文档库 最新最全的文档下载
当前位置:文档库 › 第一章B-自然坐标系中的速度和加速度

第一章B-自然坐标系中的速度和加速度

第一章B-自然坐标系中的速度和加速度
第一章B-自然坐标系中的速度和加速度

(完整版)匀速圆周运动公式

匀速圆周运动 质点沿圆周运动,在任意相等的时间里通过的圆弧长度都相等 亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时无刻在发生变化的。 描述匀速圆周运动快慢的物理量: 1、线速度 v :①意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。 ②定义:线速度的大小等于质点通过的弧长s与所用时间t的比值。 ③单位:m/s ④矢量:方向在圆周各点的切线方向上 ⑤就是物体做匀速圆周运动的瞬时速度 ⑥质点做匀速圆周运动时,线速度大小不变,但方向时刻在改变,故其线速度不是恒矢量。 ⑦边缘相连接的物体,线速度相同。 2、角速度ω:①定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。 ②单位:rad/s(弧度每秒) ③矢量(中学阶段不讨论,用右手定则<安培定则>可判断方向,例如:当其在水平面上顺时针转动时角速度方向竖直向下)。 ④质点做匀速圆周运动时,角速度ω恒定不变。 ⑤同一物体上任意两点,除旋转中心外,角速度相同。 3、周期 T:①定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。 ②单位:s(秒)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢。半径相等时,周期长说明运动得慢,周期短说明运动得快。 ⑤质点做匀速圆周运动时,周期恒定不变 4、频率 f:①定义:周期的倒数(每秒内完成周期性运动的次数)叫频率。 ②单位:Hz(赫)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢,频率高说明运动得快,频率低说明运动得慢。 ⑤质点做匀速圆周运动时,频率恒定不变。 5、转速 n:①定义:做匀速圆周运动的质点每秒转过的圈数。 ②单位:在国际单位制中为r/s(转每秒);常用单位为r/min(转每分)。1 r/s=60 r/min。 (注:r=round 英:圈,圈数) ③标量:只有大小。 ④意义:实际中定量描述匀速圆周运动的快慢,转速高说明运动得快,转速低说明运动得慢。 ⑤质点作匀速圆周运动时,转速恒定不变。

速度加速度追及问题

1、轮船在河流中逆流而上,下午7时,船员发现轮船上的一橡皮艇已失落水中,船长命令马上掉转船头寻找小艇.经过一个小时的追寻,终于追上了顺流而下的小艇.如果轮船在整个过程中相对水的速度不变,那么轮船失落小艇的时间是何时?(相对性问题) 2.计算下列物体的加速度:(加速度) (1)一辆汽车从车站出发作匀加速运动,经10s速度达到108km/h. (2)高速列车过桥后沿平直铁路匀加速行驶,经3min速度从54km/h提高到180km/h. (3)沿光滑水平地面以10m/s运动的小球,撞墙后以原速大小反弹,与墙壁接触时间为0. 2s. 3.甲乙两人练习跑步,若甲让乙先跑10米,甲跑5秒追上乙.若让乙先跑2秒,甲4秒追上乙,求甲乙的速度. 设甲乙的速度分别为X,Y (追及问题)

4. 一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重 超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)判定警车在加速阶段能否追上货车?(要求通过计算说明)(3)警车发动后要多长时间才能追上货车?(追及问题) 6.一辆汽车在平直公路上匀速行驶,速度大小为v0=5m/s,关闭油门后汽车的加速度 为a=-0.4m/s2。求: (1)关闭油门后到汽车位移x=30m所经历的时间t1 (2)汽车关闭油门后t2=20s内滑行的距离(匀变速运动) 7.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B, 它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板.开始时 系统处于静止状态。现用一沿斜面方向的力F拉物块A使之缓慢向上运动. 求物块B刚要离开C时力F的大小和物块A移动的距离d. (受力分析) C A B θ

影响加速度的原因

《影响加速度的因素》教学设计 广州培英中学张丽微 教学内容: 《影响加速度的因素》选自第四章第二节 教学目标: 1、知识技能 (1)能运用基本的测量方法测量加速度的大小,并进行实际的操作; (2)通过探究认识到加速度与外力和在质量有关,并能与生活中的经验相联系; (3)对影响加速度大小的因素进行合理的假设和判断,得出自己的结论。 2、过程与方法 (1)经历对影响加速度大小的因素进行猜想的过程,根据事实合理提出猜想; (2)经历猜想确定实验方案的过程,体验探究的方法。 (3)学会用控制变法来研究物理学中一个物理量与几个物理量间的关系的问题。 3、情感态度与价值观 (1)经历科学探究的过程,培养学生事实求是的态度; (2)通过探究活动,使学生获得成功的喜悦,提高他们学习物理的兴趣和自信心。(3)尝试对实验探究的结果进行评价,体会定性探究在客观规律中的作用。 教材分析: 1、教学重点:加速度与质量和外力关系的定性探究过程 2、教学难点:指导学生选器材,设计方案,进行实验。作出图象,得出结论 3、教学方法:实验探究法 4、教学用具:木块、长木版、小车、秒表、弹簧称、天平 5、课时安排:1课时 教学过程: 一、新课导入 学生活动:回顾牛顿第一定律; 教师活动:牛顿第一定律告诉我们,当物体受到外力作用时,它的运动状态会发生改变,但是却没有告诉我们它的运动状态会发生怎样的改变,速度改变的快慢由加速度来描述,因此,这节课我们就通过实验来探究加速度与什么因素有关。 二、新课教学 1、猜想与假设 教师活动:出示下图:

让学生讨论:物体质量一定,力不同,物体加速度有什么不同?力大小相同, 作用在不同质量物体上,物体加速度有什么不同? 物体运动状态改变快慢取决哪些因素?定性关系如何? 学生活动:学生讨论后回答:第一种情况,受力大的产生加速度大,第二种情况:质量大的产生加速度小。 学生再思考生活中类似实例加以体会。 教师总结:由此我们可以猜想:物体产生的加速度的大小由物体质量和所受合外力决定,物体质量越小,受力越大,物体的加速度越大。 上面的猜想同学们是根据日常生活中的体验和观察到的现象得到,这个猜想 究竟对不对,我们还要通过实验来验证。 2、制定计划和设计实验,进行实验与数据收集,并对实验数据进行处理,得出结论。 又由于猜想物体产生的加速度的大小与几个因素有关,我们应该采用以前学过的什么研究方法呢? 学生活动:采用控制变量法,先控制质量不变,研究加速度大小和外力的关系,再控制外力不变,研究加速度与质量的关系。 1)物体加速度与它所受合力关系 教师活动:现在我们先保持物体的质量不变,测量物体在不同力的作用下的加速度,探究加速度与力的关系。请同学生据上述事例,猜测一下它们最简单关系。学生猜测回答:加速度与力可能成正比。 教师活动:(设计与提示)如何测定做匀变速直线运动物体的加速度?需什么器材?请同学样设计方案 由于加速度不是一个可以直接测量的量,因此可通过诸如时间和位移等能直 接测量的量去间接地测量加速度。 学生活动:由静止状态开始做匀变速直线运动物体的位移公式:s=at2/2,而位移s和时间t可以分别用刻度尺和秒表来直接测量,加速度可由公式a=2s/t2计算出。 教师活动:现实中,除了在真空中抛体(仅受重力)外,仅受一个力的物体几乎不存在,但一个单独的力作用效果与跟它等大、方向相同的合力作用效果相同,因此 实验中力F的含义可以是物体所受的合力。如何为运动物体提供一个恒定

高中物理公式推导(匀速圆周运动向心加速度、向心力)word版本

V t ΔV 高中物理公式推导二 圆周运动向心加速度的推导 1、作图分析: 如图所示,在0t 、 t 时刻的速度位置为: 2、推导过程: 第一,对于匀速圆周运动而言,速度的大小是不发生变化的,变化的只是速度的方向,如图所示,速度方向的变化量为 v ,则有: R ? V 0 V 0

θ θ?=?≈?t v v v 0 第二,根据加速度的定义: t v a ??= 则有: t v t v a n ??= ??=θ0 第三,根据圆周运动的相关关系知: R v t = ??=θω 是故,圆周运动的向心加速度为: R v a n 2 = 第四,圆周运动的向心力的大小为:

R v m ma F n 2 == 3、意外收获: 第一,对于圆周运动,我们应该理解速度、角速度、周期之间的关系。具体为: R v =ω T πω2= v R πω2= 第二,我们应该掌握极限的相关知识,合理利用极限来解决相关问题。 第三,如果我们谈论的不是匀速圆周运动,我们同样可以利用此

方法进行谈论。对于非匀速圆周运动(或者叫做曲线运动),不仅速度的方向发生了变化,而且速度的大小也发生了变化,所以, 不仅有向心加速度之外,应该也有使物体速度大小变化的加速度。但是,在这种情况下,我们的向心加速度,叫做径向加速度,速度大小变化的加速度,叫做切向加速度。故有: (1)向心加速度为: R v a n 2 = (2) (3)切向加速度为: t v a t ??= (注意:这里的v ?是指切向速度方向速度的变化量,并不是指 图上的v ?。) 4、注意事项:

第二节影响加速度的因素

第二节影响加速度的因素导学案 【课前预习】 ◆写出牛顿第一定律的内容: 。 ◆根据牛顿第一定律,如果物体不受外力或者合外力为零,则物体 ,如果物体受到的合外力不为零,则物体的速度会。 ◆物体的速度发生了改变,就是说物体产生了。 请同学们通读教材P81-82内容,思考下列问题: 1、牛顿第一定律告诉我们当物体受到外力作用时,物体的速度会发生改变,但它无法解释速度会怎样改变。我们要探寻物体受力与运动之间规律,为什么要考虑加速度与什么因素有关? 2、请你根据课文实例:图4-2-1 正在启动的火车、图4-2-2 正在起飞的飞机,猜想一下加速度的大小与什么因素有关呢? 3、加速度不是一个可以直接测量的量,你能运用已学知识转化成能直接测量的量去间接地测量加速度吗? 4、如果加速度与多个因素相关,要同时确定它们之间的关系是很困难的,请同学们简述实验探究方法。 5、请你参考课文P81实验与探究的内容,学习小组成员合作,初步设计一下实验方案,你们将有机会在课堂中通过实验实现你们的设想!供选择的实验器材:铝槽导轨,方木板,四轮小车,钩码,细线,秒表。

【课堂学习任务】 ◆讨论与交流 1、请相互交流各自的实验设计和想法。 2、实验结果中是否一定要强调“合”外力?说明理由。 3、加速度是矢量,那么,它的方向由什么因素决定? 4、实验中摩擦力的存在对探究结果会不会有影响? ◆实验前需要考虑的问题: 1、如果要利用a=2s/t2间接测量加速度,小车运动需要满足什么条件? 2、如何确定小车所受合外力的大小,怎样改变合外力的大小?你能画出示意图吗? 3、请你设计表格记录实验数据。可参考《高中物理实验册》p73内容。 ◆实验与探究: 实验器材:铝槽导轨,方木板,四轮小车,钩码,细线,秒表。 请学习小组成员合作完成实验探究。 ◆实验后需要考虑的问题: 1、是否任何情况下小车所受合外力的方向都与其加速度的方向一致? 2、得到的实验结果是:当物体的质量保持不变,物体受到的合外力逐渐增大时,其加速度将怎样变?反之,物体受到的合外力逐渐减少时,其加速度将怎样变?

1、狭义相对论效应与加速度之间的关系

1、狭义相对论效应与加速度之间的关 系 物理学是一门自然科学,它的理论和应用基础是建立在实验和观测上的.而实验和观测总是离不开某一个具体的参考系(或坐标系),加上历史上把惯性系之间的伽利略相对性原理和伽利略变换推广到狭义相对性原理和洛伦兹变换,从而建立狭义相对论这样的背景,许多物理学工作者以参考系的属性(惯性系或非惯性系)来界定狭义相对论的范畴是自然的,不足为怪.至于这种界定的优劣,那就是属于“仁者见仁,智者见智”的事情了. 1966年,人们做过实验让粒子做接近光速的高速圆周运动,粒子既有很高的速度,也有很高的加速度。实验表明,粒子寿命的变化只与速度有关,而与加速度无关。在验证时间膨胀效应的实验中,有许多实验涉及到加速过程,覆盖的加速度范围非常广。例如在原子钟 环球航行实验中,时钟经受的向心加速度为 3 10 g(g代表地球表面的重力加速度);在转 动圆盘的实验中,光源的向心加速度达 5 10g;在穆斯堡尔效应的温度依赖性实验中,晶格 中原子核振动的加速度以及作圆周运行的μ介子的向心加速度都高达 16 10g 以上。尽管加 速度范围这么广,但最终,几乎所有的实验都得到了与狭义相对论预言的由速度引起的时间膨胀效应基本相符的结果。这一事实表明,加速度对实验中的时间膨胀没有任何贡献。即使我们承认时间膨胀效应的存在,也只能说这些效应都是由速度引起的时间膨胀效应,而“非加速度效应”。 相对论中引起广泛兴趣的一个问题是“孪生子佯谬”问题,它曾困扰了物理学界几十年,特别是50年代掀起了空前激烈的争论,发表了许许多多的文章.然而时至今日,“孪生子佯谬”的问题,可以说不但在实验上而且在理论上都已经很好地解决了,因而不妨将之改称为“孪生子效应”.可是,近年国内有人认为“孪生子效应”并没有从理论上得到解决,而且沿用当今的理论(相对论)可能导致某观测者看到“返老还童”的荒谬结果.这种见解其实是把两个坐标系中观测到的钟慢效应,误认为是某个观测者所“看到”的结果. 根据Einstein的观点,狭义相对论效应不具有累积效应。如果不具有累积效应,那么在实验中怎么测量狭义相对论效应?时间与长度的变换符合洛沦兹变换,您如何理解双生子佯谬和潜水艇悖论?假设一个物体在运动方向上的长度为l,开始由静止做加速运动,当速度达到0.99c时开始减速直到静止,那么开始与最后的长度是否相等?如果速度相等说明不具有累积效应,时间变换也符合洛沦兹变换,为什么现代物理学的实验证明时间膨胀(譬如μ子绕地运行)具有累积效应,而长度收缩是瞬时效应?

加速度的分量表达式

§2、速度、加速度的分量表达式 上一次课,我们为了将运动的一些特征能直接的表示出来,而定义了速度和加速度, 22;dt r d dt v d a dt r d v =≡≡ 。在一般情况下它们往往都是时间t 的函数。何谓定义呢?定义它本身不是可以用什么方法或者数学手段加以证明得到的,而是根据实际需要常常用到而定义 下来的名称和概念。例如过两点成一条直线……。由于速度和加速度都是矢量,因此都可以 将它们表示成分量的形式。这次课将准备讨论速度、加速度在各种坐标系中的表达式。 一、 直角坐标系——直角坐标系又称笛卡儿坐标系 在直角坐标系中,质点的位置矢径可以写成为: ........z k y j x i r ++= (1) 根据速度的定义可知dt r d v ≡将(1)代入,则有 1、速度: z y x v k v j v i dt dz k dt dy j dt dx i z k y j x i dt d dt r d v ++=++=++==...........................................)( 于是,我们比较上面的等式,就可得到速度在直角坐标系中的分量表达式为: z dt dz v y dt dy v x dt dx v z y x ====== ;;可见速度沿三直角坐标轴的分量(即分速度)就等于其相应的坐标对时间t 的一阶导数。速度的大小:222z y x v v v v v ++== 速度的方向就用方向余弦来表示:v v k v v v j v v v i v z y y ===),cos(;),cos(;),cos( 。同理,我们由加速度的定义不难得到它的分量表达式。 2、加速度 根据加速度的定义: z y x z y x a k a j a i dt dv k dt dv j dt dv i dt z d k y d j x d i dt dz k dy j dx i dt d dt v d a ++=++=++=++==2 222)(比较这些恒等式可得加速度的直角坐标分量表达式:

狭义相对论中加速度a与力f的关系

第18卷第2期 荆州师专学报(自然科学版)Vo l.18N o.21995年4月Jo urnal of Jingzhou T eacher s Co lleg e(N atur al Science)A pr.1995收稿日期:1994狭义相对论中加速度a 与力f 的关系 阳荣华 程庆华 (荆门市竹园中学) (物理系) 摘要 本文针对关于狭义相对论中加速度a 与力f 的方向关系的一些讨论[1], 采用更为直观、简单的方法,同样得出了加速度a 与力f 的方向关系的普适结果;并通过典型例子较全面地讨论和描述了加速度a 和力f 的方向和大小的相互关系,揭示了在狭义相对论和经典力学中a 与f 相互关系的不同;并讨论了在v /c →0时它们的一致性,从一个侧面说明了经典力学的局限性。 关键词 四维矢量;洛仑兹变换;协变 1 引言 众所周知,在洛仑兹变换下,牛顿力学定律不能保持协变性。由牛顿第二定律f =m a 可以看出,在经典情况下,f 与a 方向一致,a 与f 大小成正比。在狭义相对论中,力f 与加速度a 的方向、大小关系如何呢?本文从狭义相对论基本方程出发,采用直观、简单的方法,较全面地讨论了狭义相对论中f 与a 的关系。 2 相对论的基本方程 静止质量为m 0,相对于参考系速度为u 的质点,其四维速度矢量为[2]: U = u (u ,ic ) (1)其四维加速度矢量为: A =d U d ={ u 2a +1c 2 u 4u(u ?a )},1c i u 4(u ?a )(2)其四维动量为[2]: P =m 0U =m 0 u (u ,ic )=(P ,ic u m 0) (3) 质点所受的四维力为[2]: K = d P d = (dp t ,i c d E d t )= u (f,i c f ?u)(4)狭义相对论的基本方程为[3]: K =dP /d =m 0A (5)将(2)、(4)两式代入(5)式可得: f= u m 0a +1c 2 3u m 0 (u ?a )u (6)其中 u =(1-u 2/c 2)-1/2,a =du /d t 为三维加速度,P =m 0 u u 为三维动量,f 为三维力。

1一质点在ab两点之间做匀速直线运动加速度方向与初速

1.一质点在a 、b 两点之间做匀速直线运动,加速度方向与初速度方向相同,当在a 点初速度为v 时,从a 点到b 所用的时间为t ,当在a 点初速度为2v 时,保持其他量不变,从a 点到b 点所用时间为t ',则( ) A .t '﹥t 2 B .t '= t 2 C .t '﹤t 2 D .t '= t 解析:两种情况下质点运动的加速度和位移相等,在v-t 图像中,则是速度图线的斜率以及与横轴所夹的面积相等,如图1所示,显然阴影部分的面积2要大于1,则说明初速度为2v 时的运动时间要大于 t 2 。 2.子弹水平射入放在光滑水平面上静止的木块,已知子弹入射 为v 0,射入木块s 深后与木块共同以速度v 运动,设子弹与木块均做匀变速直线运动,求从子弹射入木块至与木块相对静止的过程中木块滑行的距离。 解析:画出子弹和木块运动的v-t 图像,则图中梯形v 00tp 的面位移,而图中的三角形0tp 的面积则表示木块在相同时间内通过的位移,由于子弹比木块多运动位移s ,图中的阴影三角形面积就表示子弹比木块多的位移s 。则有s= 12 v 0t ,木块滑行的位移为s '= 12 vt = sv v 0 。 3.如图3所示,两个质量完全一样的小球,从光滑的a 管和b 管由静止滑下到达C 处,设转弯处无能量损失,比较两球用时长短。(B 、D 两点在同一水平线上)。 解析:小球沿a 、b 两管道滑下时,通过的路程相等,从a 管滑下的小球在AB 上的加速度和从b 管滑下的小球在DC 上的加速度大小相等,两小球在BC 、AD 上的加速度大小也相等,再者两小球下滑通过的路程和到达C 点的速度大小相等,故作出它们经过a 、b 两管运动到达C 点的v-t 图像如图 4所示。从图像中反映为速度图线与横轴所夹的面积相等,所以显然t a < t b 。也就是说先以较大加速度加速的小球先到达C 处。 图1 图4 v 0

相对速度

基本概念 ①位移合成定理:S A对地=S A对B+S B对地 ②速度合成定理:V绝对=V相对+V牵连 这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。 ③当运动参照系相对静止参照系作平动时 a绝对=a相对+a牵连 当运动参照系相对静止参照系作转动时,这一关系不成立 1.一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少? 2.如图所示,在高空中有四个小球,在同一位置同时以速度v向上、向下、向左、向右被射出,经过1s后四个小球在空中的位置构成的图形是() 3.当自行车向正东方向以5km/h的速度行驶时,人感觉风 从正北方向吹来,当自行车的速度增加两倍时,人感觉风 从正东北方向吹来,求风对地的速度和风向。 4.从离地面同一高度h,相距L的两处同时各抛出一个石块,一个以速度v1竖直向上抛,另一个石块以速度v2正对着前一个石块同时水平抛出,求这两个石块在运动过程中它们之间的最短距离。(两个石块的初速度位于同一个竖直平面内) 5.如图(a)所示,某人站在离公路垂直距离为60m的A处,发现公路上有一辆汽车由B点以10

m/s 的速度沿公路匀速前进,B 点与人相距100m ,那么此人至少以多大速度奔跑,才能与汽车相遇。 6.一只苍蝇在高H 处,以速度v 平行桌面飞行。在某一时刻发现它的正下方有一滴蜂蜜,苍蝇借助翅膀可以向任何方向飞行加速,但加速度不超过a 。试求苍蝇能够飞到蜂蜜所在处的最短时间。(设想问题发生在宇宙空间,重力不存在) 7.在一水平面上有ABC 三点,AB=L,∠CBA=α且为锐角,今有甲质点 由A 向B 以速度v1做匀速运动,同时质点乙以v2从B 指向C 作匀速运动,试确定何时刻甲乙的 间距d 最短? 8.水平直杆AB 在半径为R 的固定圆圈上以匀速v 0竖直下落,如图所示, 试求套在该直线和圆圈的交点处小环M 的速度。 9.如图所示,A 、B 两直杆交角为60?,交点为M ,若两杆各以垂直于自身的速度V 1、V 2沿着纸面运动,V 1= V 2=1m/s ,则交点M 的速度为多大? 10. 如图所示,在同一铅垂面上沿图示的两个方向以的初速度V A =10m/s 、 V 2=20m/s 抛出A 、B 两个质点,问1s 后A 、B 相距多远?

圆周运动基本概念公式

. 圆周运动基本概念公式 【基本概念辨析】 曲线运动 1、物体做曲线运动时,一定变化的物理量是() A.速率B.速度C.合外力D.加速度 2、关于曲线运动,下列说法中正确的是() A.物体作曲线运动时,它的速度可能保持不变 B.物体只有受到一个方向不断改变的力的作用,才可能作曲线运动 C.作曲线运动的物体,所受合外力方向与速度方向肯定不在一条直线上 D.所受合外力方向与速度方向不在一条直线上的物体,肯定作变加速曲线运动 3、物体在几个共点的恒力作用下处于平衡状态,若突然撤销其中的一个恒力,该物体的运动() A.一定是匀加速直线运动B.一定是匀减速直线运动 C.一定是曲线运动D.以上几种运动形式都有可能 4、如甲图所示,物体在恒力F作用下沿曲线A运动到B,这时突然使它所受 的力方向改变而大小不变(即由F变为-F),在此力作用下,物体以后的运动 情况,下列说法正确的是() A.物体不可能沿Ba运动B.物体不可能沿直线Bb运动 C.物体不可能沿直线Bc运动D.物体不可能沿原曲线由B返回A 圆周运动 5、关于向心力的说法中正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力改变了做圆周运动物体的线速度大小和方向 C.做匀速圆周运动物体的向心力,一定等于其所受的合力 D.做匀速圆周运动物体的向心力是恒力 6、关于匀速圆周运动的向心力,下列说法中正确的是() A.向心力是指向圆心方向的合力,是根据力的性质命名的力 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果只是改变质点的线速度大小 7、关于向心加速度,下列说法中正确的是() A.物体做匀速圆周运动的向心加速度始终不变 B.地面上物体由于地球自转而具有的向心加速度在赤道上最大 C.向心加速度较大的物体线速度也较大 D.向心加速度较大的物体角速度也较大 【基础应用】 1、如图所示,一个物体在O点以初速度v开始作曲线运动,已知物体只受到沿x轴方向的恒力F作用,则物体速度大小变化情况是( ) (A)先减小后增大(B)先增大后减小 (C)不断增大(D)不断减小

极坐标下求加速度

极坐标系下速度与加速度的推导过程: 一、极坐标系( plane polar coordinates ) 1 .极坐标系 在参考系上取点 O ,引有刻度的射线 OX 称为极轴(有方向的),建成极坐标系。 矢径:由参考点 O 引向质点位置 A 的线段长度 由 r 表示矢径。如图示: r= 幅角:质点的位置矢量与极轴所夹的角θ (也称:极角) 规定:自极轴逆时针转至位置矢量的幅角为正,反之为负。 ( r ,θ)确定平面上质点的位置,称为极坐标。 质点的运动学方程:、 质点的轨迹: 2 .极坐标系中矢量的正交分解

如图示:质点在 A 点,沿位置矢量方向称为径向 径向单位矢量:沿质点所在处位置矢量的方向。 横向单位矢量:与径向方向垂直且指向增加的方向。 任何矢量均可在和方向上作正交分解。 注意:径向和横向随地点而异。 二、径向速度与横向速度 讨论质点平面运动速度在极坐标系中的正交分解式,如图示: ( 1 )用微元法推导速度 设: t t+ 时间内,图中质点自 A ( r, t)经历一微小的位移,到达 由速度的定义:

( 1 ) 位移对应于质点矢量的改变——径向位移; 位移对应于质点相对于极点幅角的改变——横向位移。 时,指向趋于方向。 ,时,指向趋于方向。 (2) 故 : 速度的径向分量:,速度的径横向分量: 即:径向速度等于矢径对时间的变化率 横向速度等于矢径与角速度的乘积。 ( 2 )矢量运算法推导速度 ( 5 )对于径向速度是矢径的变化而引起的速度的大小。

下面讨论: 如图所示是单位径向方向,模的大小为 1 。 () 另外的推导也可如下进行: 右端展开是 : 即: 所以 : 。 三、加速度矢量 用“矢量法”推导“加速度”

圆周运动和向心加速度知识点总结.

圆周运动和向心加速度知识点总结 知识点一:圆周运动的线速度 要点诠释: 1、线速度的定义: 圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。 公式:(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、说明 1)线速度是指物体做圆周运动时的瞬时速度。 2)线速度的方向就是圆周上某点的切线方向。 线速度的大小是的比值。所以是矢量。 3)匀速圆周运动是一个线速度大小不变的圆周运动。 4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。 注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。 知识点二:描写圆周运动的角速度

要点诠释: 1、角速度的定义: 圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。 公式: 单位:(弧度每秒) 2、说明: 1)这里的必须是弧度制的角。 2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。 3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。 4)关于的方向:中学阶段不研究。 5)同一个转动的物体上,各点的角速度相等。 例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。 即: 3、关于弧度制的介绍

(1)角有两种度量单位:角度制和弧度制 (2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是360°,平角和直角分别是180°和90°。 (3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。一段长为的圆弧对应的圆心角是 rad, (4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是: ;平角和直角分别是(rad)。 (5)同一个角的角度和用弧度制度量的之间的关系是: rad , 说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而“给”的。 知识点三:匀速圆周运动的周期与转速 要点诠释: 1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s。 它描写了圆周运动的重复性。 2、周期T的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。 观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如

极坐标系速度推导

§2.7极坐标系·速度与加速度 问题的提出:在生活中人们经常用方向和距离来表示一点的位置。这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。 如:从这向北走2000米!(出发点方向距离) 一、极坐标系( plane polar coordinates ) 1 .极坐标系的建立: 在参考系上取点 O ,引有刻度的射线 OX 称为极轴(有方向的),建成极坐标系。 矢径:由参考点 O 引向质点位置 A 的线段长度 由 r 表示矢径。如图示: r= 幅角:质点的位置矢量与极轴所夹的角θ(也称:极角) 规定:自极轴逆时针转至位置矢量的幅角为正,反之为负。 ( r ,θ)确定平面上质点的位置,称为极坐标。 质点的运动学方程:、 质点的轨迹: 2 .极坐标系中矢量的正交分解 如图示:质点在 A 点,沿位置矢量方向称为径向 径向单位矢量:沿质点所在处位置矢量的方向。 横向单位矢量:与径向方向垂直且指向增加的方向。 任何矢量均可在和方向上作正交分解。 注意:径向和横向随地点而异。 二、径向速度与横向速度

讨论质点平面运动速度在极坐标系中的正交分解式,如图示: ( 1 )用微元法推导速度 设: t t+ 时间内,图中质点自 A(r,t)经历一微小的位移,到 达 由速度的定义: ( 1 ) 位移对应于质点矢量的改变——径向位移; 位移对应于质点相对于极点幅角的改变——横向位移。 时,指向趋于方向。 ,时,指向趋于方向。 (2) 故 : 速度的径向分量:,速度的径横向分量: 即:径向速度等于矢径对时间的变化率 横向速度等于矢径与角速度的乘积。 ( 2 )矢量运算法推导速度 ( 5 )

粤教版必修一4.2影响加速度的因素教案04

影响加速度的因素 本节通过实验中的控制变量法探究影响加速度的因素,要求我们学会探究物理量的科学方法——控制变量法。 一.学法指导 1 物体运动状态的改变 物体运动状态就是指物体运动的速度,物体运动状态的改变即物体速度的改变,因速度是矢量,所以,物体运动状态的改变有三种情况,其一,仅物体速度大小的改变;其二,仅物体速度方向的改变;其三,物体速度大小和方向同时改变。所以物体运动状态的改变必然产生加速度,即无论是速度大小改变还是速度方向改变,还是大小方向都改变,都会产生加速度。 2 加速度与物体所受合外力的关系 (1)实验探究方法:控制变量法(保持小车质量不变) (2)实验目的:猜想小车质量保持不变时,小车所受的合外力越大,加速度也越大;反之合外力越小,加速度越小。 (3)实验器材:一个带有刻度尺的斜面,一辆四轮小车,一块秒表 (4)实验设计: ① 如图4-6所示,让小车从斜面上由静止释放 ② 记下小车运动的时间t ③ 从斜面上读出小车的位移s ④ 由22t s a 可求小车的加速度 ⑤ 改变斜面与桌面的夹角,可以改变小车受到的合力大小,重做上面的实验。 (5)实验结论:当物体的质量保持不变时,物体受到的合外力逐渐增大,其加速度将逐渐增大;反之,物体受到的合外力逐渐减小,其加速度也将逐渐减小。加速度的方向和合外力的方向相同。 3、加速度与物体质,的关系 (1) 实验探究方法:控制变量法(保持物体受到的合外力不变) (2) 实验目的:猜想小车所受合力不变时,小车的质量越大,加速度就越小;反之质量越小,加速度就越大。 (3) 实验器材:一个带有刻度尺的斜面,一辆四轮小车,一块秒表,弹簧秤。 (4) 实验设计: ① 把小车放在斜面上,用弹簧秤沿斜面向上拉小车,使小车保持静止或匀速直线运动,记下弹簧秤的示数。 图4-6

圆周运动及万有引力加公式整理

1.要使两物体间的万有引力减小到原来的1 ,下列办法不可采用的是() 4 A.使两物体的质量各减小一半,距离不变 B.使其中一个物体的质量减小到原来的1 ,距离不变 4 C.使两物体间的距离增加为原来的2倍,质量不变 D. 使两物体间的距离和质量都减为原来的1 4 2.关于万有引力定律的适用范围,下列说法正确的是() A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体 D. 适用于自然界中任意两个物体之间 3.(双项)在万有引力定律的公式F=G m·M 中,r是() r2 A.对星球之间而言,是指运行轨道的平均半径 B.对地球表面的物体与地球而言,是指物体距离地面的高度 C.对两个均匀球体而言,是指两个球心间的距离 D. 对人造地球卫星而言,是指卫星到地球表面的高度 4.火星的半径是地球半径的一半,火星的质量约为地球质量的1 ,那么地球表面50kg的物体受到地 9 球的吸引力约是火星表面同质量的物体受到火星吸引力的倍. 5.关于万有引力和万有引力定律的理解正确的是() A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F=G m·M 计算 r C.由F=G m·M 知,两物体间距离r减小时,它们之间的引力增大 r D.万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11N·m2/kg2 6.已知地球的半径为R,质量为M,自转周期为T.一质量为m的物体放在赤道上单海平面上,则物 体受到的万有引力F= ,重力G= . 7.设想把质量为m的物体放在地球的中心,地球的质量为M,半径为R,则物体与地球间的万有引 力是() D.无法确定 A.零 B.无穷大 C. G m·M R 8.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F.若两个半径为实心小铁球2 倍的实心大铁球紧靠在一起,则它们之间的万有引力为() A.2F B.4F C. 8F D.16F 9.加入地球的自转速度增大,关于物体的重力,下列说法正确的是() A.放在赤道地面上物体的万有引力不变 B.放在两极地面上物体的重力不变 C.放在赤道地面上物体的重力减小 D.放在两极地面上物体的重力增大 10.火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g,则火星表面的重力 加速度约为() A.0.2g B.0.4g C.2.5g D.5g 11.在离地面高度等于地球半径的高度处,重力加速度的大小是地球表面重力加速度的() A.2倍 B.1倍 C.1/2 D.1/4 12.质量为m的物体在离地某高处的重力是它在地表附近所受重力的一半,求物体所处的高度.(已

高中物理竞赛相对运动知识点讲解

高中物理竞赛相对运动知识点讲解 任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。 通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。 绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度 的矢量和。牵连 相对绝对v v v 这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。 当运动参照系相对静止参照系作平动时,加速度也存在同样的关系: 牵连 相对绝对a a a 位移合成定理:S A 对地=S A 对B +S B 对地 如果有一辆平板火车正在行驶,速度为 火地 v (脚标“火地”表示火车相对地面,下 同)。有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为汽火 v ,那么很明显,汽车相对地面的速度为: 火地 汽火汽地v v v (注意: 汽火 v 和 火地 v 不一定在一条直线上)如果汽车中有一只小狗,以相对汽车 为狗汽v 的速度在奔跑,那么小狗相对地面的速度就是 火地 汽火狗汽狗地v v v v 从以上二式中可看到,上列相对运动的式子要遵守以下几条原则: ①合速度的前脚标与第一个分速度的前脚标相同。合速度的后脚标和最后一个分速度的后脚标相同。 ②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。 ③所有分速度都用矢量合成法相加。 ④速度的前后脚标对调,改变符号。 以上求相对速度的式子也同样适用于求相对位移和相对加速度。

高一物理《匀变速直线运动加速度》教学设计

第二章匀变速直线运动 五、匀变速直线运动加速度 1课时 1、理解匀变速直线运动的含义 2、正确理解加速度的含义以及加速度和速度的区别 2、知道加速度单位的符号和读法。 3、知道加速度是矢量,能判断加速直线运动和减速直线运动的加速度方向,领会变速直线运动加速度符号正负的意义。 4、会正确运用加速度的定义式计算变速直线运动的加速度。 重点:加速度的物理意义 难点:加速度和速度的区别 可改变倾角的斜面,小球。 1、复习本节课文 2、书上P41(1)(5) ●引入新课 [演示]让小球在倾角的斜面上滚下,改变斜面倾角,小球的运动都是匀变速运动。 ------这两次运动有什么不同? [板书] 第五节匀变速直线运动加速度

●进行新课 假如某人坐在汽车驾驶员身旁,在汽车起动时,注视速度计,记下间隔为5s的各时刻的速度值,记录到下列一组数据。 从以上数据可以看出,汽车每隔5s,速度增加10km/h,既在相等的时间内,速度的改变是相等的。 [板书] 一、匀变速直线运动 1、匀变速直线运动的含义 在变速直线运动中,如果在相等的时间内速度的改变相等,这种运动就叫做匀变速直线运动。 [板书] 2、匀变速直线运动分类 (1)如果物体的速度随时间均匀增加,称为匀加速直线运动。 ------如汽车的起动、飞机起飞、火车出站、石块自由下落等。 (2)如果物体的速度随时间均匀减少,称为匀减速直线运动。 ------如汽车刹车、飞机降落、火车进站、石块被竖直向上抛等。 [讨论] 以下有五个物体,比较它们速度改变快慢的程度。 [

比较A和B:时间相等,速度变化量大的物体速度改变得快 ----自行车比汽车速度改变得快。 比较B和C:速度变化量相等,运动时间短的物体速度改变得快 ----汽车比舰艇速度改变得快。 比较C和D:速度的变化量不相等,时间也不相等。 ----计算它们平均每秒钟速度的变化量, 单位时间内速度变化多的物体速度改变快。 ---- 五个物体每秒钟速度变化的数值分别为3、2、0.3、0.2和0。 每秒钟速度的改变量,等于速度的改变跟发生这一改变所用时间的比值,我们把它定义为加速度,这是物理学中的一个重要的概念。 [板书] 二、加速度的基本概念 1、定义:加速度等于速度的改变跟发生这一改变所用时间的比值。 定义式: a = (v t –v ) / t v ------初速度(时间t开始时的速度); v t ------末速度(时间t末了时的速度); a ------加速度(时间t范围内的加速度)。 2、单位:m/s2(m·s-2) 3、方向: [分析] 公式中 v t - v 等于物体速度的改变量,现用△v表示。 加速度公式便可写成 a = △v / t 。 时间t是没有方向的,因此加速度 a的方向跟速度改变量△v的方向相同。 [板书] 加速度的方向和速度改变量的方向相同,为正值。

平抛、匀速圆周运动公式

匀速圆周运动公式 1.线速度:v (矢量) 单位:米/秒(m/s ) 公式:v =t s ??=ωr=T r π2=2 f r=2n r (或30 nr π) 2.角速度:ω(矢量) 单位:弧度/秒(rad/s ) 公式:ω=t ??θ=r v =T π2=2 f =2n (或30 n π)(转速n 前者单位为r/s 后者为r/min ) 3.向心加速度:n a (矢量) 单位:米2/秒(m 2/s ) 公式:n a =t v ??=r v 2 =ω2r=224T r π=4π2fr=v ω 4.向心力:n F (矢量) 单位:牛(N ) 公式:n F = m n a =m r v 2 =m ω2r=m 2 24T r π 5.周期:T (标量) 单位:秒(s ) 周期与频率的关系:f T 1= 6.频率:f (标量) 单位:赫兹,简称:赫,符号:Hz 7.转速:n (标量) 单位:转/秒(r/s) 或 转/分(r/min) 与频率的关系:f=n (转速单位为r/s ) 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。 (3)氢原子核外电子绕核作匀速圆周运动的向心力是原子核对核外电子的库仑力。 平抛运动公式

t ?t g v ?=?v ?1.水平分运动: 匀速直线运动 水平位移: x = 0v t 水平分速度:x v = 0v 2.竖直分运动: 初速度为零的匀加速直线运动(即自由落体运动) 竖直位移: y =21g t 2 竖直分速度:y v = g t gy v y 22= 3.合速度: v = y x v v + tan θ =x y v v =0 v gt 4.合位移: 22y x l += tan α= x y =02v gt 即:tan θ=2 tan α 速度方向延长线过水平位移重点x /2 5.飞行时间: g h t 2= 6.水平射程: x =0v t =g h v 20 其中:h 为下落高度 7.速度改变量:任意相等时间间隔内的速度改变量相同,方向恒为竖直向下 l v

匀速直线运动的规律

【《课标》解读】 1.《课标》原文 (一)运动的描述 (3)经历匀变速直线运动的实验研究过程,理解位移、速度和加速度,了解匀变速直线运动的规律,体会实验在发现自然规律中的作用。 (4)能用公式和图像描述匀变速直线运动,体会数学在研究物理问题中的重要性。 2.《课标》解读 知识性行为动词2个;技能性行为动词1个;体验性行为动词3个。由此不难看出,新课程在重视知识的同时,更加强调学生的体验过程。 【教材分析】 教材安排了两个活动一个讨论交流,即:活动1“飞机跑道的设计”;活动2“飞机制动系统的设计”;讨论交流“一起交通事故的分析”。“设计”两个字反映出编者意在把学生放在自主学习的位置,活动中要求学生“1.画出设计分析草图2.写出设计依据的公式3.算出你的结果”也适合对学生进行过程和方法的训练,如果在加上“4.拿你的设计方案和同学交流”就多了一个探究要素。 因此,这节课不应该是一节普通的习题课,而应该是一节应用规律解决实际问题的探究课。 考虑到活动1和活动2本身构成了一个有机整体及课时原因,本节课删减了讨论交流“一起交通事故的分析”等内容。 【设计思路】 本节的内容是应用匀变速直线运动的规律探究和解决实际问题。教学中以协和飞机失事事件为线索,激发学生的探究兴趣,通过独立思考、交流讨论,让学生体会应用物理规律解决实际问题的过程和方法。教学过程中力求体现新课程的教学理念,落实三维目标。

【教学目标】 (一)知识与技能 1.在应用中加深对匀变速直线运动规律的理解。 2.尝试运用物理知识解决生活中的实际问题。 (二)过程与方法 1.在探究活动中体会用匀变速直线运动规律解决问题的一般过程和方法。 2.使学生在对设计结果的分析、论证和交流中,尝试经过思考发表自己的见解。(三)情感、态度与价值观 1.从真实事件入手,激发学生探究问题的热情。 2.使学生进一步领会养成良好学习习惯的重要性。 3.使学生从协和飞机失事事件中,领悟细节决定成败,提高责任意识。 【教学重点】 用匀变速直线运动规律解决问题的过程和方法 【教学难点】 将实际问题转化为物理问题 【教学方法】 探究讨论、分析讲解 【教学资源】 教材、PPT课件和视频资料。 【教学过程】 (一)通过协和飞机失事视频的演示,创设问题情境,激发学生对飞机起降问题的关注

相关文档
相关文档 最新文档