文档库 最新最全的文档下载
当前位置:文档库 › 岩石直接拉伸与压缩变形的试验研究

岩石直接拉伸与压缩变形的试验研究

岩石直接拉伸与压缩变形的试验研究
岩石直接拉伸与压缩变形的试验研究

轴向拉伸与压缩

第七章 轴向拉伸和压缩 一、内容提要 轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。 (一)、基本概念 1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。这里要注意产生内力的前提条件是构件受到外力的作用。 2. 轴力 轴向拉(压)时,杆件横截面上的内力。它通过截面形心,与横截面相垂直。拉力为正,压力为负。 3. 应力 截面上任一点处的分布内力集度称为该点的应力。与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。轴拉(压)杆横截面上只有正应力。 4. 应变 单位尺寸上构件的变形量。 5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。 6. 极限应力 材料固有的能承受应力的上限,用σ0表示。 7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。极限应力与许用应力的比值称为安全系数。 8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。 (二)、基本计算 1. 轴向拉(压)杆的轴力计算 求轴力的基本方法是截面法。用截面法求轴力的三个步骤:截开、代替和平衡。 求出轴力后要能准确地画出杆件的轴力图。 画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。 2. 轴向拉(压)杆横截面上应力的计算 任一截面的应力计算公式 A F N =σ 等直杆的最大应力计算公式 A F max N max = σ 3. 轴向拉(压)杆的变形计算 虎克定律 A E l F l N = ?εσE =或 虎克定律的适用范围为弹性范围。 泊松比 εε=μ' 4. 轴向拉(压)杆的强度计算 强度条件 塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用

浅析岩石单轴压缩变形试验的影响因素

浅析岩石单轴压缩变形试验的影响因素 在实际工作中,由于对岩石力学性质评论是公路、铁路等工程地质勘察不可或缺的要素,因此采取岩石单轴压缩试验这种最通用的试验方法,研究岩石变形,成为岩石力学问题的重要内容之一,这也对实际工程施工原料选择起到一定的参考作用。这个问题的研究由于操作起來比较方便,理论基础比较明显,所以被广泛应用于工程实践和各种科研工作中。作者试图按照这个理论的思路,简单分析岩石单轴压缩变形试验的影响因素,进而为相关科研和实际工程施工提供一些有参考价值的东西。 标签:岩石;单轴压缩变形;影响 引言 岩石单轴压缩变形试验是检验岩石抗压承载力的一种试验,属于物理试验的范畴。文章中提出的试验模型主要是用花岗岩、泥岩两种规则形状的岩石作为试样,用单轴荷载来进行压力作用,来测定其纵向和横向的变形量,进而形成相应的应力—应变曲线,得出弹性模量及泊松比。作者以花岗岩和泥岩两种岩石为试验样本,采取弹性模量试验对两种岩石的受力变形等情况进行对比和分析,来具体总结影响岩石压缩变形试验的主要因素有哪些。 1 弹性模量的概念及其取值方法 1.1 弹性模量的概念 弹性理论是以应力、应变的线性关系为基础的一种理论,其中应力与应变之比就是弹性模量,从力学角度来看它表示岩石材料的坚硬程度,更具体地来说是指岩石材料在压缩或拉伸时,材料对弹性变形的抵抗能力,这是在本类试验中应用的重要基础理论和概念。 1.2 岩石弹性模量的取值方法 根据国际岩石力学学会实验室和现场试验标准化委员会的《岩石力学试验建议方法》,岩石弹性模量的取值方法主要是割线弹性模量及泊松比的取值方法,以抗压强度50%时的变形量为基础,在纵向应力—应变曲线上的原点与应力相应于极限抗压强度50%处的应力点的连线,其斜率为割线模量,横向应变与纵向应变的比值就是泊松比。一般来说,在实际工作中,大多数岩石这个应力水平下仍处于弹性范围内,很少出现细微裂缝扩展乃至断裂破碎等现象。 2 影响岩石弹性模量的主要因素 2.1 构成岩石的矿物及岩石物理性质的影响

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

测定岩石的单轴抗压强度

实验5 测定岩石的单轴抗压强度 一、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 二、仪器设备 1、制样设备:钻岩机、切石机及磨片机; 2、测量平台、卡尺、放大镜等; 3、烘箱、干燥箱; 4、水槽、煮沸设备或真空抽气设备; 5、压力机。 三、操作步骤 1、试样制备 试样规格:一般采用直径5cm、高10cm的园柱体,以及断面边长为5厘米,高为10厘米的方柱体,每组试样必须制备3块。 试样制备精度要求同实验四: 2、试样描述 试验前应对试样进行描述,内容同实验四。 3、试样烘干或饱和处理 根据试验要求需对试样进行烘干或饱和处理。 烘干试样:在105~110℃温度下烘干24h。

自由浸水法饱和试样:将试样放入水槽,先注水至试样高度的1/4处,以后每隔2h分别注水至试样高度的1/2和3/4处,6h后全部浸没试样,试样在水中自由吸水48h。 煮沸法饱和试样:煮沸容器内的水面始终高于试样,煮沸时间不少于6h。 真空抽气法饱和试样:饱和容器内的水面始终高于试样,真空压力表读数宜为100kPa,直至无气泡逸出为止,但总抽气时间不应少于4h。 4、测量试样尺寸 按试验二量积法中的要求,量测试样断面的边长,求取其断面面积(A)。 5、安装试样、加荷 将试样置于试验机承压板中心,调整有球形座,使之均匀受载,然后以每秒0.5~1.0MPa的加载速度加荷,直至试样破坏,记下破坏荷载(P)。 6、描述试样破坏后的形态,并记录有关情况。 7、按下式计算岩石的单轴抗压强度 式中:σC――岩石的单轴抗压强度(MPa); P――破坏荷载(N); A――垂直于加荷方向试样断面积(mm2)。 计算值取3位有效数字。 四、试验报告内容 1、整理记录表(格式如下表) 月日 2、试样描述资料。 3、思考题:

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解 答 Prepared on 22 November 2020

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 A 1 (a) (b)

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积 2200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限 460b MPa σ=,试填写下列空格。

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

岩体力学实验..

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A 。如图所示。 两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,l A 2 A 1 (a (b

即max max N Al l A A νσν=== 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x ε ενε'==-。 二、填空题

1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45o ) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积2 200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ =,强度极限460b MPa σ=,试填写下列空格。 当F=50kN ,各杆中的线应变分别为1ε= (46.2510-?),2ε=(0),3 ε=(4 6.2510-?),这是节点B 的水平位移Bx δ=(43.6110m -?),竖直位移By δ=

西南科技大学考试岩石力学指导

《岩土力学》课程教学指导 一、本课程的性质、目的 本课程是高等学校公路与城市道路工程专业必修专业课,是一门理论与实践并重、工程性较强的课程。本课程是研究土的物理力学性质的一门学科,目的是为了更好地学习有关专业课程,也是为了更好地解决有关土的工程技术问题。 二、本课程的教学重点 1.土的物理性质及工程分类:是土力学的基础知识。 2.土中应力计算:要求掌握自重应力、基础底面压力分布与计算、掌握分布荷载作用下土中应力计算。 3.土的压缩性与沉降计算:重点掌握地基沉降计算。 4.土的抗剪强度:重点掌握强度理论和强度指标。 5.土压力计算:重点掌握两个经典土压力理论。 6.土坡稳定性分析:掌握砂性土和粘性土土坡分析方法,重点掌握条分法。 7.地基承载力:重点掌握容许承载力的确定方法。 三、本课程教学中应注意的问题 1.理论教学环节与实践性教学环节的有效结合; 2.结合教学容,及时介绍新的技术标准,新的设计规,以及公路工程的新理论、新技术,新方法; 3.要重视学生实际能力的培养。 四、本课程采用的教学方法

本课程的主要理论、技术和方法等主要容可采用课堂讲授,注重培养学生理论联系实际能力的培养。 五、课程教学资料 教材: 1.《土质学与土力学》洪毓康人民交通 2001年4月 参考书: 1.《土力学》成宇中国铁道 2000年2月 2. 《土力学地基基础》希哲清华大学 2001年6月 3.《公路工程地质勘察规》JTJ064-98 人民交通 期刊: 4.《岩土力学》 5.《路基工程》 六、成绩评定 1.平时课程作业、实习报告占本课程考核总成绩的40%,考试占60%。 2.根据《西南科技大学学分制学籍管理暂行办法》(西南科大发[2001]207号)第十二条规定:有下列情形之一者,取消考核资格,必须重修。1、学生(免修生除外)在一学期,无论何种原因,累计缺课达教学时数的三分之一者;或任课教师随机抽查缺课6次以上者; 2、有实验、作业等环节的课程,学生未按时完成实验、实验报告及作业等环节。抄袭他人实验报告、作业的,当事人双方的实验报告、作业均按作弊处理,根据学生的认错态度和补做情况,可以考虑是否

轴向拉伸和压缩的变形计算

教学课题 轴向拉伸与压缩的变形、虎克定律 课时 教学目标或要求 1纵向变形与横向变形 2绝对变形与相对变形(应变) 3虎克定律 4 教学重点、难点 教学方法、手段 教学过程及内容 轴向拉伸与压缩的变形计算 一、变形和应变 杆件在轴向拉伸压缩过程中,其轴向尺寸和横向尺寸都要发生变化,设等截面直杆的原长为l ,横向尺寸为b 。发生轴向拉伸后的长度为1l ,横向尺寸为1b 。下面讨论杆件的变形。 1.绝对变形 杆件长度的伸长量称为纵向绝对变形,用l ?表示,则 l l l -=?1 横向绝对变形用b ?表示,其计算为:b b b -=?1 2.相对变形 绝对变形的大小与杆件的长度有关,为消除长度对变形量的影响,引入相对变形的概念。相对变形指单位长度的变形,又称线应变,用ε表示,则纵向的线应变: l l ?=ε 图13.1.1

横向线应变用1ε表示,其计算为 : b b ?=1ε 3.泊松比 杆件的横向变形和纵向变形是有一定的联系的,大量的实验证明,对于同一种材料,在弹性变形范围内,其横向相对变形与纵向相对变形的比值为一常数,称为泊松比,用表示。因为横向应变与纵向应变恒为相反数,故比值为负,因此泊松比取其绝对值。即 εεμ1 = 二、虎克定律 实验表明,杆件在轴向拉伸和压缩过程中,当应力不超过一定的限度时,杆件的轴向变形与轴力及长度成正比,与杆件的横截面面积成反比,这一关系称为虎克定律。即A Nl l ∝? 引入比例常数E ,则有 EA Nl l =? εσ?=E 表明在弹性限度内,应力和应变成正比。 E---为弹性模量,表明了材料抵抗拉压变形的能力,其单位与应力的单位相同。 EA---抗拉刚度 应用注意: 1.虎克定律只在弹性范围内成立; 2.应用公式时在杆长l 内,轴力N 、弹性模量E 及截面面积A 都应为常数,如果不满足的话,应分段考虑。具体分析见下面的例子。 例:一阶梯钢杆如图,已知AC 段的截面面积为A=500mm 2,CD 段的截面面积为 A200mm 2,杆的受力情况及各段长度如图13.1.2所示,材料的弹性模量为E=200GPa ,试求杆的总变形量。 解:轴力图----以作用点及截面突变处为分界点---求各段变形量---代数和求总变形量.

岩体力学实验指导书

岩体力学实验指导书 岩体力学实验指导书 前言 本书是作为水文地质及工程地质专业《岩体力学》教材的组成部分,共编入岩石物理力学性质实验12个,岩石力学实验教学是《岩体力学》教学的重要环节,通过实验教学使学生在学习岩体力学基本理论的同时,能理论联系实践,培养实际工作能力及严谨的科学态度,进一步巩因课堂教学内容,为此要求学生掌握实验的基本原理与方法,其中包括仪器的装置以及工作原理,为了使学生理解,在本书编写过程中,力求从教学出发,联系生产实际,配合理论课,阐明实验基本原理与实验步骤,并辅以思考题。 本书是在我校《岩体力学实验讲义》油印教材基础上,并参阅了长春地院、水电部及地矿部出版的有关岩石力学实验指导及及规程编写而成的。 根据教育部《关于教材采用国际单位制的通知),书中一律采用国际单位制单位。但目前实验仪器尚未改进,为弥补这一缺陷,除书后编入《国际单位制及与工程实用制单位的换算关系),以备读者查阅外,教师在课堂上应予适当提醒。 限于编者水平,书中难免存在缺点和不当之处,敬请读者指正。 实验1 测定岩石的颗粒密度

一、基本原理 岩石的颗粒密度是指岩石固体矿物颗粒部分的单位体积内的质量: ?? ms Vs 岩石的固体部分的质量,采用烘干岩石的粉碎试样,用精密天平测得,相应的固体体积,一般采用排开与试样同体积之液体的方法测得,通常用比重瓶法测得岩石固体颗料的体积。 在用比重瓶测定岩石固体颗料体积时,必须注意所排开的液体体积确能代表固体颗料的真实体积,试样中含有的气体,实验中必须把它排尽,否则影响测试精度,所用的液体一般为蒸馏水,并用煮沸法或抽气法排除岩石试样中的气体,若岩石中含有大量可溶盐类、有机质、粘粒时,则须用中性液体如煤油、汽油、酒精、甲苯和二甲苯等,此时必须用抽气法排除试样中的气体。二、仪器设备 1、岩石粉碎设备:粉碎机、瓷钵、玛瑙研钵和孔径为的筛; 2、比重瓶:容积为100ml或50ml; 3、分析天平:称量200克,感量克; 4、普通天平:称量500克,感量克; 5、真空抽气设备和煮沸设备; 6、恒温水槽; 7、温度计,量程0-50℃,精确至℃; 8、其它:烘箱、蒸馏水或中性液体、小漏斗、洗耳球等。三、操作步骤

轴向拉伸与压缩试验

轴向拉伸与压缩试验:(4学时) (点击下载实验报告) 一、实验目的: ①测定低碳钢的两个强度指标:屈服极限σs、强度极限σ b 和两个塑性指标:延伸率δ、断面收缩率ψ。 ②测定铸铁的强度极限σb。 ③观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。 二、实验要求: 了解实验设备的构造及工作原理,要求学生亲自动手操作设备;观察低碳钢、铸铁试件的拉伸和压缩的破坏过程;测定低碳钢的屈服极限σs、强度极限σb、延伸率δ、断面收缩率ψ;测定铸铁的强度极限σb;验证虎克定律;认真观察实验过程中出现的各种实验现象,分析实验结果。 三、试件 按GB228—76规定,本实验试件采用圆棒长试件。取d0=10,L=100,如图所示:实验原理及方法

四、实验设备及仪器 1、液压式万能材料实验机; 2、游标卡尺; 3、划线机(铸铁试件不能使用)。 (一)低碳钢的拉伸实验 1屈服极限σs的测定 P—ΔL曲线 实验时,在向试件连续均匀地加载过程中。当测力的指针出现摆动,自动绘图仪绘出的P—ΔL 曲线有锯齿台阶时,说明材料屈服。记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为 σs=P s/A 2、强度极限σb的测定

实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为: σb=P b/A0 3、延伸率δ和断面收缩率Ψ的测定 计算公式分别为:δ=(L1-L)/L x 100% Ψ=(A0-A1)/A0 x 100% L:标距(本实验L=100) L1:拉断后的试件标距。将断口密合在一起,用卡尺直接量出。 A0:试件原横截面积。 A1:断裂后颈缩处的横截面积,用卡尺直接量出。 实验步骤 1.试件准备:量出试件直径d0,用划线机划出标距L和量出L; 2.按液压万能实验机操作规程1——8条进行; 3.加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象; 4.按操作规程10——14进行; 将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。 (二)铸铁与低碳钢的压缩实验 1)测定铸铁的抗压强度极限σb,低碳钢压缩时的屈服极限σs 2)观察铸铁和低碳钢压缩时的破坏现象 3)通过实验,比较塑性材料和脆性材料机械性质的区别

实验五岩石单轴压缩实验DOC

实验五岩石单轴压缩实验 一. 实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600 型液压材料试验机; 5.JN-16 型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三. 试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnrK 50 mnrK 100 mm的立方体,由于岩石松软不能制取标准试样时, 可采用非标准试样,需在实验结果加以说明

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于 0.1mm 检测方法如图5-1所示,将 试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动 试样百分表指针的摆动幅度小于10格。 b 直径偏差: 试样两端的直径偏差不得大于 0.2 mm,用游标卡尺检查。 c 轴向偏差: 试样的两端面应垂直于试样轴线。检测方法如图 5-2所示,将试样放 在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持 一定的湿度,但试样不得接触水面。 纵向、横向应变片排列采用“T”形,尽可能避开裂隙,节 理等弱面。 3. 粘贴工艺:试样表面清洗处理一涂胶一贴电阻应变片一固化处理一焊接导线一防潮 四.电阻应变片 1.阻值 检查- 克电 阻丝平 阻值一般选用 120欧姆, 测量片和补偿片的电阻差值不超过 0.5 Q o 1—百分表2-百分表架3-试样4 1—直角尺2-试样 2.位置确定:纵向、横向电阻应变片粘贴在试样中部, 的粘贴 F 直,间距均匀,无黄斑, 3-水平检测台

相关文档
相关文档 最新文档