文档库 最新最全的文档下载
当前位置:文档库 › 5 汽轮机的变工况特性-压力与流量

5 汽轮机的变工况特性-压力与流量

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】(1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:I普通单向阀2 液控单向阀普通单向阀换向阀:1转阀式换向阀 2滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动 换向阀。

手动式换向阀 (a l 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的 通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的 相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换 向阀有4个通油口 ,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3. 选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场 合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操 纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电 液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的范围之内,最高流量不得超过所选阀额定流量 的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只 是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁 力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4. 直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于 PK1时,阀处于关闭状态 其过流量为零;当阀入口压力大于 k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段; 当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态

汽轮机各种工况TRLTHATMCRVWO等

汽轮机各种工况 T R L T H A T M C R V W O 等 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带

额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%. 2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,

汽机锅炉的各个工况的对应关系

『进口大容量火力发电设备技术谈判指南 1996』--适合于300MW机组一.汽机 1。额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2。最大连续功率(T-MCR)是指在 1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。注:a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa 为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。

水泵流量与压力扬程要点

水泵的扬程、功率与闭合系统中的管道长度 L 有关。 水泵流量 Q= 25m^3/h =0.00694 m^3/s 管道流速取 2m/s左右, 则管内径 D=[4Q/(3.1416V]^(1/2=[4*0.00694/(3.1416*2]^(1/2=0.0665m 选用管径 D= 70 mm = 0.070 m,流速 V=[4Q/(3.1416D]^(1/2=1.34 m/s 管道摩阻 S=10.3n^2/D^5.33=10.3*0.012^2/0.070^5.33 = 2122 水泵扬程 H=h+SLQ^2=170+2122*600*0.00694^2 = 231 m 配套电动机功率 N=9.8QH/k =9.8*0.00694*231/0.5 = 31.4 kw 注:式中, H ——水泵扬程,单位 m ; S ——管道摩阻, S=10.3n^2/d^5.33,n为管内壁糙率,钢管可取 n=0.012, D 为内径,以 m 为单位。 L ——管道长度,以 m 为单位; Q ——流量,以 m^3/s为单位。 P——电动机功率, kw ; k ——水泵电动机机组的总效率, 取 50%, 选定水泵、电动机后, 功率可按实际情况精确确定。 按扬程和出水量来选择,与管道长度无关。 实际计算应为 :(要扬程 +管道阻力 *(1+泵的损耗 . 所以应为 :(50+10*1.1=66米 所以泵的扬程应选在 65-75米之间 , 再加上你需要的流量 , 泵就能 补水泵和给水泵计算方法一样。补水泵的流量 Q 由需要而定,即单位时间锅炉水补给量。补水泵的扬程由提水高度、锅炉压力水头以及管路的沿程水头损失和局部水头损失而定。设管长为 L ,沿程阻力系数为 k ,局部阻力系数为 j, 提水高度为 Z, 锅炉压力为 P ,水的密度为 p ,重力加速度用 g 表示 ,则补水泵扬程 : H = Z+P/(pg+(kL/DV^2/(2g+jV^2/(2g 式中平均流速 V=4Q/(3.14D^2 , D 为管内径。

汽轮机变工况

第三章第三章汽轮机的变工况 chapter 3 The changing condition of Steam turbine 设计工况:运行时各种参数都保持设计值。 变工况:偏离设计值的工况。 经济功率:汽轮机在设计条件下所发出的功率。 额定功率:汽轮机长期运行所能连续发出的最大功率。 研究目的:不同工况下热力过程,蒸汽流量、蒸汽参数的变化,不同调节方式对汽轮机工作的影响;保证机组安全、经济运行。 第一节喷嘴的变工况 The changing condition of a nozzle 分析:喷嘴前后参数与流量之间的变化关系 一、渐缩喷嘴的变工况 The changing condition of a contracting nozzle 试验:调整喷嘴前后阀门,改变初压和背压,测取流量的变化。 (一)(一)初压P*0不变而背压P1变化 (1)(1)εn=1,P1= P*0,G=0,a-b,d (2)(2)0<εn<εcr,G<G cr,a-b1-c1,1 (3)(3)εn=εcr,G=G cr,a-b2-c2,e (4)(4)ε1d<εn<εcr,G=G cr,a-b3-c3,3 (5)(5)εn=ε1d,G=G cr,a-c4,4 (6)(6)εn<ε1d,G=G cr,a-c4-c5,5 列椭圆方程: (二)(二)流量网图 改变p*0可得出一系列曲线,即流量网图 横坐标:ε1= p1/p*0m; 纵坐标:βm=G/G 0m; 参变量:ε0= p*01 /p*0m p*0m、G*0m:分别为初压最大值和与之相应的临界流量的最大值。 例1:已知:p0 =9MPa ,p01 =7.2MPa,p1 =6.3MPa,p11 =4.5MPa 求:流量的变化。

第三章 汽轮机的变工况特性-第三节 配汽方式及其对定压运行机组便工况的影响

第三节 配汽方式及其对定压运行机组便工况的影响 汽轮机的配汽方式有节流配汽、喷嘴配汽与旁通配汽等多种,其中最常用的是节流配汽与喷嘴配汽两种。旁通配汽主要用在船、舰汽轮机上,故这里不作介绍。下面先介绍配汽方式,然后介绍配汽方式对定压运行机组交工况的影响。 一、节流配汽 进入汽轮机的所有蒸汽都通过一个调节汽门(在大容量机组上,为避免这个汽门尺寸太大,可通过几个同时启闭的汽门),然后流进汽轮机,如图3.3.1(a)所示。最大负荷时,调节汽门全开,蒸汽流量最大,全机扣除进汽机构节流损失后的理想比治降)('?mac t h (见图3.3.1b)最大,故功率最大。部分负荷时,调节汽门关小,因蒸汽流量减小,且蒸汽受到节流,全机扣除进汽机构节流损失后的理想 比治降减为)(''?mac t h 故功率减小。图3.3.1(b)中0 p '表示调节汽门全开时第一级级前压力,0 p ''表示调节汽门部分开启时第一级级前压力。 节流配汽汽轮机定压运行时的主要缺点是,低负荷时调节汽门中节流损失较大,使扣除进汽机构节流损失后的理想比焓降减小得较多。通常用节流效率th η表示节流损失对汽轮机经济件的影响:

mac t mac t th h h ?' '?=)(η (3.3.1) 根据第二章全机相对内效率i η的定义,可得 th i mac t mac t mac t mac i mac t mac i i h h h h h h ηηη'=?' '?''?''?=?''?=)()()()( (3.3.2) 式中,)()(''?' '?='mac t mac i i h h η,指未包括进汽机构的通流部分相对内效率,对再热机组m ac t h ?、)(''?mac t h 、)(''?mac i h 均为高中低压缸比焓降之和。 节流效率是蒸汽初终参数和流量的函数。图3.3.2是初压0p =12.75MPa ,初温0t =565℃时,节流效率th η与背压g p 、流量比G G /1的关系曲线。只要求出 G G /1下的0P '',若是再热机组尚需知道再热压力 1r p 、再热压损1r p ?与再热温度r t ,就可查水蒸汽图表求出th η。由图可见,在同一背压下,蒸汽流量比设计值小得越多,调节汽门中的节流越大,节流效率越低。在同一流量下,背压越高,节流效率越低。因此,全饥理想比焓降较小的背压式汽轮机,不宜 采用节值配汽。背压很低的凝汽式汽轮机,即使流量下降较多,节流效率仍降得根少。 与喷嘴配汽相比,节流配汽的优点是:没有调节级,结构比较简单,造成本较低;定压运行流量变化时,各级温度变化较小,对负荷变化适应性较好。 现代大型节流配汽汽轮机若是滑压运行则既可用于承担基本负荷, 也可用于

阀口及阻尼的压力流量特性-1

1 阀口的流量压力特性 流体力学中流经节流小孔的流量公式: p A C q d ?=ρ 2 式中,d C --阀口流量系数,与雷诺数Re 有关,Re>260时,滑阀的流量系数为常数,若阀口为锐边时,d C =0.61~0.65;若阀口为圆边或有很小倒角时,d C =0.8~0.9. 复习:雷诺数Re 的计算式:运动粘度水力直径流速?= = υ h vD Re ,水力直径湿周 过流面积 4D ?=h 式中,A —阀口的过流面积,p ?--阀口前后的压差。 图(a )所示为滑阀,阀口过流面积 Dx A π= (当h=0时) 图(b )所示为锥阀(阀座无倒角),阀口过流面积 )s i n (s i n ααπ2211 1D x x D A - = 当1D x <<时,απsin x D A 1= 图(c )所示为锥阀(阀座有倒角),阀口过流面积 )s i n (s i n ααπ221m m D x x D A -=, 其中221/)(D D D m +=,当m D x <<时,απsin x D A m = 图(d )所示为球阀,阀口过流面积 ()2 02 1001221x h D h x x h D A ++?? ? ??+=π,其中,2 12 02??? ??-=D R h 当R x D x <<<<,/21时,R x h D A /01π= 锥阀(球阀)的流量系数d C ,当雷诺数较大时,流量数为定值,d C =0.77~0.82. 图1 滑阀、锥阀、球阀

2 液压阻尼和液阻桥路控制 各种液压控制阀的工作原理实际上都是从阀芯的力学平衡条件出发,通过控制阀芯的位置来改变流动阻尼而进行控制,以达到调节压力或流量的目的。 2.1 液压阻尼的概念 阀口的流量压力特性可表示为 p By q ?= 式中,B 为液导率,例如滑阀的ρπ/2D C B d =,锥阀的ραπ/sin 2D C B d =; y 为阀口开度,称By 为液导,液导用字母G 表示,即G=By 参照电学中的欧姆定律R V I =,让流量q 对应电流I 、压差p ?对应电压V ,液阻对应电阻, 则阀口的流量压力特性表示为: R p By p q ?= ?= /1 式中,R 为液阻,By R 1 = ,(液阻R 与液导G 互为倒数),显然液阻R 随阀口开度y 的增大而减小,随y 的减小而增大,即液阻反比于阀口开度。 2.2 正开口四边滑阀控制油缸的液阻全桥分析 图2.1 正开口四边滑阀控制油缸的液阻全桥表示 图2.1(a )所示为正开口四边滑阀控制双出杆油缸,设阀中位时各边阀口的预开口为0y ,

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的功率)

汽轮机各种工况TRLTHTMCRVWO等定稿版

汽轮机各种工况 T R L T H T M C R V W O等 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

5孔口和间隙地流量—压力特性

2.5孔口和间隙的流量—压力特性 在液压元件中,普遍存在液体流经孔口或间隙的现象。液流通道上其通流截面有突然收缩处的流动称为节流,节流是液压技术中控制流量和压力的一种基本方法。能使流动成为节流的装置,称为节流装置。例如,液压阀的孔口是常用的节流装置,通常利用液体流经液压阀的孔口来控制压力或调节流量;而液体在液压元件的配合间隙中的流动,造成泄漏而影响效率。因此,研究液体流经各种孔口和间隙的规律,了解影响它们的因素,对于理解液压元件的工作原理、结构特点和性能是很重要的问题。 2.5.1 孔口的流量—压力特性 孔口是液压元件重要的组成因素之一,各种孔口形式是液压控制阀具有不同功能的主要原因。液压元件中的孔口按其长度l 与直径d 的比值分为三种类型:长径比l/d <0.5的小孔称为薄壁孔;长径比0.5<l/d <4的小孔称为厚壁孔或短孔;长径比l/d >4的小孔称为细长孔。这些小孔的流量—压力特性有共性,但也不完全相同。 ⒈薄壁孔 薄壁孔一般孔口边缘做成刃口形式,如图 2.28所示。各种结构形式的阀口就是薄壁小孔 的实际例子。液流经过薄壁孔时多为紊流,只有 局部损失而几乎不产生沿程损失。 设薄壁孔直径为d ,在小孔前约d /2处,液 体质点被加速,并从四周流向小孔。由于流线不 能转折,贴近管壁的液体不会直角转弯而是逐渐 向管道轴线收缩,使通过小孔后的液体在出口以 下约d /2处形成最小收缩断面,然后再扩大充满整个管道,这一收缩和扩大的过程便产生了局部能量损失。 设最小收缩断面面积为A c ,而小孔面积为A T ,则最小收缩断面面积与孔口截面面积之比称为截面收缩系数,即 T c c A A C (2.61) 收缩系数反映了通流截面的收缩程度,其主要影响因素有:雷诺数Re 、孔口及边缘形式、孔口直径 d 与管道直径d 1比值的大小等。研究表明,当d 1/d ≥7时,流束的收缩不受孔前管道内壁的影响,这时称之为完全收缩;当d 1/d <7时,由于小孔离管壁较近,孔前管道内壁对流束具有导流作用,因而影响其收缩,这时称液流为不完全收缩。 选择管道轴线为参考基准,对1—1截面和2—2截面列写伯努利方程,得 图2.28 通过薄壁小孔的液流

汽轮机设备及系统知识题库

汽轮机设备及系统知识题库 一、判断题 1)主蒸汽管道保温后,可以防止热传递过程的发生。(×) 2)热力除氧器、喷水减温器等是混合式换热器。(√) 3)在密闭容器内不准同时进行电焊及气焊工作。(√) 4)采用再热器可降低汽轮机末级叶片的蒸汽湿度,并提高循环热效率。(√) 5)多级汽机的各级叶轮轮面上一般都有5-7个平衡孔,用来平衡两侧压差,以减少轴向推力。(×) 6)发电机护环的组织是马氏体。(×) 7)汽轮机找中心的目的就是为使汽轮机机组各转子的中心线连成一条线。(×) 8)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 9)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 10)汽缸冷却过快比加热过快更危险。(√) 11)盘车装置的主要作用是减少冲转子时的启动力矩。(×) 12)安装叶片时,对叶片组的轴向偏差要求较高,而对径向偏差可不作要求。(×)13)引起叶片振动的激振力主要是由于汽轮机工作过程中汽流的不均匀造成的。(√)14)转子叶轮松动的原因之一是汽轮机发生超速,也有可能是原有过盈不够或运行时间过长产生材料疲劳。(√) 15)对于汽轮机叶片应选用振动衰减率低的材料。(×) 16)大螺栓热紧法的顺序和冷紧时相反。(×) 17)末级叶片的高度是限制汽轮机提高单机功率的主要因素。(√) 18)猫爪横销的作用仅是承载缸体重量的。(×) 19)轴向振动是汽轮机叶片振动中最容易发生,同时也是最危险的一种振动。(×)20)发电机转子热不稳定性会造成转子的弹性弯曲,形状改变,这将影响转子的质量平衡,从而也造成机组轴承振动的不稳定变化。(√) 21)蒸汽对动叶片的作用力分解为轴向力和圆周力,这两者都推动叶轮旋转做功。(×) 22)为提高动叶片的抗冲蚀能力,可在检修时将因冲蚀而形成的粗糙面打磨光滑。(×)

汽轮机变工况课程设计

《汽轮机原理》课程设计 一、目的及任务 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深,要求掌握汽轮机热力计算及变工况下热力计算的原则、方法和步骤。 课程设计的任务是针对200MW 或300MW 汽轮机额定功率的50%、55%、60%、65%、70%、75%、80%、85%、90%、95%工况,首先计算并绘制出调节级特性曲线、而对调节级进行变工况热力计算,再对其余压力级进行变工况热力计算,同时求出各级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。 二、内容及要求 1、变工况进汽量估算过程。 2、做出所有压力级变工况计算的汇总表,并把调节级、以及其它级中任一级的详细热力计算过程书面写出。 3、绘出整机中各级热力过程线,同时绘出各级速度三角形。 三、设计步骤 3.1 汽轮机变工况进汽量D 0的初步估算 D 0=3600P e m /()mac t ri g m h D ηηη?+?(kg/h ) 式中,P e 为变工况功率(kW )。 △h t mac 为汽轮机整机理想比焓降,对于本设计采用中间再热的汽轮机,中压缸入口状态点应按再热后温度计算。 m 为考虑回热抽汽进汽量增大的系数,其与回热级数、给水温度及机组参数和容量有关,通常取m =1.15-1.25,对于本设计200MW 、300MW 汽轮机,取m =1.19-1.22。 △D 为考虑前轴封及阀杆漏汽以保证发出经济功率的蒸汽裕量,通常△D =(3-5)%D 0(kg/h )。 机组的整机相对内效率ηri 、发电机效率ηg 和机械效率ηm 的选取,参考同类型、同容量的汽轮发电机组。 由于整机相对内效率ηri 取决于汽轮机内部各项损失,这些损失又与蒸汽流量及通流部分的几何参数有关,因此只能初步估计(ηri ),求出进汽量后进行变工况试算,试算完成后再进行校核。 表1 汽轮发电机组的各种效率范围

【专业资料】汽轮机试验各工况的解释

汽轮机试验各工况的解释 作为汽轮机试验的从业人员,一开始对汽轮机各工况如TRL、TMCR、THA、VWO工况是不太清楚的,工作几年以后,实践出真知,自然十分清晰了。我下面以最通俗的说法解释这几个工况的含义和意义。希望看完文档后,能有恍然大悟的感觉。 (1)THA工况 THA是turbine heat acceptance的缩写。汽轮机考核工况,用于汽轮机性能的验收和评价。在汽轮机额定功率(发电量)下,额定排汽压力下(全年平均背压),额定进汽参数下,无补水时机组的热耗率。此工况即为THA工况,也称验收工况。 解释完THA工况,才有资格再去看TRL和TMCR工况。 (2)TRL工况 TRL是turbine rated load的缩写(锅炉TRL蒸发量对应)。汽轮机排汽压力和环境温度有很大关系,若排汽压力升高,机组主汽流量必然增大。对汽轮机、锅炉的安全性都有影响。此工况目的在于考核机组夏季炎热时候,机组是否具备发出额定功率的能力。 TRL工况要求在额定进汽参数下,机组高背压(湿冷机组11.8kPa,空冷机组33kPa)下,补水率3%,额定进汽参数条件下,机组发额定功率时的热耗率。 请注意,此时TRL对应的主汽流量比THA工况下高出不少。 (3)TMCR工况 TMCR为turbine maximum continue rate的缩写。与TRL工况、锅炉BRL 工况对应。汽轮机最大连续运行工况。TMCR工况为TRL进汽流量下,THA工况背压下,在额定进汽参数下,机组的热耗率。额定进汽参数条件下,无补水机组的热耗率。 注意,TMCR工况下,机组的功率高出THA和TRL不少。 (4)VWO工况 VWO是valve wide open的缩写。所有阀门全开工况。与锅炉BMCR工况对应。汽轮机在锅炉最大蒸发量下,机组在额定进汽参数,额定排汽压力,无补水时机组的热耗率。VWO工况除进汽流量与THA不同外,其他参数条件要求与THA 一致。 锅炉侧工况比较简单,一般只记住额定和最大两个工况即可,百度上介绍的一般没有问题。 ——光辉岁月1661制作

机组各种工况简介

机组各种工况简介 1.额定功率(铭牌功率TRL工况)是指在额定的主蒸汽及再热蒸汽参数、允许最大背压11.8KPa绝对压力(对应于最高循环水冷却水温度),补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.汽机最大连续功率(T-MCR工况)是指在额定功率条件下,但背压为考虑年平均水温等因素确定的背压(设计背压),机组补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.汽机阀门全开功率(VWO工况)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO 下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方

确定)。 4.机组热耗率验收工况(THA工况),机组功率为铭牌功率时,采用静态励磁,已经扣除各项消耗的功率,特别是电泵或汽泵的功耗,)除进汽量不同外,其它条件同TMCR工况,称之为机组热耗率保证值的验收工况; 5.汽机高加组切除工况(PHO工况)机组工况条件同TMCR工况条件,不允许超过额定功率,只是高加组全部切除时的工况; 二.锅炉工况 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,根据地区情况考虑最大背压11.8KPa,3%的补给水量时,发电机端带额定电功率。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,设计背压4.9KPa,0%补给水量,汽轮机进汽量与TRL的进汽量相同时在发电机端所带的电功率。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。注:a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽

汽轮机原理习题(作业题答案)

第一章 级的工作原理 补 1. 已知某喷嘴前的蒸汽参数为p 0=3.6Mpa ,t 0=500℃,c 0=80m/s ,求:初态滞止状态下的音速和其在喷嘴中达临界时的临界速度c cr 。 解: 由p 0=3.6Mpa ,t 0=500℃查得: h 0=3349.5; s 0=7.1439 0002 1 c h h h ?+ =* =3349.5+3.2=3452.7 查得0*点参数为p 0* =3.6334;v 0*=0.0956 ∴音速a 0*=* 0*0v kp =671.85 (或a 0*=* 0kRT =681.76 ; 或a 0*=* 0)1(h k *-=1017.7) c cr = * *1 2a K +=626.5 12题. 假定过热蒸汽作等熵流动,在喷嘴某一截面上汽流速度c=650m/s ,该截面上的音速a=500m/s ,求喷嘴中汽流的临界速度 c cr 为多少?。 解: 2222) 1(212112121cr cr cr cr cr cr c k k c v p k k c h c h -+=+-=+=+ )2 1 1(1)1(222c k a k k c cr +-+-=∴=522 23题. 汽轮机某级蒸汽压力p 0=3.4Mpa ,初温t 0=435℃,该级反动度Ωm =0.38,级后压力p 2=2.2Mpa ,该级采用减缩喷嘴,出口截面积A n =52cm 2,计算: ⑴通过喷嘴的蒸汽流量 ⑵若级后蒸汽压力降为p 21=1.12Mpa ,反动度降为Ωm =0.3,则通过喷嘴的流量又是多少? 答:1):17.9 kg/s; 2):20.5kg/s

汽轮机原理 各章节 题

汽 轮 机 原 理 课程学习辅导材料 2009.2 目 录 第一篇 各章单元复习题 绪论及第一章 汽轮机级的工作原理 2 第二章 多级汽轮机 19 第五章 凝汽设备 26 第七章 汽轮机调节系统 35 第二篇 综合思考题 第一部分 汽轮机的热力特性 46 第二部分 汽轮机的负荷调节 47 第三部分 汽轮机的经济运行 49 第四部分 汽轮机的安全运行 50 第五部分 汽轮机的启动与运行 53 第三篇 各章练习题 第一章 汽轮机级的工作原理 55 第二章 多级汽轮机 58 第三章 汽轮机级在变工况下的工作 60 第五章 汽轮机的凝汽设备 61 第七章 汽轮机调节系统 61 练习题参考答案 62 第一篇 各章单元复习题 长沙理工大学 能源与动力工程学院

绪论及第一章级的工作原理 一、问答题: 1.按工作原理、热力过程特性、蒸汽流动方向、新蒸汽参数等对汽轮机进行分类,汽轮机可分为哪些类型?按新蒸汽参数分类时,相应类型汽轮机的新汽压力等级是什么?2.国产汽轮机型号的表示方法是什么? 3.根据国产汽轮机型号的表示方法,说明下列汽轮机的型号提供了汽轮机设备的哪些基本特征? (1)C B25-8.82/0.98/0.118 (2)C C25-8.82/0.98/0.118-1 (3)C B25-8.83/1.47/0.49 (4)N300-16.7/537/537 4.汽轮机中哪些部件是转动的?哪些部件是静止不动的? 5.汽缸的作用是什么? 6.简述蒸汽在汽轮机中的能量转换过程? 7.试绘图说明最简单的发电厂生产过程示意图? 8.蒸汽对动叶片冲动作用原理的特点是什么? 9.蒸汽对动叶片反动作用原理的特点是什么? 10.根据蒸汽在汽轮机内能量转换的特点,如何划分汽轮机级的类型?各种类型级的特点是什么? 11.什么是动叶的速度三角形? 12.如何根据喷嘴汽流出汽角计算速度级、纯冲动级与反动级的最佳速比? 13.汽轮机的调节级为什么要采用部分进汽?如何选择合适的部分进汽度? 14.试述汽轮机级内有哪些损失?造成这些损失的原因是什么? 15.如何减小级内漏汽损失? 16.简述轴向推力的平衡方法。 17.简述汽封的工作原理? 18.何为汽轮机的进汽机构节流损失和排汽阻力损失?在热力过程线(焓-熵图)上表示出来。 二、名词解释 1.汽轮机的级 2.反动度。 3.滞止参数 4.临界压比 5.轮周效率。 6.级的余速损失 7.最佳速度比。 8.部分进汽度。 9.级的相对内效率 三、单项选择 1.电厂常用汽轮机属于下列那种类型? A. 离心式 B. 轴流式 C. 辐流式 D. 周流式 2.保证转子相对于静子的正确轴向位臵的是: A. 支持轴承 B. 轴封

流阻特性实验

液阻特性实验 发布日期:[08-10-19 15:32:52] 浏览人次:[768] 一、实验目的 液压传动的主要理论基础是液体力学,油液在系统中流动时,因磨擦和各种不同形式的液流阻力,将引起压力损失,它关系到确定系统的供油压力,允许流速,元件辅助装置和管道的布局等,对提高效率和避免温升过高有着重要的意义。另一方面在液压传动中常会遇到油压流经小孔和缝隙的情况,而它们的流量计算公式是建立节流调速和伺服系统等工作原理的基础,同时也是对液压元件和相对运动表面进行泄漏估算和分析的基础。 本实验通过对标准型液流阴力的实验,定量的确定“流量-压力特性”,计算出与液阻特性有关的指数φ,深入理解孔口液流的液阻特性。 本实验通过测量油液流过不同形状管道和液压元件的压力损失,深入了解产生压力损失的主要原因,并分析在实验条件下的压力损失数值的大小,从而建立一定量的概念。 本实验还通过环形缝隙流动的实验,通定流量一压力特性,进而验证;当ε=l时,最大偏心环形缝隙的流量是同心环形缝隙流量的2.5倍。 二、实验内容和方案 (一) 薄壁小孔、细长小孔和短孔的液阻特性(流量一压力特性) 液压系统中,油液流经液压阻力时产生压力损失。流量Q与压力损失Δp之间可有如下表达式: Q=ΔPφ/R 式中R——液阻,与孔口尺寸、几何形状、油液性质和流动状态等因素有关; φ——与液阻特性有关的指数。 上式取对数得:1gQ=1g R -1+φlgΔP 取lgΔP为横坐标,取1gQ为纵坐标,1g R -1为纵坐标轴上的截距,则φ为直线的斜率。理想情况下:

当液阻为薄壁小孔时,φ=0.5 当液阻为细长小孔时,φ=1 当液阻为短孔时,0.5<φ<1 实验装置按理论进行设计,每种标准形式的液阻都分别做成独立的(参数是确定的)装置,以便分别对它们进行实验。测量点的布置及其与标准压力表的连接,其中特别是泄漏等对实验精度有着重要的影响。流量的测量采用椭圆齿轮流量计,用秒表计时,直接观察流量的累积数差。流量的调节范围要注意流量计的量程。本实验用LCR-10型,量程为0.83~8.3L /min。 1、在油液流动状态不变、油温变化很小的情况下,进行如下实验:改变流经液阻的流量(注意流量的测量方法),分别用标准压力表测得薄壁小孔、细长小孔和短孔的进出口压力。计算后,分别作出它们的流量—压力特性曲线;求得φ值,并进行分析。 2、根据液阻几何参数和油液的参数,计算薄壁小孔、细长小孔和短孔的流量一压力差对应数值(注意必要的精度)作出曲线,与实验结果对比。(有关参数由实验室给出)。 本实验台中细长小孔、薄壁小孔和短孔装置的结构示意图分别见图2-1、图2-2和图 2-3 。 图2—1细长小孔装置结构示意图

相关文档
相关文档 最新文档