础。模型的价值就是保证了精度,同时节省了人力、费用和时间。在规划某-区域的蜂窝系统之前,选择信号覆盖区的蜂窝站址使其互不干扰,是一个重要的任务。如果不用预期方法,唯-的方法就是尝试法,通过实际测量进行。这就要进行蜂窝站址覆盖区的测量,在所建议的方案中,选择最佳者。这种方法费钱,费力。 利用高精度的预期方法并通过计算机计算,通过比较和评估计算机输出的所有方案的性能,我们就能够很容易地选出最佳蜂窝站址配置方案。因此,可以说传播模型的准确与否关系到小区规划是否合理,运营商是否以比较经济合理的投资满足了用户的需求。 由于我国幅员辽阔,各省、市的无线传播环境千差万别。例如,处于丘陵地区的城市与处于平原地区的城市相比,其传播环境有很大不同,两者的传播模型也会存在较大差异。因此如果仅仅根据经验而无视各地不同地形、地貌、建筑物、植被等参数的影响,必然会导致所建成的网络或者存在覆盖、质量问题,或者所建基站过于密集,造成资源浪费。随着我国移动通信网络的飞速发展,各运营商越来越重视传播模型与本地区环境相匹配的问题。 一个优秀的移动无线传播模型要具有能够根据不同的特征地貌轮廓,像平原、丘陵、山谷等,或者是不同的人造环境,例如开阔地、郊区、市区等,做出适当的调整。这些环境因素涉及了传播模型中的很多变量,它们都起着重要的作用。因此,一个良好的移动无线传播模型是很难形成的。为了完善模型,就需要利用统计方法,测量出大量的数据,对模型进行校正。传播模型的校正问题将在第 4 节中做具体的介绍。一个好的模型还应该简单易用。模型应该表述清楚,不应该给用户提供任何主观判断和解释,因为主观判断和解释往往在同-区域会得出不同的预期值。 一个好的模型应具有好的公认度和可接受性。应用不同的模型时,得到的结构有可能不-致。良好的公认度就显得非常重要了。多数模型是预期无线电波传播路径上的路径损耗的。所以传播环境对无线传播模型的建立起关键作用,确定某-特定地区的传播环境的主要因素有: ( l )自然地形(高山、丘陵、平原、水域等); ( 2 )人工建筑的数量、高度、分布和材料特性; ( 3 )该地区的植被特征; ( 4 )天气状况; ( 5 )自然和人为的电磁噪声状况。 另外,无线传播模型还受到系统工作频率和移动台运动状况的影响。在相同地区,工作频率不同,接收信号衰落状况各异;静止的移动台与高速运动的移动台的传播环境也大不相同。-般分为:室外传播模型和室内传播模型。常用的模型如表1 所示。

路径损耗模型和参数-ITU

ITU-R P. 1791建议书* 用于评估超宽带设备影响的传播预测方法 (ITU-R 第211/3号课题) (2007年) 范围 本建议书提供适用1-10 GHz频率范围的方法,以计算视距(LoS)和障碍路径环境下室内和室外超宽带(UWB)系统的路径损耗,并评估传统窄带接收机从UWB发射机接收功率的情况。 国际电联无线电通信全会, 考虑到 a) 超宽带(UWB)技术是一项迅速发展的无线技术; b) 采用UWB技术的设备使用多个高速数据流,并覆盖广泛带宽; c) 了解传播特性对于评估UWB设备的影响至关重要; d) 人们既需要了解有关干扰评估的实验(即适用各站址)模型和意见,又需要了解进行详细传播预测所需的确定性(或针对具体站址的)模型, 注意到 a) ITU-R P. 525建议书提供有关自由空间衰减的计算方法; b) ITU-R P. 528建议书提供VHF、UHF和SHF频段航空移动和无线电导航业务的传播曲线; c) ITU-R P. 618建议书提供地对空链路的传播数据和预测方法; d) ITU-R P. 452建议书阐述约0.7 GHz至30 GHz频率范围内地球表面台站之间微波干扰的评估程序; e) ITU-R P. 1238建议书提出有关900 MHz至100 GHz频率范围的室内传播指导; f) ITU-R P. 1411建议书提供约300 MHz至100 GHz频率范围室外短路径的传播方法; *应提请无线电通信第1研究组注意本建议书。

g) ITU-R P.1546建议书提出有关30 MHz至3 GHz频率范围距离为1公里或1公里以上系统的传播指导; h) ITU-R P. 530建议书提供地面视距(LoS)系统设计的传播数据和预测方法, 建议 1应采用本建议书附件1提供的信息和方法计算1 GHz至10 GHz频率范围内UWB设备的路径损耗; 2应采用本建议书附件2提供的信息评估传统窄带接收机从UWB发射机接收的功率。 附件 1 1 引言 UWB视距传输损耗对频率的依赖主要由天线特性决定。因此,通常用于窄带信号传播建模的传统路径损耗模型对于计算UWB信号的路径损耗十分有益。 迄今为止,人们已在复杂多样的环境条件下对UWB传播进行了广泛研究和实验,从而建立了UWB的传播模型及其参数。 UWB设备既可能用于室内,也可能用于室外。在进行传播研究时,人们需要详细了解室内站址的具体情况,包括其几何图形、材料和家具等。对于室外传播,有关建筑物和树木的信息对传播计算至关重要。这些因素往往造成UWB接收机能够解决的、多径效应的产生。因此,UWB传播模型应当容纳UWB设备将运行其中的、典型环境的路径损耗和多径特性。能够广泛代表相关环境传播特性的模型更有助于人们实现上述目标。通常而言,这些模型不需要用户获得大量输入信息即可以进行计算工作。 本建议书确定相关的运行环境和路径损耗类别,并提供估算此类条件下UWB路径损耗的方法。应在确定UWB链路预算工作中采用本建议书。 2 实际运行环境 本建议书仅从无线电传播的角度对环境加以分类。本建议书确定两种不同的室内传播环境和一种室外传播环境。人们认为,这些环境是最具代表性的环境。表1列出了上述三种环境。由于认识到在各类别中存在多种不同的环境,因此本建议书并非旨在对每一种可能的情况都进行建模,而是给出能够代表人们通常遇到的环境的传播模型。

中国移动室内分布系统

室内分布系统简介

目录 1室内分布系统概述 (3) 2 室内分布系统的技术方案 (3) 3室内分布系统的建设 (5)

1室内分布系统概述 随着移动用户的飞速增加、高层建筑越来越多,话务密度和覆盖要求也不断上升,城区建筑物规模大,密度高,对移动电话信号有很强的屏蔽作用。在大型建筑物的低层、地下商场、地下停车场、电梯等环境下,移动通信信号弱,形成了移动信号的盲区和阴影区;在中间楼层,由于来自周围不同基站信号的重叠,造成异频污染,手机频繁切换,甚至掉话,严重影响了手机的正常使用;在建筑物的高层,由于受基站天线的高度限制,无法正常覆盖,也是移动通信的盲区。室内分布系统针对室内用户群、主要解决建筑物内移动通信网络的网络覆盖、并提升网络容量和网络质量的一种解决方案。 进行室内分布系统建设的直接理由是: ●覆盖方面:由于建筑物自身的屏蔽和吸收作用,造成了无线电波较大的传输衰耗,形成 了移动信号的弱场强区甚至盲区。 ●容量方面:建筑物诸如大型购物商场、会议中心,由于移动电话使用密度过大,局部网 络容量不能满足用户需求,无线信道发生拥塞现象。 ●质量方面:建筑物高层空间极易存在无线频率干扰,服务 小区信号不稳定,话音质量难以保证,并出现掉话现象 ←需要建设室内分布的场景: ←室内盲区; ←话务量高的大型室内场所; ←车站、机场、地铁、隧道、商场、体育馆、购物中心、会展中心等重点保证场合; ←大型高层建筑、写字楼、宾馆、公寓、大型小区、高校及产业园区等宏基站无法深入的室内、室外场所。 2 室内分布系统的技术方案 ←室内分布系统的原理是利用室内天线分布系统将移动基站的信号均匀分布在室内每个角落,从而保证室内区域拥有理想的信号覆盖。

室内分布系统的工作原理及技术要求

室内分布系统的工作原理及技术要求

一、室内分布系统原理 (1) 1.概述 (1) 2.室内分布系统组网 (2) 3.CDMA与GSM共用信号分布系统的组网 (9) 4.多系统共用信号分布系统组网 (11) 5.室内分布系统的监控 (1) 6.共用信号分布系统组网时系统间的干扰协调 (2) 二、室内分布系统的技术要求 ............................................................................... 错误!未定义书签。 1.系统技术指标 ................................................................................................... 错误!未定义书签。 2.天馈线及无源器件技术指标 ........................................................................... 错误!未定义书签。 三、室内分布系统的相关技术 ............................................................................... 错误!未定义书签。 1.室内分布系统的室内电磁传播模型 ............................................................... 错误!未定义书签。 2.室内分布系统的噪声分析 ............................................................................... 错误!未定义书签。 3、室内分布系统的上下行平衡 ......................................................................... 错误!未定义书签。 四、室内分布系统的工程建设 ............................................................................... 错误!未定义书签。 五、室内分布系统综合考评 ................................................................................... 错误!未定义书签。

室内分布系统试题 答案

室内分布系统考试 单位_____________ 姓名______________ 一、选择题(每题分,共30分) 1.以下器件中属于有源器件的是(C ) A.耦合器 B.功分器 C.干线放大器 D.合路器 2.在800-2500 MHz时,三功分器的最大插入损耗是多少? (B ) A.-≤ B.-≤ C.-≤ D.-≤ 3.在800-2500 MHz时,6dB耦合器直通端的最大插入损耗是多少?(B ) A.-≤2dB B.-≤ C.-≤ D.-≤ 4.在室内分布系统中,楼层的覆盖一般用什么类型的天线?(A ) A.全向吸顶天线 B.定向天线 C.八木天线 D.抛物面天线 5.在室内分布系统中,电梯的覆盖一般用什么类型的天线?(B ) A.全向吸顶天线 B.定向天线 C.八木天线 D.抛物面天线 6.在满足覆盖质量要求和投资预算的前提下,尽量减少干放的使用数量,干放不可串联使用,并联 使用时每个信号源单元所带干放不超过(C ) A.3台 B.4台 C.5台 D.6台 7.在1900 MHz时,1/2馈线每百米损耗为( C ) A. 6 dB B.7 dB C.11 dB D.12 dB 8.在地铁、隧道等一些陕长的环境中,一般采用什么电缆进行覆盖。(C )

A.1/2馈线 B.7/8馈线 C.泄漏电缆 D.1/2软馈线 9.目前建设的室内分布系统中,要求功分器、耦合器等无源器件支持频段范围为( A ) A.800—2500MHz B.800—2200MHz C.1710—2200MHz D.1710—2500MHz 10.室内分布系统布线要求中,驻波比应小于( A ) A. B. C. 14 D. 11.综合室内分布系统中,CDMA/3G/WLAN系统不可共用的器件是( A ) A.干线放大器 B.合路器 C.功分器 D.室内天线 12. 1 W等于多少dBm( C ) A.20dBm B.27dBm C.30dBm D.33dBm 13.以下设备标注中,哪个表示耦合器?( B ) A.PS n-mF B.T n-mF C.CB n-mF D.ANT n-mF 14.Sitemaster的主要作用是用于测试( C ) A.天线口功率B.光路时延C.驻波比D.直放站增益 15.话音质量等级(MOS)的主观判断分为几个等级( C ) A.2; B.4; C.5; D. 6 16.在室内分布系统中,要求信源和干放的输入输出及天线口功率与设计值误差在( B ) A.±1dB B.±2dB; C.±; D.±3dB; 17.在室内分布系统中,要求有源设备接地地阻值为( B ) A.<3欧姆 B.<5欧姆 C.<10欧姆 D.<15欧姆 18.以下直放站中,哪种是需要在LOS(视线连接)条件应用的?( D ) A.同频直放站

3路径损耗模型-ITU

ITU-R P.1238-5建议书 用于规划频率范围在900 MHz到100 GHz内的室内无线电 通信系统和无线局域网的传播数据和预测方法 (ITU-R第211/3号课题) (1997-1999-2001-2003-2005-2007年) 范围 本建议书介绍了在900 MHz 至100 GHz频率范围内的室内传播的指导原则,主要内容如下: –路径损耗模型; –时延扩展模型; –极化和天线辐射图的效应; –发射机和接收机选址的效应; –建材装修和家具的效应; –室内物体移动的效应。 考虑到 a)正在开发将在室内工作的许多短距离(工作范围短于1 km)的个人通信应用; b)正如许多现有产品和热门的研究活动所表明的那样,无线局域网(RLAN)和无线专用交换机(WPBX)需求很旺盛; c)希望设立无线局域网标准,可与无线和有线通信都兼容; d)采用非常低功率的短距离系统在移动和个人环境下提供业务有许多优点; e)在建筑物内的传播特性和在同一区域内许多用户引起的干扰这两方面的知识,对系统的有效设计是非常重要的; f)用于系统初步规划和干扰估算的通用(即与位置无关)模型和用于某些细致评估的定型(或具体地点)模型都是需要的; 注意到 a)ITU-R P.1411建议书为频率范围在300 MHz到100 GHz的室外短距离电波传播提供了指导,并且该建议也应该作为同时存在室内和室外传播条件的那些情况下的参考文件。 建议 1 对工作于900 MHz到100 GHz之间的室内无线电系统的传播特性进行评估时,采用附件1中的资料和方法。

附件 1 1 引言 室内无线电系统的传播预测在某些方面是与室外系统有区别的。跟室外系统中一样,根本目的是保证在所要求的区域内有效覆盖(或在点对点系统情况下保证有可靠的传播路径)和避免干扰,包括系统内的干扰以及其他系统的干扰。然而,在室内情况下,覆盖的范围是由建筑物的几何形状明确地限定的,而且建筑物本身的各边界将对传播有影响。除了一建筑物的同一层上的频率要重复使用外,经常还希望在同一建筑物的各层之间要频率共用。这样就增添了三维干扰问题。最后,距离很短,特别是使用毫米波频率的场合,意味着无线电路径附近环境的微小变化可能会对传播特性有重大的影响。 由于这些因素的复杂性,若要着手室内无线电系统的具体规划,就需要知道特定位置的详细情况,如几何形状、材料、家具、预期的使用模型等。但是,为了进行系统初步规划,必须估计出覆盖该区域内所分布的移动站所需要的基站数目以及要估计与其他业务的可能干扰或系统之间的潜在干扰。对这些系统规划的情况而言,通常必须要有代表该环境中的传播特性的模型。同时,为了完成计算,该模型不应该要求使用者提供许多输入信息。 本附件主要说明了在室内无线电环境中遇到的传输损伤的通用的、与位置无关的模型和定性的建议。如有可能,也给出与位置有关的专用模型。在许多情况下,基本模型可用的数据受限于频率或试验环境。当可以取得更多的数据时,希望将附件中的建议加以扩充。同样,要根据使用这些模型过程中取得的经验来改善这些模型的精度。但是,本附件代表了目前可以使用的最佳建议。 2 室内无线电系统中的传播损伤和质量的度量标准 室内无线电信道的传播损伤主要由下列因素所造成: —来自房间内的物体(包括墙和地板)的反射和物体附近的衍射; —穿过墙、地板和其他障碍物的传输损耗; —高频情况下能量的通道效应,特别时走廊中这个效应更明显; —房间中人和物体的运动,包括在无线电链路的一端或两端可能的运动,而引起的传播损伤如下: —路径损耗——不仅有自由空间损耗,还有由于障碍物以及穿过建筑物材料传输引起的附加损耗,并且由于通道效应,自由空间损耗可能会减小; —路径损耗随时间和空间的变化; —从波的反射分量和衍射分量而引起的多径效应; —由于移动终端的随机位置变化而引起的极化失配。 室内无线通信业务可以由如下特性来表征: —高/中/低数据速率;

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

室内分布系统工程施工组织设计

(三)室内分布系统工程施工组织设计公共部分 工程概况:见附件册具体标段 编制依据: 中国移动通信集团四川有限公司的招标文件。 四川移动公司ISO9000标准化验收规范 四川移动公司室内覆盖工程安装实施细则和验收规范 四川移动直放站工程安装实施和验收规范 中移网[2000]605号《中国移动通信集团公司工程项目竣工验收暂行办法》 1997年10月颁发的中华人民共和国《邮电通信定员》劳动和劳动安全行业标准(LD/T102-1997) 我单位的技术装备、人员素质及施工经验 根据工程规模指定详细的施工组织设计:见附件册具体标段 4.1 项目组织结构 4.1.1项目经理部的设置计划

4.1.2施工人员的构成与分工:见附件册具体标段 4.1.3项目人员岗位职责 1、项目部经理:负责项目的组织、计划安排、劳力组织调配、工期安排、施工质量控制、施工协调、生产安全、材料筹供等工作,全面实施项目管理。督促施工员、材料员、安全员、质检员、资料员认真履行岗位职责。安排好施工队的工作,随时调度平衡施工力量,保证工程进度。 2、市场谈楼人员:负责站点的选择;负责与移动的合同管理人员沟通合同签订方面的问题;负责移动与站点管理方的合作协议签订;负责施工中的协调等工作。 3、工程师:负责工程项目的现场管理、设计变更配合和现场技术指导工作;负责处理施工现场突发事件等工作。 4、施工队长:负责对工程项目的现场施工,保障按图施工和施工进度;负责施工质量,对施工材料、工具等进行保管和分配。 5、物流主管:负责对施工的物料、工具供应和管理 6、质量检测员:根据移动公司对工程质量的要求,检查工程施工质量是否达到标准;负责对材料(包括:馈线、器件等)和设备进入施工现场的检验;对施工机具、仪器仪表、工具等实施有效期、完好率的质量检(效)验。达不到质量标准的,不能使用,此项检查时,邀请安全员配合。 7、安全员:根据国家安全施工的相关规范,检查工程施工过程中安全措施是否到位,以保障安全生产;作好各施工队的安全岗位教育,认真组织开展安全活动,并做好记录,随时准备接受上级安全检查;检查督促施工人员遵守安全规定,在高空作业,爬杆、搬运等工作中,应正确使用防护用品和按规定穿戴防护用品;严格执行安全生产、生产安全、不安全不生产的施工原则,及时填写事故报告。 4.2 工程施工协调计划 见附件册具体标段

移动通信室内路径损耗传播模型

移动通信室内路径损耗传播模型 ——苏华鸿—— 在室内电磁波传播受影响的因素很多,在有限的空间内环境变化大,墙、顶、地、人和室内物体等都会引起电磁的反射、折射、散射和吸收,电磁场分布十分复杂,电波传播模型相应多种多样。本文着重介绍在测试的基础上总结出来的三种传播模型,可供移动通信室覆盖预测参考用。 一、室内小尺度路径损耗 室内小尺度路径损耗是指短距离、短时间内快速衰落(衰落深度达20~40dB ),其传播模型表达式为: δX d d n d P d P L L +??+=)log(10)()(00 (dB) (式1) 式中:)(d P L 表示路径d 的总损耗值; )(0d P L 表示近地参考距离(30=d ~λ10),自由空间衰减值 n 表示环境和建筑物传播损耗指数(1.6~3.3) δX 表示标准偏差6(3~14)的正态随机变量 二、室内路径损耗因子模型 这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB 衰减因子模型表达试为: )()log(10)()(00dB FAF d d n d P d P SF L L +??+= (式2) 式中:SF n 表示同层损耗因子(1.6~3.3) FAF 表示不同层路径损耗附加值(10~20dB )

三、室内自由空间路径损耗附加因子模型 在室内可以认为是自由空间受限的传播路径,这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB ,其传播模型表达式为: ))log(20)()(00dB d d d P d P L L (?++=αβ (式3) 式中:β为路径损耗因子(-0.2~1.6dB/m ) 最后,我们利用上述三种模型进行一下室内电波场强覆盖预测: 由于式1中X 与的正态随机变量关系式没有多种,因此实际工程采用式2和式3较多,本文举出二例供工程设计参考用。 例1:假设本工程为某一宾馆的室内分布系统工程,天线输入口功率dBm Pt 5=,吸顶天线增益为dBm Gm 1.2=,同层预测距离15=d 米,0d 设定为1米。)900(5.31)(0MHz f dB d P L ==,)1800(5.37)(0MHz F dB d P L ==。 采用式2先计算出)15(m d P L =、MHz f 900=时总路径损耗值, 其中SF n 取2.8代入式2得: 0)1 15log(8.210)1()15(+?==m P m P L L 9.325.31+= dB 4.64= 预测出距离信号源15米处的场强: R m P G P P L M T dBm --+=)15( (衰减储备dBm 10) dB dB dB dBm 104.641.25--+= dBm 3.67-=

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

中国移动室内分布系统技术规范

中国移动室内分布系统技术规范

中国移动室内分布系统 技术规范 四川移动通信有限责任公司 2001年7月

目录 一、建设室内分布系统的必要性 (1) 二、中国移动室内覆盖目标要求 (2) 三、室内分布系统技术 (3) 1、室内分布系统的含义与作用 (3) 2、室内分布系统的信号源 (4) 2.1.直放站 (4) 2.2.宏蜂窝或微蜂窝 (6) 3、无源室内分布系统 (7) 3.2.电缆式 (7) 3.2.泄漏电缆式 (9) 3.3.光纤式 (10) 4、有源室内分布系统 (12) 5、电梯覆盖的解决方案 (14) 四、900/1800M在室内分布系统中的应用 (17) 五、室内分布系统选型要求 (20) 1、厂商资质要求 (20) 2、各配件、器件、缆线技术指标 (20) 2.1.无源天馈分布设备 (20) 2.2.室内覆盖有源天线分布设备(系统指标) (27) 2.3.干线放大器 (27) 3、具备或部分具备系统监控 (29) 4、设计施工能力 (29) 六、室内分布系统验收标准 (30) 1、安装工艺要求 (30) 1.1.有源设备安装 (30) 1.2.室内天线安装 (30) 1.3.馈线及相关设施 (31) 1.4.无源器件安装 (33) 1.5.接地 (33) 1.6.标签 (33) 2、网络质量要求 (34) 2.1.覆盖达标 (34) 2.2.质量标准 (34) 2.3.网络运行指标 (35) 2.4.监控系统 (36)

一、建设室内分布系统的必要性 随着我国经济的发展,人民生活水平的不断提高,移动通信事业得到了长足的进步。中国移动的GSM蜂窝移动通信系统自1994年投入商业运行以来,一直以极高的速度发展。截至2000年底,全国GSM移动用户数量已突破6000万,网络规模容量及用户数已居世界第三位。与此相适应,中国移动的网络建设规模也在不断扩大,网络覆盖日益完善。 在此基础上,室内覆盖已成为今后网络覆盖的重点。完善室内覆盖,是为用户提供优质服务的需要,是竞争的需要。随着网络的发展,用户的要求也在不断提高,几年前用户满足于能够打电话,现在则要求随时随地可以通话,室内话务已占相当大的比重。在此情况下,必须加强室内覆盖,满足用户需求,提供优质服务。另外,竞争对手经过几年的发展,已具备相当规模,并且具有资费优势,与其相较,中国移动的核心竞争力在于网络质量,实现室内覆盖是体现差异,增强竞争力的重要手段。 室内分布系统是实现室内覆盖的主要方法,作

室内分布系统有哪些无源器件

室内分布系统有哪些无源器件 室内分布系统中长用的器件分有源器件和无源器件,它们都属于线性互易元件。线性互易元件只对微波信号进行线性变换而不改变频率特性,并满足互易原理。 无源器件指像滤波器、分配器、谐振回路等以实现信号匹配、分配、滤波等; 有源器件指像微波晶体管、微波固态谐振器等以实现信号产生、放大、调制、变频等。室内分布系统中经常用到的无源器件有功分器、耦合器、基站耦合器、合路器、电桥、干线放大器、负载、射频电缆等。 一、功分器 1. 概念 功分器(全称功率分配器)一种将一路输入信号能量分成两路或多路输出相等能量的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。一个功分器的输出端口之间应保证一定的隔离度。基本分配路数为2 路、3 路和4 路,通过它们的级联可以形成多路功率分配。使用功分器时,若某一输出口不接输出信号,必须接匹配负载,不应空载。

2. 主要指标 功分器的主要技术参数有插入损耗、分配损耗、驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。下表是宽频腔体功分器一些典型指标(参考): 频带宽度:这是各种射频/微波电路的工作前提,功分器的设计结构与工作频率密切相关。必须首先明确功分器的工作频率,才能进行下面的设计 功率损耗:分为分配损耗和插入损耗。 分配损耗:主路到支路的分配损耗实质上与功分器的功率分配比有关,其计算公式 为所有路数的输出功率之和与输入功率的比值,一般理想分配损耗由下式获得: 理想分配损耗(dB)=10log(1/N) N为功分器路数 插入损耗:输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,考虑输入端的驻波比所带来的损耗。

移动通信室内分布系统设计方案(论文)

移动通信室内分布系统方案设计学院:电子与信息工程学院 学生姓名:陈 专业班级:2011级移动通信技术(1)学号: 指导老师: 2014年6月20

摘要 随着经济的发展,人民生活水平的提高移动通信用户不断的增加,加上对建筑物的建设要求越来越高。这些建筑物规模大、质量好,对移动电话信号有很强的屏蔽作用。在大型建筑物的低层、地下商场、地下停车场等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区和阴影区;在中间楼层,由于来自周围不同基站信号的重叠,产生乒乓效应,手机频繁切换,甚至掉话,严重影响了手机的正常使用;在建筑物的高层,由于受基站天线的高度限制,无法正常覆盖,也是移动通信的盲区。另外,在有些建筑物内,虽然手机能够正常通话,但是用户密度大,基站信道拥挤,手机上线困难。特别是移动通信的网络覆盖、容量、质量是运营商获取竞争优势的关键因素。网络覆盖、网络容量、网络质量从根本上体现了移动网络的服务水平,是所有移动网络优化工作的主题。室内覆盖系统正是在这种背景之下产生的。根据相关资料统计部分地区的室内话务量在总话务量中占有较高的比例。因此加强室内覆盖对于提高移动通信质量具有重要意义。 关键词:移动通信;室内分布覆盖;系统容量

Abstract With economic development, people's living standards improve mobile users continue to increase, coupled with the construction of the buildings have become increasingly demanding. These buildings are in large scale, good quality, to the mobile phone signal has the very strong shielding effect. In large buildings in the lower layer, such as underground parking environment of mobile communication, mobile phone signal is weak, cannot use normally, formation of mobile communication blind area and in the shadows, in intermediate floor, because around the different base station signal overlap, from the formation of the ping-pong effect, frequent switching of mobile phone, and even drop, seriously affecting the mobile phone shop the normal use; at the top, due to base station antenna height restriction, can not cover, but also the blind area of mobile communication. In addition, in some buildings, while the mobile phone to the normal call, but the user density, base station channels congestion, difficulty of mobile phone line, network coverage system is under this kind of background generation. A high proportion of the total traffic in accordance with the relevant statistics indoor traffic in some areas. Therefore, strengthening indoor coverage of mobile communication for improving the quality of great significance. Keywords: mobile communications; indoor distribution coverage; system capacity

论移动通信室内分布系统设计

论移动通信室内分布系统设计 发表时间:2018-09-27T11:09:54.387Z 来源:《防护工程》2018年第10期作者:何志丰[导读] 使通话质量严重下降。在此情况下,室内分布系统应运而生。室内分布系统是针对室内用户群、用于改善建筑物内移动通信环境的一种成功的方案;是利用室内天线分布系统将移动基站的信号均匀分布在室内每个角落,从而保证室内区域拥有理想的信号覆盖。关键词:室内分布系统;系统设计 何志丰 中国移动集团广东有限公司广州分公司 516003摘要:随着移动通信的快速发展,移动电话已逐渐成为人民群众日常生活中广泛使用的一种现代化通信工具,同时广大移动用户对移动通信服务质量的要求也越来越高,他们已不再单单满足于良好的室外移动通信服务,而且也要求在室内(特别是星级酒店、大型商场、高级写字楼等)能享受优质的移动通信服务。而现代建筑由于多以钢筋混凝土为骨架,再加上全封闭式的外装修,对无线电信号的屏蔽衰减特别厉害,使通话质量严重下降。在此情况下,室内分布系统应运而生。室内分布系统是针对室内用户群、用于改善建筑物内移动通信环境的一种成功的方案;是利用室内天线分布系统将移动基站的信号均匀分布在室内每个角落,从而保证室内区域拥有理想的信号覆盖。关键词:室内分布系统;系统设计一、室内分布系统的组成、应用及类型室内分布系统通过功分器、耦合器等无源功率分配器件和干线放大器等有源器件及馈线、室内天线等设备将无线信号均匀分配到室内各个区域,实现无线信号对室内的延伸覆盖。 1.室内分布系统由两部分组成:(1)信号源(微蜂窝、宏蜂窝、直放站、BBU+RRU等);(2)分布系统(同轴电缆、光缆、泄漏电缆、光端机、干线放大器、功分器、耦合器、天线等)。 2.需要建设室内分布系统的区域有:◇室内盲区:新建大型建筑、停车场、办公楼、宾馆。◇话务量高的大型室内场所:车站、机场、商场、体育馆、购物中心,增加微蜂窝建立分层结构。◇发生频繁切换的室内场所:高层建筑的顶部,收到多个基站的功率近似的信号。 3.室内分布系统有以下几种类型:(1)同轴电缆分布方式无源分布系统信号源通过组合使用的耦合器、功分器等无源器件进行分路,经馈线将信号均匀分布到室内各个角落。通过仔细的链路计算,达到信号的均匀分布。天线使用适合室内使用的吸顶式或壁挂式天线。覆盖面积小,适用于中小型楼宇室内覆盖场所。(2)同轴电缆分布方式有源分布系统在建筑物覆盖面积较大时,前述的无源天馈线很难满足需要;可增加中继设备,如放大器,以补偿信号在传输过程中的损耗。(3)光纤分布系统 当覆盖的区域比较分散、相距较远或地形比较复杂时,可以采用光纤分布系统,通过拉远的方式对各个分离的室内区域进行覆盖。光纤站近端在信号源所在之处,通过近端实现光电转换,将射频信号转换为光信号,并经光分路器分配进入光纤传输至各远端;光纤远端为光电转换取出射频信号,并经过功率放到输入室分天馈系统。(4)泄漏电缆分布系统 信号源通过耦合器、功分器等无源器件进行分路后,送入泄漏电缆中,并通过电缆外导体的一系列开口,在外导体上产生表面电流,从而在电缆开口处横截面上形成电磁场,这些开口就相当于一系列的天线起到信号的发射和接收作用。在信号传输过程中,将信号均匀的分布在所经过的区域,这种方式称为泄漏电缆分布系统。 二、室内分布系统的规划和设计 2.1 规划原则和指标 任何无线制式的室分系统在大的设计方向上都是保证覆盖水平、满足容量要求、抑制干扰信号,从而提高业务的质量。(1)设计时结合建筑结构特点,不能改变建筑物的结构和装修,保证美观;(2)满足国家电磁辐射环保规定,即《环境电磁波卫生标准》(GB9175-88)和《电磁辐射防护规定》(GB8702-88)。要求室内天线口总功率一般不能大于15dBm;(3)覆盖水平的一般要求是移动终端在目标区域内的95%的地理位置,99%的时间可接入网络;(4)无线覆盖的边缘强度:室内边缘强度≥-85dBm,WLAN边缘强度≥-75dBm,在室外10m应满足导频信道功率RSCP小于-95dBm,电梯和地下车库要求≥-90dBm;(5)规定在基站接收端位置收到的上行噪声电平应小于-120dBm;(6)控制好系统干扰,做好邻区规划,保证服务小区和其他小区正常切换。 2.2 设计流程 (1)站点勘察主要是了解目标楼宇的物业情况、建筑结构、周边覆盖情况、已有室分系统的情况为工程设计提供依据;(2)确定覆盖方式是根据室内站点的建筑面积、用途、结构特点等勘察结果,结合覆盖质量的要求,进行覆盖和容量的估算,确定信号源、功分器、合路器和天线等射频器件的选用,计算信号源、传送器件和天线的数量。(3)场强模拟测试是由于室内结构复杂,通过模拟测试可以更精确地模拟无线信号的传播模型,从而确定天线的具体安装位置、型号和发射功率。这也是室分精确覆盖的必要环节。 2.3室内分布系统天线布放方式(1)走廊交叉位置布放天线

相关文档
相关文档 最新文档