文档库 最新最全的文档下载
当前位置:文档库 › 含氢介质内中子能谱测量

含氢介质内中子能谱测量

含氢介质内中子能谱测量
含氢介质内中子能谱测量

 第38卷增刊原子能科学技术

Vol.38,Suppl.

 2004年7月Atomic Energy Science and Technology

J uly 2004

含氢介质内中子能谱测量

安力,陈渊,郭海萍,牟云峰,王新华,朱传新

(中国工程物理研究院核物理与化学研究所,四川绵阳 621900)

摘要:建立了直径34cm 的含氢慢化球和含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合的2种基准装置,加速器的d 2T 中子入射到含氢慢化介质,用<18mm ×20mm 的 晶体闪烁探测器测量了2种实验装置内不同位置的1MeV 以上的中子能谱,并处理成不同能量阈值的中子数。在0.95置信水平下,本测量方法的不确定度为4.8%。关键词:d 2T 中子;二维装置;介质内能谱

中图分类号:O571.54 文献标识码:A 文章编号:100026931(2004)S020089204

Measurement of N eutron Spectrum in Medium Containing H ydrogen

AN Li ,CHEN Yuan ,GUO Hai 2ping ,MOU Yun 2feng ,WAN G Xin 2hua ,ZHU Chuan 2xin

(Institute of N uclear Physics and Chemist ry ,China Academy of Engineering Physics ,

P.O.Box 9192213,Mianyang 621900,China )

Abstract : Two benchmarks were established.One is moderation shell containing hydrogen which is 34cm in diameter.The other is composed of the shell and polyethylene cylinder of

<24cm ×30cm which are combinatorial.Measurement of neutron energy spectrum above 1MeV changing with different positions of the experimental assemblies were carried out for in 2cident neutrons from outside using d 2T fusion source of accelerator.Meanwhile ,the spectra were transformed integral spectrum.The scintillation detector of stilbene crystal of <18mm

×20mm was used to measure neutron spectrum.At 0.95level of confidence ,the uncertain 2

ty of the measurement is 4.8%.

K ey w ords :d 2T neutron ;two dimensional assembly ;neutron spectrum in medium 收稿日期:2004204215;修回日期:2004205215

作者简介:安 力(1973-),男,四川仪陇人,助理研究员,硕士研究生,核物理专业

中子与介质相互作用会产生散射反应等各种过程,当介质是大块物质时,作用过程更加复杂。中子与含C 、H 、O 、N 等低原子序数元素材料的作用不同于与含高原子序数元素材料的作用,它主要表现为弹性散射,能谱软化也较快。在以往的基准实验中,中子源均置于球中心测量泄露出来的中子能谱,而对球、柱组合装置的

基准实验开展较少。鉴于此,本工作拟测量含

氢慢化球、含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合2种实验装置内部的中子能谱。

1 实验装置

含氢慢化球外径34cm ,内径4cm ,厚度15cm ,由上、下两半组成,界面间有一条通球心

的28mm ×28mm 方槽。聚乙烯圆柱直径

24cm ,两段各长15cm ,可以组合。当在球和

圆柱组合装置内测量时,含氢慢化球的孔道旋转90°,球柱组合实验装置示于图1

图1 球柱组合实验装置示意图

Fig.1 Schematic diagram of combination of the shell and polyethylene cylinder

2 测量技术

2.1 

α粒子监测中子绝对产额通过测量d 2T

反应产生的伴

随α粒子得到。金硅面垒半导体探测器中心与

D +束成178.9°夹角。为降低测量时伴随α粒子谱的本底,经过几次测量比较,对建立的2套靶室经过几次测量比较得知,将氚靶装在细管内、金硅面垒半导体探测器装在粗管内的靶室,其伴随α粒子谱的本底只有单一的相同尺寸的细管靶室的1/3~1/2,且本底仅占α粒子总数的2%~3%。因此,本实验采用粗细两节管子

构成的靶室进行相应的α粒子监测。2.2 中子谱仪为减小空腔对测量结果的影响,建立了小型 晶体闪烁探测器,探测器的外径为19mm 。

晶体分为有外壳和没有外壳2种,对于无外壳的裸晶体尺寸为<18mm ×20mm ;带有外壳及光反射层的其晶体尺寸为<12mm ×16mm ,加上外壳后其尺寸也为<18mm ×20mm 。对它们的性能进行了测试比较,有外壳及光反射层的 晶体的光输出比无外壳裸晶体的光输出大1/3左右;它们的(n 、γ)分辨性能均达到使用要求。无外壳的裸晶体的能量分辨明显好于有外壳及光反射层的,对于14MeV 中子和137Cs γ射线源,无外壳的裸晶体的能量分辨分别为4.8%和11%。而有外壳及光反射层的晶体对14MeV 中子能谱测量不能满足能量分辨要求。因此实验选用没有外壳的<18mm ×20mm 的 晶体。3 实验方法

在0.75~14MeV 的中子能量范围内,相应的质子能量的光产额相差近80倍。在如此宽的能量范围内一次测量中子能谱十分困难,它受脉冲形状甄别效果和探测器的线性范围的限制,也受多道分析器可用的线性道数范围的限制。因此,在该能量范围内分2段测量,低能段为0.75~5MeV ,高能段为3~16MeV ,3.25~4.5MeV 是两段的衔接部分。

(n ,γ)分辨采用脉冲形状甄别实现,分辨效果与线路参数调节有很大关系,除了得到清晰的(n ,γ)分辨图形之外,更主要的是要保证

在该过程中中子或γ数目不要丢失。为此,将

(n ,γ)分辨线路的常份额甄别器输出(相当于积分数)分一路输到定标器测量计数,同时也把分辨线路的时2幅变换输出分一路到另一个定标器监视计数,在正确调节分辨线路参数情况下,这2个定标器的计数非常接近,而且(n ,γ)分辨图形也清晰。在测量低能段时,高于5MeV 质子能量的

脉冲幅度都已经饱和,而线性门对含有饱和脉

冲比没有饱和脉冲允许通过的能力要小得多。因此,在测量低能段时,线性门的计数率控制在约600s -1,而对高能段,可以允许其控制在约800s -1左右。为了定量测出线性门的门控损失,把线性门的门控输入、输出和多道分析器的

“SCA ”

输出同时输到三路计数器进行比较。在上述计数率控制情况下,门控损失一般均小于

09原子能科学技术 第38卷

2%。

22Naγ射线源作为探测器的能量刻度用源,其2个能量分别为1.275和0.511MeV,对应的康普顿电子能量为1.062和0.341MeV。利用质子和电子光产额关系的光表,即可得到脉冲幅度与质子能量的对应关系。对于测量的高能段,用d2T反应的14MeV中子作为刻度标准,效果更好些。

4 实验测量

含氢慢化球的直径与D+束重合,中子源距球面30cm,对于球柱组合该距离保持不变。

对于含氢慢化球,分别在球心、内表面、距球心9cm处和外表面4个位置进行了1MeV 以上中子能谱测量。测量球表面处的中子能谱时,因为缺少样品方槽相应的塞块,样品球水平旋转90°。

对于球柱组合装置(球柱紧密接合,柱轴线在D束零度方向上重合),测量了球、柱交界面和距离球心31.8cm处的1MeV以上的中子能谱。

5 实验结果

实验得到的大于1MeV的中子能谱是一个微分的结果。2个实验装置的测量能谱随位置的变化关系示于图2和3。由图2和3可以看出,介质内不同位置的能谱变化,反映了中子在介质内输运的宏观效果,越是远离源中子,谱的软化越明显;球柱交界面处的中子谱比没有聚乙烯柱时要硬一些,同时通量也高些,这是由于聚乙烯柱对中子反射的缘故。为了进一步比较,将能谱处理成不同阈能时的积分中子数。积分中子数就是对于一个源中子入射时,高于1MeV的不同能量阈值的总中子数。单一球体和球柱组合2种情况下的积分中子数随中子能量的变化关系示于图4和5。从图4和2可看出,在球心和内球面,

散射中子的份额明显大于距球心9cm的结果;在外球面,不同能量阈值的积分中子数的分布曲线较平坦,这是因为探测器只能探测到泄漏的中子的缘故。对于球柱组合,从图5和3可看出,增加聚乙烯柱时,明显增加了中子的慢化效果,低能段尤为明显。6 不确定度分析

实验布置、实验测量和中子源条件等是实验结果不确定度的主要来源。

由于中子源在实验装置外部,周围环境及各种物质散射的中子有可能进入样品,与入射的中子一起被探测器记录,从而引起误差,其不确定度估计为3%。

测量的2段反冲质子谱用伴随α粒子归一,能谱和不同阈能的积分中子数均归一到一个源中子,因此中子绝对产额监测误差对实验

19

增刊 安 力等:含氢介质内中子能谱测量

结果的影响较大,从2.1节对不同结构靶室的α粒子监测结果的比较可看出,中子绝对源强监测的不确定度小于2.5%。实验时使用的是新氚靶,加速器的D+束流最大不超过10μA,从监测的伴随α粒子谱看出,d2D反应的中子占源中子份额不足1%。

由于测量的中子能量范围较大,低能部分利用22Naγ源刻度,高能部分利用源中子刻度。源中子的能量依赖于D+能量,而D+能量和加速器的高压及氚靶的厚度相关,因此源中子的能量存在误差。同时由于系统能量刻度存在大约2%的不确定度,所以能量刻度总的不确定度为2.5%。

综合以上考虑,本实验结果的不确定度为4.8%。

7 结论

在加速器的源条件下,得到了d2T中子入射到含氢慢化球、含氢慢化球与<24cm×30cm聚乙烯圆柱组合2种实验装置内部的能谱。在实验的不确定度范围内,本结果可供二维数值模拟计算方法检验参考使用。

参考文献:

[1] Chen Y,An L,Mou YF,et al.Leakage Rate of

Combined Hemispherical Shells With D2T Neutron

[J].Fusion Engineering and Design,2003,69:367

~372.

[2] 陈 渊,郭海萍,安 力,等.钒球14MeV中子

泄漏能谱测量[J].原子能科学技术,2002,36

(2):157~159

[3] 白希祥,温琛林,李安利,等.伴随粒子型快中子

飞行时间谱仪[J].原子能科学技术,1977,1:

20~36.

[4] Brooks FD.A Scintillator Counter With Neutron

and G amma2ray Discriminators[J].Nuclear Instru2

ments and Methods,1959,4:151~163.

29原子能科学技术 第38卷

水中氚活度的液闪测量分析方法操作规程

水中氚活度的液闪测量分析方法操作规程 1 实验原理 将含氚水样中常压蒸馏,收集蒸馏液的中间部分,然后将一定量的蒸馏液与一定量的闪烁液混合,暗适应后用低本底液体闪烁谱仪测量样品的活性。猝灭校正采用内标准源法,扣除本底,标准样品与本底样品另行配备以作效率刻度。 2 试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂。 2.1 高锰酸钾,KMnO4。 2.2 氢氧化钠,NaOH。 2.3 闪烁液。 2.4 标准氚水,浓度和标准待测试样尽量相当,不准确度≤±3%。 2.5 无氚水,含氚浓度低于0.1Bq/L的深层地下水。 2.6 蒸馏水。 3 仪器和设备 3.1 低本底液体闪烁谱仪,计数效率大于15%,本底小于2 计数/min。 3.2 分析天平,感量0.1mg,量程大于10g。 3.3 蒸馏装置,包括蒸馏瓶,500mL;蛇形冷凝管,250mL;电热炉;冷却水循环器。3.4 容量瓶,50mL ,500mL ,1000mL。 3.5 样品瓶,低钾玻璃瓶、聚乙烯、聚四氟乙烯或石英瓶,20mL。 3.6 移液管,10mL;移液枪,1mL。 3.7 电导率仪。 3.8 磨口塞玻璃瓶或塑料瓶,250mL。 4 样品前处理 4.1 标准样品配备 4.1.1 取氚标准源溶液小瓶,稀释溶解于500mL容量瓶中贮存备用。 4.1.2 根据测量需要,取xmL备用标准液,稀释至8mL加入至20mL样品计数瓶中,再加 入12mL闪烁液,旋紧瓶盖,振荡混合均匀后保存备用。根据标准源现有活度A o可得此标准样品活度为D=xA o/500,衰变/min。

4.2 待测样品制备 4.2.1 取300mL 水样,放入蒸馏瓶中,然后向蒸馏瓶中加入0.3g 高锰酸钾和1.5g氢氧化 钠。盖好磨口玻璃塞子,并装好蛇形冷凝管,加热蒸馏,将开始蒸出的50‐100mL 蒸馏液弃去,然后收集中间的约100mL 蒸馏液收集于磨口塞玻璃瓶或塑料瓶中准备用于样品测量,其余舍弃。 4.2.2 用电导率仪测定蒸馏液的电导率≤5μS·cm-1。如果电导率≥5μS·cm-1,水样应重 新蒸馏。 4.2.3 取8.00mL 蒸馏液(4.2.1)和12.00mL 闪烁液,放入20mL 样品计数瓶中,旋紧瓶 盖,振荡混合均匀后保存备用。 4.3 本底样品制备 将无氚水按4.2.1 步骤进行蒸馏,取其蒸馏液8.00mL 放入20mL 样品计数瓶中,再加入12.00mL 闪烁液,旋紧瓶盖,振荡混合均匀后保存备用。现暂时使用超纯蒸馏水代替无氚水制备本底样品。 5 样品测量与分析 5.1 把制备好的试样,包括本底试样,待测试样和标准试样,同时放入低本底液体闪烁谱 仪的样品室中,避光12 小时以上。 5.2 调试仪器使之达到正常工作状态。打开WinQ软件,仔细选择并确定氚测量的各项参 数,使仪器的测量道对所测样品的灵敏度优值达到最大。 5.3 在选定氚测量道内,对制备的本底试样以确定的计数时间间隔进行计数。对于环境低 水平样品测量,本底试样的计数时间至少应大于1000min。 5.4 选用确定计数时间间隔,在氚测量道,对标准试样进行计数,求出标准试样的计数率, 然后用下式计算仪器的计数效率: 式中:E——仪器的计数效率,(计数/min)/(衰变/min); N d——标准试样计数率,计数/min; N b——本底试样计数率,计数/min; D——加入到标准试样中氚的衰变数,衰变/min。 上述分析过程可通过设备自带Easy View软件操作控制自动获得。

用遗传算法求解中子能谱

第44卷第10期原子能科学技术Vol.44,No.10 2010年10月Atomic Energy Science and Technology Oct.2010 用遗传算法求解中子能谱 王冬,何彬,张全虎 (第二炮兵工程学院102教研室,陕西西安710025) 摘要:由多球中子谱仪的响应矩阵和测量结果得到中子能谱属于少道解谱问题,存在多种可能解,因此,解谱过程是在解空间中寻找问题的最优解。遗传算法作为优化算法的一种,在求解这类问题上具有很大优势,通过基因操作,遗传算法可获得问题的全局最优解。本文根据中子能谱求解问题的特点,提出了一种新的适应度函数,它由1个距离项和1个惩罚项组成,距离项用于保证计算结果能够再现测量结果,惩罚项用于保证解的连续性,避免求解结果数据的剧烈变化。选择了5种具有代表性的能谱作为真实能谱,并将其与响应函数相乘后的结果作为模拟测量结果,用遗传算法求解的结果与真值符合较好,且能很好地再现模拟测量结果,表明了采用这种适应度函数的遗传算法在求解中子能谱中的可行性。 关键词:多球中子谱仪;中子能谱解谱;遗传算法;适应度函数;惩罚函数 中图分类号:O571.54 文献标志码:A 文章编号:1000-6931(2010)10-1270-06 Unfolding Neutron Spectrum Using Genetic Algorithm WANG Dong,HE Bin,ZHANG Quan-hu (Staffroom102,The Second Artillery Engineering College,Xi’an710025,China) Abstract: Derivation of neutron energy spectrum from multi-sphere neutron spectrome-ter’s experimental data is a kind of few channel problems,and therefore has more thanone solution.Most unfolding methods try to search among the solution space to find thesolution that best fit the measurement data and the response function.As a kind of opti-mization strategy,genetic algorithm could find the global optimal among the searchspace.A new fitness function which contains a distance part and a penalty part was con-structed in this research.The distance part is the square distance between the individualand the measurement data.The penalty part which is a function associated with the con-tinuity of individual was used to avoid intensively change of unfolded data.Five classicalneutron spectra were chosen as benchmark spectra.The results of the benchmark spec-tra multiplied by the response function were acted as input measurement data of theunfolding program.Unfolded results show that they are well agreeable with the truespectra,proven the feasibility of unfolding neutron spectrum using genetic algorithm.Key words:multi-sphere neutron spectrometer;neutron spectrum unfolding;geneticalgorithm;fitness function;penalty function 收稿日期:2009-09-22;修回日期:2010-02-09 作者简介:王冬(1980—),男,河北深泽人,博士研究生,核技术及应用专业

α射线能谱测量

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制 目录 1实验目的 (1) 2实验内容 (1)

3实验原理 (1) α能谱 (1) α放射源 (2) α放谱仪 (3) 探测器测量α射线能谱相关原理 (4) α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8) 1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为,能量最小232Th为),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的

【CN109901217A】中子能谱测量系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910288957.3 (22)申请日 2019.04.11 (71)申请人 成都理工大学 地址 610000 四川省成都市成华区二仙桥 东三路1号 (72)发明人 杨剑波 庹先国 李锐 成毅  王洪辉 王磊 刘明哲  (74)专利代理机构 北京超凡宏宇专利代理事务 所(特殊普通合伙) 11463 代理人 周宇 (51)Int.Cl. G01T 3/00(2006.01) (54)发明名称中子能谱测量系统(57)摘要本发明提供一种中子能谱测量系统,属于中子能谱测量技术领域,中子能谱测量系统包括支架、中子探测器以及由外向内逐层套设的N个球形空腔,N为大于等于2的整数,支架包括支撑座以及与支撑座连接的承重柱,承重柱的端部伸入球形空腔的几何中心与第N球形空腔固定,承重柱分别与第N球形空腔外的N -1个球形空腔连接;每个球形空腔分别由至少一个子腔拼接而成,组成同一球形空腔的相邻子腔之间固定;中子探测器包括第一中子探测器和/或第二中子探测器,第一中子探测器设置在第N球形空腔的几何中心,第二中子探测器包括多个,多个第二中子探测器在任一球形空腔的周向分布。能满足多样化探测需求,探测设备高度整合,便携性强,适用范 围广。权利要求书1页 说明书7页 附图3页CN 109901217 A 2019.06.18 C N 109901217 A

权 利 要 求 书1/1页CN 109901217 A 1.一种中子能谱测量系统,其特征在于,包括支架、中子探测器以及由外向内逐层套设的N个球形空腔,N为大于等于2的整数,所述支架包括支撑座以及与所述支撑座连接的承重柱,所述承重柱的端部伸入所述球形空腔的几何中心与第N球形空腔固定,且所述承重柱分别与第N球形空腔外的N-1个球形空腔连接,所述支撑座用于提供稳定支撑; 每个所述球形空腔分别由至少一个子腔拼接而成,组成同一球形空腔的相邻子腔之间固定,所述球形空腔内用于填充慢化剂;所述中子探测器包括第一中子探测器和/或第二中子探测器,所述第一中子探测器设置在所述第N球形空腔的几何中心,所述第二中子探测器包括多个,多个所述第二中子探测器在任一所述球形空腔的周向分布设置。 2.根据权利要求1所述的中子能谱测量系统,其特征在于,组成所述球形空腔的相邻子腔之间设置有连通通道,所述球形空腔内填充的液态慢化剂可通过所述连通通道在相邻的子腔之间流动。 3.根据权利要求1或2所述的中子能谱测量系统,其特征在于,所述第二中子探测器包括4个,4个所述第二中子探测器在第二球形空腔内沿周向均布设置。 4.根据权利要求1或2所述的中子能谱测量系统,其特征在于,每个所述球形空腔上分别设置有用于填充所述慢化剂的接口。 5.根据权利要求1所述的中子能谱测量系统,其特征在于,套设在所述第N球形空腔外的至少一个球形空腔与所述支架的连接端固定。 6.根据权利要求2所述的中子能谱测量系统,其特征在于,所述慢化剂包括颗粒状、啫喱状、粉末状或液态物质;所述啫喱状或液态慢化剂用于填充在相邻子腔之间设置有连通通道的球形空腔中。 7.根据权利要求6所述的中子能谱测量系统,其特征在于,所述慢化剂包括主要慢化材料和辅助慢化材料;所述主要慢化材料包括水、植物油、硼酸、重水、石墨、硼、石蜡、锂和聚乙烯中的至少一种,所述辅助慢化材料包括重金属的至少一种。 8.根据权利要求7所述的中子能谱测量系统,其特征在于,填充所述辅助慢化材料的所述球形空腔包括一体成型的重金属球壳形实体。 9.根据权利要求1所述的中子能谱测量系统,其特征在于,所述球形空腔的腔体材料包括金属材料、非金属材料及合金材料的至少一种。 10.根据权利要求1所述的中子能谱测量系统,其特征在于,所述承重柱侧面设置有液体通道,与所述承重柱连接的球形空腔对应设置有连通通道,液体状和啫喱状慢化剂可通过所述液体通道和所述连通通道向所述球形空腔中填充或抽取。 2

γ射线能谱测量

γ射线能谱测量 ——物理0805 乔英杰u200810200 王振宇u200810256 实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。 自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。 目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。 实验原理: 1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。这样,我们就得到了对应于γ射线能量强度的电信号。之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。 2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。 多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。我们在试验中采用的是1024道分析器,即将脉冲电压范围分成1024份,然后计算机记录探测器输出的脉冲落在每份范围上的数目。

反应堆堆芯中子能谱在线测量方法研究

反应堆堆芯中子能谱在线测量方法研究 先进核能系统研究的快速发展对核安全提出了更高的要求,同时堆内核测量技术面临更大的挑战。中子能谱是反应堆研究的核心参数之一,发展堆芯中子能谱的在线测量技术对提高核能系统安全有着重要意义。现有反应堆堆芯的中子能谱主要采用离线活化法测量。在线能谱测量技术尚不完善,如3He、6Li夹心谱仪等测量技术存在抗辐照能力差,探测能量范围有限或精度不满足要求等缺点。 发展高精度、宽量程的堆芯中子能谱在线测量技术已成为先进核能系统测控研究的重要发展方向。本论文通过借鉴多球谱仪的中子能谱测量原理,结合能够在堆芯内长期使用的电离室探测器,提出了一种新的堆芯中子能谱测量方法,即多阈值电离室的中子能谱在线测量方法。主要研究内容及创新点包括:(1)多阈值电离室能谱测量方法的蒙卡模拟研究。研究选用堆内使用成熟的具有不同阈值的电离室探测器(235U裂变电离室、238U裂变电离室、包镉NatB电离室),结合“少道解谱”原理,利用解谱软件对中子计数率信息进行反演得到待测中子能谱。 并分别利用参考中子能谱(IAEA318号报告中的纯裂变谱和铅冷快堆谱)和 中国铅冷快堆(CLEAR)能谱对所提出方法进行了可行性验证。验证时,首先利用蒙卡软件SuperMC进行建模并计算,获得了探测器的响应函数;并利用SuperMC计算探测器在参考谱中子场中的计数率,通过解谱软件,结合探测器计数率和响应函数信息反演中子能谱,反演谱和参考谱在大多数能区吻合;再通过SuperMC模拟探测器在CLEAR堆运行情况下的探测器计数率,且研究了3个不同位置的中子能谱情况,计算结果表明,反演谱和初始谱在大多数能区内吻合。参考谱和参考堆的模拟验证计算结果表明,提出的中子能谱在线测量方法具备理论上的可行性。(2)双功能锂铅氚增殖包层(DFLL-TBM)模型中子学实验数据分析。 DFLL-TBM中子学实验是中国科学院核能安全技术研究所为验证DFLL-TBM模块中子学性能开展的实验。本研究完成了该实验活化片反应率的数据分析工作。同时,利用该实验数据,研究实验中3个不同位置布置的3组活化片计数率,采用本研究开发的中子能谱在线测量方法对活化片的计数率信息进行中子能谱解谱分析并与蒙卡计算软件SuperMC的模拟计算结果进行比对。结果表明,通过活化片计数率信息解出的中子能谱与计算谱吻合度优于现有成熟解谱软件的反演结果。

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

聚变堆产氚包层产氚率液闪法测量技术研究

聚变堆产氚包层产氚率液闪法测量技术研究聚变堆产氚包层产氚性能评价是实现聚变堆“氚自持”的重要课题之一。要实现产氚包层的准确评价,关键是要解决产氚率准确测量的问题。 本论文开展了聚变堆产氚包层产氚率液闪测量技术及液闪样品制备技术的相关研究,对将来开展产氚包层产氚率测量和评价具有重要意义。论文研究的主要内容和结果如下:开展了对正硅酸锂、碳酸锂、氧化锂三种备选探测片在产氚包层中的产氚随深度的分布蒙特卡罗模拟,结果显示,随着包层深度的增加,产氚呈下降趋势;开展了封装材料对探测片产氚量影响的模拟研究,结果显示铝箔封装影响最小,铝箔封装是较好的选择;开展了三种探测片尺寸对探测片产氚量影响的模拟研究,结果显示,探测片的最佳厚度为1mm。 开展了碳酸锂探测片液闪样品制备方法研究,初步确定盐酸溶解碳酸锂探测片能制备出透明度高且无分层的液闪样品的制备技术,但盐酸用量不宜过多,否则会导致样品分层和氚计数效率降低;开展了铝箔封装碳酸锂探测片液闪样品制备方法和影响因素的研究,结果表明,采用氢氧化钠溶液加盐酸来溶解铝箔封装碳酸锂探测片,能制成透明度高且无分层的液闪样品,但温度对液闪样品的兼容性会产生较大影响,液闪样品保存和测量时环境温度应保持在10℃至20℃范围;开展了正硅酸锂探测片液闪样品制备方法的研究,采用合适的混合酸并在加热的条件下能实现正硅酸锂的溶解,取少部分溶解液与闪烁液混合能制备透明度高且无分层的液闪样品;开展了氧化锂探测片的液闪样品制备方法研究,在用盐酸溶解氧化锂探测片时会产生大量白烟以及大量热量,可能会造成氚明显逃逸,溶解后的溶液可以制备出透明度高且无分层的液闪样品。对液闪法产氚率测量中的淬灭校正方法进行了研究,即对内标准法和外标准转换谱指数法在产氚率测量上提

含氢介质内中子能谱测量

第38卷增刊原子能科学技术 Vol.38,Suppl.  2004年7月Atomic Energy Science and Technology J uly 2004 含氢介质内中子能谱测量 安力,陈渊,郭海萍,牟云峰,王新华,朱传新 (中国工程物理研究院核物理与化学研究所,四川绵阳 621900) 摘要:建立了直径34cm 的含氢慢化球和含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合的2种基准装置,加速器的d 2T 中子入射到含氢慢化介质,用<18mm ×20mm 的 晶体闪烁探测器测量了2种实验装置内不同位置的1MeV 以上的中子能谱,并处理成不同能量阈值的中子数。在0.95置信水平下,本测量方法的不确定度为4.8%。关键词:d 2T 中子;二维装置;介质内能谱 中图分类号:O571.54 文献标识码:A 文章编号:100026931(2004)S020089204 Measurement of N eutron Spectrum in Medium Containing H ydrogen AN Li ,CHEN Yuan ,GUO Hai 2ping ,MOU Yun 2feng ,WAN G Xin 2hua ,ZHU Chuan 2xin (Institute of N uclear Physics and Chemist ry ,China Academy of Engineering Physics , P.O.Box 9192213,Mianyang 621900,China ) Abstract : Two benchmarks were established.One is moderation shell containing hydrogen which is 34cm in diameter.The other is composed of the shell and polyethylene cylinder of <24cm ×30cm which are combinatorial.Measurement of neutron energy spectrum above 1MeV changing with different positions of the experimental assemblies were carried out for in 2cident neutrons from outside using d 2T fusion source of accelerator.Meanwhile ,the spectra were transformed integral spectrum.The scintillation detector of stilbene crystal of <18mm ×20mm was used to measure neutron spectrum.At 0.95level of confidence ,the uncertain 2 ty of the measurement is 4.8%. K ey w ords :d 2T neutron ;two dimensional assembly ;neutron spectrum in medium 收稿日期:2004204215;修回日期:2004205215 作者简介:安 力(1973-),男,四川仪陇人,助理研究员,硕士研究生,核物理专业 中子与介质相互作用会产生散射反应等各种过程,当介质是大块物质时,作用过程更加复杂。中子与含C 、H 、O 、N 等低原子序数元素材料的作用不同于与含高原子序数元素材料的作用,它主要表现为弹性散射,能谱软化也较快。在以往的基准实验中,中子源均置于球中心测量泄露出来的中子能谱,而对球、柱组合装置的 基准实验开展较少。鉴于此,本工作拟测量含 氢慢化球、含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合2种实验装置内部的中子能谱。 1 实验装置 含氢慢化球外径34cm ,内径4cm ,厚度15cm ,由上、下两半组成,界面间有一条通球心

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR) §1 概述 基本情况 1H 天然丰度:99.9844%, I=1/2, γ=26.752(107radT-1S-1) 共振频率:42.577 MHz/T δ: 0~20ppm §2 化学位移 1.影响δ值的因素 A.电子效应 (1)诱导效应 a电负性 电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大 b.多取代有加和性 c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计 (2).共轭效应 氮、氧等杂原子可与双键、苯环共轭。 苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动 (3). 场效应 在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学

位移发生变化.这些通过电场发挥的作用称为场效应 (4). 范德华(Van der Waals)效应 在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动 B.邻近基团的磁各向异性 某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。 (1)芳环 在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。 (2)双键 >C=O, >C=C<的屏蔽作用与苯环类似。在其平面的上、下方各有一个锥形屏蔽区 (“+”),其它区域为去屏蔽区。 (3)三键 互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。 (4)单键和环己烷 单键各向异性方向与双键相似,直立键质子的化学位移一般比平伏键小0.05-0.8 C.氢键 氢键的缔合作用减少了质子周围的电子云密度, δ值向低场移动。 氢键质子的δ值变化范围大,与缔合程度密切相关。 分子内氢键,质子的δ值与浓度无关 分子间氢键,质子的δ值与浓度有关,浓度大,缔合程度密切。 D.非结构因素 1.介质因素 2.浓度 3.温度 2.各类质子的化学位移 (1).sp3杂化(饱和烷烃) a.化学位移的范围 δ<-CH3 < CH2 < CH, 0-2ppm 与同碳上有强电子基团(O,N,CL,Br)相连, 或邻位有各项异性基团(=,=O,Ph),δ值上升,<5ppm b.化学位移的计算 1)-CH2- δ(CH2R1R2) =1.25+Σσ δ(CHR1R2R3) =1.50+Σσ

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

中子测井与天然气探测技术

第26卷 第1期核电子学与探测技术 V o l .26 N o .1 2006年 1月 N uclear E lectron ics &D etecti on T echno logy Jan . 2006 中子测井与天然气探测技术 秦绪英1,2,肖立志1,张元中1 (1.石油大学,北京 102200;2.中石化石勘院南京石油物探研究所,江苏南京 210014) 摘要:简单介绍了中子测量与地层含氢指数及地层孔隙度的关系,介绍了地层含气对中子测量的 影响以及泥浆侵入对中子在含气地层响应特征的影响。分析了中子测井仪器长短源距探测器受泥浆侵入影响的差异,给出了通过对中子仪器长短源距计数率校正消除泥浆侵入影响的方法。通过实际资料验证,取得了比较好的结果。 关键词:含氢指数;中子测量;天然气;泥浆侵入校正 中图分类号: P 618.130.21 文献标识码: A 文章编号: 025820934(2006)0120009205 收稿日期:2005206209 作者简介:秦绪英(1962—),男,教授级高级工程师,石油大学(北京)博士生,从事测井技术研究工作 由快中子源发射出的高能中子,在发射后 的极短时间内经过一二次非弹性碰撞损失掉大量的能量之后,只能经弹性散射而继续减速。每次弹性碰撞后,快中子损失的能量与靶核的质量数A 、入射中子的初始能量E 0以及散射角Η有关。当Η为180°时,即发生正碰撞,中子损失的能量最大,一次弹性碰撞中子可能的最大能量损失为: ?E m ax ={1-[(A -1) (A +1)]2}E 0(1) 令Α=[(A -1) (A +1)]2,得到?E m ax =(1-Α )E 0(2) 对氢核来说,质量数A =1,因而有,?E m ax =E 0。这就是说中子与氢核发生正碰撞时,中子就失去其全部动能。对碳核来说,质量数A =12,因而有Α=0.716,因而中子与碳核发生正碰撞时,中子可能失去的最大能量是0.284E 0。经过数学计算,中子在每次弹性碰撞时平均的能量损失为: ?E = 2A (A +1)2 E 0 (3) 当中子与氢核碰撞时,每次碰撞平均会减少一半的能量,而与碳核碰撞时,每次碰撞平均只损失14%的能量。靶核的质量数越大,对快中子的减速能力越差,而氢核的A 最小,对快中子的减速能力最强,这决定了氢是所有元素中最强的中子减速剂[1]。这是中子测井能有效解决地层含氢量以及与此有关的地质问题的科学基础。 中子源发射出的高能快中子减速到热中子所需要的时间及所移动的距离是由岩石的宏观减速能力决定的。岩石是由多种元素组成的,其宏观减速能力主要由含氢量来决定,水是地层中中子减速能力最强的物质,由其他轻元素组成的物质减速能力比水小1~2个数量级,由重元素组成的物质宏观减速能力更差[2]。所以可近似地认为地层岩石的减速能力等于地层孔隙中水或原油的减速能力(假设地层骨架中不含氢)。 点状中子源在均匀无限介质中形成的超热中子注量率,在忽略扩散效应的条件下与源距r 的关系为: Υe = 14ΠD e r e -r L e (4)

伽马γ能谱测量分析近代物理实验报告

γ能谱的测量 中山大学 2013级材料物理 供参(吓)考(你),此报告真心累

数据处理 注:本实验所有数据来自文件“蝙蝠侠” 一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化 图1 改变高压,137Cs能谱变化曲线图 分析: 1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射 线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。高压越大,统计越明显。 2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。因为闪烁谱仪能量 分辨率不变,高压增大,道址增大,?V V又不变,则?V大,故宽度变大,高道址的粒子数减少,高度下降。 二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化 分析:(见图2) 1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500, 方便观察。 2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。因为道数越小,则 每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。

三、60Co的γ能谱曲线图(500V,通道数2014) 图3 60Co的γ能谱曲线图

分析: 1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为 1173keV、1333keV。 2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。 计算方法如下: 全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。加和结果通过matlab进行求和而得。虽然计算方式较为粗糙,但基本符合。 对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981 对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824 四、137Cs的γ能谱曲线图(500V,通道数2014) 图4 137Cs的γ能谱曲线图 分析: 1.全能峰面积为:S(E)=9916-(13+2)*90/2=9241 2.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是

第三章 中子测井

第三章 中子测井 概述 中子测井利用中子与地层物质相互作用的各种效应,测量地层特性的测井方法的总称。 根据中子测井仪器记录的对象不同可以分为: ??? ?? ? ?—伽马能谱测井—中子—伽马测井—中子—超热中子测井—中子—热中子测井—中子 按仪器结构特征的不同,可以分为普通中子测井,贴井壁中子测井,补偿中子测井等。 从中子源发出的高能中子与地层物质的原子核发生各种作用,其结果是高能中子逐步减弱为超热中子和热中子,或被原子核吸收,发生核反应。中子与物质相互作用的类型有:非弹性散射;弹性散射;核俘获引起的核反应等。 探测仪器记录的低能中子的数量或原子核俘获中子发出的伽马射线的强度与地层对中子的减速能力和吸收特性有关。中子测井正是利用了这些特性对地层进行探测的。 1)中子测井测量地层孔隙度的原理 氢核与中子的质量几乎相等,是最强的减速物质。因此,中子测井的结果将反映地层的含氢量。在油层或水层中,储集空间中被含氢核的油或水充填,这样储集体中含氢量的多少反映岩石孔隙度的大小。因此,中子测井是一种孔隙度测井方法。 2)油层和气层对中子的减速能力的差异非常明显,因此中子测井也是一种指示油气层的测井方法。 3)氯是地层中重要的中子吸收物质,氯是大多数地层水的主要离子成分,可见中子测井对于划分油水层也有重要作用。 4)中子与地层中的原子核发生非弹性散射,使原子核处于激发态,在退激时发出伽马射线。这些伽马射线的能量,反映靶原子核的能级结构。因不同的原子核其能级结构是不同的,因此发出的伽马射线的能量也是不同的。我们把这种不同原子核发生的伽马射线称为特征伽马射线。测量地层发射的伽马射线的能谱,就可以分析地层中元素的成分。 例如:碳核的特征伽马射线为 Er 43 .4= 氧核的特征伽马射线为 Mev Er 13.6= 对于给定的中子源,中子与地层中的碳核和氧核发生非弹性散射次数的多少,取决于地层中相应核素的多少,取决于地层中相应的核素的丰度。即特征伽马射线的强度取决于地层中碳核、氧核的数目。显然,油层与水层单位体积中的碳核和氧核的数目是不同的。 我们通过探测 c r E ,与 o r E ,的强度比,就可以定性判断地层是水层还是油层。这是碳氧比测井的原理。 §1中子测井基本原理 普通中子测井是利用地层中氢核对快中子的减速能力测量地层的含氢指数,进而确定地层孔隙度的测井方法。 一、地层的含氢指数 自然界中,对中子减速能力最强的核素是氢核,岩石中的氢核的多少就决定了地层对中子的主要减速能力。为了度量地层对中子的减速能力,引入几个概念。 1.含氢量,含氢指数 ①含氢量:单位体积中氢核的数目。

相关文档