文档库 最新最全的文档下载
当前位置:文档库 › 人教版-圆的基本性质及应用--浙教版

人教版-圆的基本性质及应用--浙教版

人教版-圆的基本性质及应用--浙教版
人教版-圆的基本性质及应用--浙教版

2013年浙教版九年级上第3章圆的基本性质检测题含答案详解

第3章 圆的基本性质检测题 (本检测题满分:120分,时间:120分钟) 一、 选择题(每小题3分,共30分) 1. (2012·湖北襄阳中考)△AB C 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( ) A.80° B.160° C.100° D.80°或100° 2. (2012· 浙江台州中考)如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( ) A.50° B.60° C.65° D.70° 3. 下列四个命题中,正确的有( ) ①圆的对称轴是直径; ②经过三个点一定可以作圆; ③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧. A.4个 B.3个 C.2个 D.1个 4. (2012·江苏苏州中考)如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( ) A.20° B.25° C.30° D.40° 5.如图,在⊙错误!未找到引用源。中,直径错误!未找到引用源。垂直弦错误!未找到引用源。于点错误!未找到引用源。,连接错误!未找到引用源。,已知⊙错误!未找到引用源。的半径为2,错误!未找到引用源。32,则∠错误!未找到引用源。的大小为( ) A.错误!未找到引用源。 B.错误!未找到引用源。 C. 错误!未找到引用源。 D.错误!未找到引用源。 6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( ) A.2 3 B.3 C.32 D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )

新浙教版数学九上《圆的基本性质》单元培练习题(适合培优班).doc

精品 《圆的基本性质》单元复习题 (2014.10.26) 姓名: _________ 一、选择题 1、如图,正六边形 ABCDEF 的边长的上 a ,分别以 C 、F 为圆心, a 为半径画弧, 则图中阴影部分的面积是 ( ) (A ) 1 2 1 2 ( ) 2 2 ( D ) 4 2 6 a (B ) a C a a 3 3 3 2、如图, AB 是半圆 O 的直径,点 P 从点 O 出发,沿 OA ? BO 的路径运动一周.设 OP 为 s , AB 运动时间为 t ,则下列图形能大致地刻画 s 与 t 之间关系的是( ) P s s s s A B O t O O t O t O A . B . t C . D . 3、如图所示,长方形 ABCD 中,以 A 为圆心, AD 长为半径画弧,交 AB 于 E 点。取 BC 的中点为 F ,过 F 作一直线与 AB 平行,且交 DE 于 G 点。求 AGF= ( ) (A) 110 (B) 120 (C) 135 (D) 150 4、如图, C 为⊙ O 直径 AB 上一动点,过点 C 的直线交⊙ O 于 D 、E 两点,且∠ACD=45 °,DF ⊥AB 于点 F,EG ⊥AB 于点 G,当点 C 在 AB 上运动时,设 AF= x ,DE= y ,下列中图象中,能表示 y 与 x 的 函数关系式的图象大致是 ( ) D A O G B F C E A B C D 5、已知锐角△ ABC 的顶点 A 到垂心 H 的距离等于它的外接圆的半径,则∠ A 的度数是 ( )

浙教版九年级上《圆的基本性质》单元复习

《圆的基本性质》单元复习 考点分析: 随着对复杂几何证明要求的降低,对圆一章内容的删减,圆的考题难度有明显降低。 与圆有关的位置关系,试题强调基础,突出能力,源于教材,知识重组,变中求新,重在培养创新意识。要注意分类讨论和有关圆的问题的多解性,同时结合阅读理解,条件开放,结论开放的探索题型,结合运动的动态型综合题问题,结合函数的函数几何综合题逐渐成为新课程中的热门考点。 【本章知识框架】 圆基本元素:圆的定义,圆心,半径,弧,弦,弦心距 的垂径定理 认对称性:旋转不变性,轴对称,中心对称(强) 识圆心角、弧、弦、弦心距的关系 与圆有关的角:圆心角,圆周角 弧长,扇形的面积,弓形的面积,及组合的几何图形 圆中的有关计算: 圆锥的侧面积、全面积 一、圆的概念 1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O 叫做圆心,线段OP叫做半径。 2、弧:圆上任意两点间部分叫做圆弧,简称弧。优弧、劣弧以及表示方法。 3、弦,弦心距,圆心角,圆周角, 【例1】如图23-1,已知一个圆,请你用多种方法确定圆心. 分析:要确定一个圆的圆心,我们可以从两个方面分析: (1) 圆心在弦的中垂线上;(2) 圆心是直径的交点。 【例2】下列命题正确的是( ) A.相等的圆周角对的弧相等B.等弧所对的弦相等 C.三点确定一个圆D.平分弦的直径垂直于弦. 【例3】填空: ⑴一条弦把圆分成3:1两部分,则劣弧所对的圆心角的度数是; ⑵等边△ABC内接于⊙O,∠AOB= 度。 4、判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有: d>r ?点P在⊙O 外; d=r ?点P在⊙O 上; d

圆的基本性质练习含答案详解

的基本性质 考点1 对称性 圆既是________ ① ___ 对称图形,又是_____ ② ________ 对称图形。任何一条直径所在的直线都是它的— ③_________ O它的对称中心是一④°同时圆又具有旋转不变性。 温馨提示:轴对称图形的对称轴是一条宜线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。 考点2 垂径定理 建理:垂直于弦的直径平分⑤并且平分弦所对的两条⑥。 常用推论:平分弦(不是直径)的直径垂直于⑦,并且平分弦所对的两条____ ⑧____________ 0温馨提示:垂径立理是中考中的重点考查内容,每年基本上都以选择或填空的形式岀现,一般分值都任3 分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。在这里总结一下:(1)垂径左理和勾股左理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形:(2)常用的辅助线:连接半径:过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位巻不确泄,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径立理,一条直线只要满足:①过圆心:②垂直于弦;③平分弦:④平分弦所对的优弧:⑤平分弦所对的劣弧: 考点3 圆心角、弧、弦之间的关系 ¥ 泄理:在同圆或等圆中,相等的圆心角所对的弧_______ (9)_____ ,所对的弦也______ ⑩________ 。 常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—?______________ ,所对的(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角—?_______________ ,所对的弧_____ ? 方法点拨:为了便于理解和记忆,圆心角、狐、弦之间的关系立理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地苴余各组量也都相等。 温馨提示:(1)上述怎理中不能忽视“在同圆或等圆中”这个条件。否则,虽然圆心角相等,但是所对的弧、弦也不相等。以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的狐与弦都不相等。 (2)在由弦相等推岀弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。 考点4 圆周角泄理及其推论

浙教版《圆的基本性质》精心整理的题库

一、选择题 1、在同圆中同弦所对的圆周角( ) A 、相等 B 、互补 C 、相等或互补 D 、互余 2、下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心 在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 3、如图,两个以O 为圆心的同心圆,大圆的弦AB 交小圆于C ,D 两点.OH ⊥AB 于H ,则图中相等的线段共有( ) A 、1组 B 、2组 C 、3组 D 、4组 4、如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为( ) (A )1 (B )2 (C )1+ 4 π (D )2- 4 π 5、已知:点P 到直线l 的距离为3,以点P 为圆心,r 为半径画圆,如果圆上有且只有两点到直线l 的距离均为2,则半径r 的取值范围是( ) (A )r >1 (B )r >2 (C )2<r <3 (D )1<r <5 6、已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是 ( ) (A ) 60 (B ) 45 (C ) 30 (D ) 20 7、如图,AB 是半圆O 的直径,∠BAC=200 , D 是弧AC 上的点,则∠D 是( ) A.1200 B. 1100 C.1000 D. 900 8、如下图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的度数是( ) (A )50o (B )40o (C )30o (D )25o 9、如图,△ABC 是⊙O 的内接三角形,将△ABC 绕圆心O 逆时针方向旋转α°(0<α<90),得到△A′B′C′,若弧AB′=弧A′C=弧C′B,则∠B 的度数为( ) A .30° B .45° C .50° D .60° 10、如图,有一块边长为6 cm 的正三角形ABC 木块,点P 是边CA 延长线上的一点,在A 、P 之间拉一细绳,绳长AP 为15 cm.握住点P ,拉直细绳,把它紧紧缠绕在三角形ABC 木块上(缠绕时木块不动),则点P 运动的路线长为(精确到0.1 厘米,π≈3.14) ( ) A.28.3 cm B.28.2 cm C.56.5 cm D.56.6 cm 11、如图,点A 、B 、P 在⊙O 上,且∠APB=50°若点M 是⊙O 上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M 有( ) A .1个 B .2个 C .3个 D .4个 12、如图,⊙O 过点B 、C 。圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为( ) (A ) 10 (B )32 ( C )23 (D )13

圆的基本性质练习(含答案)

圆的基本性质 考点1 对称性 圆既是________①_____对称图形,又是______②________对称图形。任何一条直径所在的直线都是它的____③_________。它的对称中心是_____④_______。同时圆又具有旋转不变性。 温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。 考点2 垂径定理 定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。 常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。 温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧; 考点3 圆心角、弧、弦之间的关系 定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。 常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。 (2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。 方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。 温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。否则,虽然圆心角相等,但是所对的弧、弦也不相等。以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。 (2)在由弦相等推出弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。 考点4 圆周角定理及其推论 定理:在同圆或等圆中,同弧或等弧所对的圆周角______○15__________,都等于这条弧所对的圆心角的______○16________。 推论:半圆或直径所对的圆周角是_______○17________,90°的圆周角所对的弦是______○18__________。

浙教版九年级上第3章圆的基本性质自测题

浙教版九年级上第3章圆的基本性质自测题 一、填空题 1、已知圆O的半径为6㎝,弦AB=6㎝,则弦AB所对的圆心角是度。 2、内接于圆的平行四边形一定是形。 3、三角形ABC中,<A:

人教版初三数学圆的基本性质和函数综合

圆的基本性质和函数综合 圆部分: 姓名 【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 变:1.已知⊙O 的弦 AB 所对的圆心角等于140O ,则弦AB 所对的圆周角的度数为__________. 2.已知⊙O 是?ABC 的外接圆,OD ⊥BC 且交BC 于点D ,∠BOC=40O ,则∠ 3.如图,已知AB 是⊙O 的直径,AC 是弦,AB=2,CO ⊥AB, 在图中画出弦AD ,使AD=1,并求∠CAD 的度数= 。 4.点p 到⊙O 的最大距离为6cm ,最小距离为2cm ,则⊙O 的半径.= 5.⊙O 的半径为5,已知平面上一点P 到圆周上的点的最短距离为3 6.已知半径为5cm 的⊙O 内有两条平行弦AB 、CD ,且AB=6cm ,CD=8cm , 则AB 、CD 间的距离为= . 【例2】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M , 求证:AM=DC+CM . 1.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.求线段OA 、OB 的长; 2. 如图平面直角坐标系中,半径为5的⊙O 过点D 、H , 且DH ⊥x 轴,DH=8. (1)求点H 的坐标; (2)如图,点A 为⊙O 和x 轴负半轴的交点,P 为弧AH 上任意一点,连接PD 、PH , AM ⊥PH 交HP 的延长线于M ,求 PM PH PD -的值; ⌒

3.如图,把正三角形ABC 的外接圆对折,使点A 落在弧BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 . 4.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°, 动点P 在AB 上,则CP+PD 的最小值为 . 函数部分: 中考二次函数代数型综合题 题型一、抛物线与x 轴的两个交点分别位于某定点的两侧 例1.已知二次函数y =x 2+(m -1)x +m -2的图象与x 轴相交于A (x 1,0),B (x 2,0)两点,且x 1<x 2. (1)若x 1x 2<0,且m 为正整数,求该二次函数的表达式; (2)若x 1<1,x 2>1,求m 的取值范围; (3)是否存在实数m ,使得过A 、B 两点的圆与y 轴相切于点C (0,2),若存在,求出m 的值;若不存在,请说明理由; 题型二、抛物线与x 轴两交点之间的距离问题 例2 已知二次函数y= x 2 +mx+m-5, (1)求证:不论m 取何值时,抛物线总与x 轴有两个交点; (2)求当m 取何值时,抛物线与x 轴两交点之间的距离最短. 题型三、抛物线方程的整数解问题 例1. 已知抛物线()2212m x m x y ++-=与x 轴的两个交点的横坐标均为整数,且m <5, 则整数m 的值为_____________ 例2.已知二次函数y =x 2-2mx +4m -8. (1)当x ≤2时,函数值y 随x 的增大而减小,求m 的取值范围; (2)以抛物线y =x 2-2mx +4m -8的顶点A 为一个顶点作该抛物线的内接正AMN ?(M ,N 两点在拋物线上), 请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由; (3)若抛物线y =x 2-2mx +4m -8与x 轴交点的横坐标均为整数, 求整数..m 的最小值.

人教版九年级数学上册圆的基本性质练习题一.doc

初中数学试卷 鼎尚图文**整理制作 圆的基本性质知识点(一) 知识点一: 圆的定义 第一种:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转_______,_______所形成的图形叫作圆。固定的端点 O 叫做________,线段 OA 叫做_______。 第二种:圆心为 O ,半径为 r 的圆可以看成是所有到________的距离等于_______的点的集合。 知识点二: 圆的相关概念 1. 弦:连接圆上任意两点的______叫做弦,经过______的弦叫作直径。如图:____ 2. 弧:圆上_________的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆_________,每一条弧都叫做半圆。如图:____,____,_____, 3. 等圆:_____________的两个圆叫做等圆。 4. 等弧:在同圆或等圆中,____________的弧叫做等弧。 注: 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只 有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 5. 圆心角:顶点在_______, 两边_________的角叫做圆心角。如图:____ 6. 圆周角:顶点在_______且_________的角叫做圆周角。如图:_______ 知识点三: 圆心角、弧、弦、弦心距之间的关系 1. 定理:在同圆或等圆中,相等的圆心角所对的____相等,所对的____也相等,所对的________相等,所对的________也相等,; 即:∵AOB ∠=∠DOE ∴_________ , ___________ , ____________ 2. 推论1:在同圆或等圆中,如果两条弧相等,那么他们所对的______相等、 所对的___相等, 所对的________也相等; 。 推论2:在同圆或等圆中,如果两条弦相等,那么它们所对的________相等、所对的_____相等,所对的_____也分别相等。 3. 圆周角与圆心角的关系 (1)定理:在同圆或等圆中,同弧或等弧所对的圆周角______,都等于这条弧所对的圆心角的_________; 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴_________________ (2)推论:半圆(或直径)所对的圆周角是_______,90度的圆周角所对的 弦是_______,弧是________; 即:在⊙O 中, ∵ AB 是直径 ∴_________ , 或∵90C ∠=? ∴___________ B A B A

浙教版九年级第一学期第三章《圆的基本性质》单元评价A卷(附答案) (2)

浙教版九年级第一学期第三章《圆的基本性质》单元评价A 卷 班级: _________ 姓名: _________ 得分: _________ 一、选择题(每小题3分,共30分) 1.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接BC 、BD ,下列结论中不一定正确的是( ) A .AE = BE B .AD ⌒ =BD ⌒ C .OE = DE D .∠DBC = 90° 2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长是3,则弦AB 的长是( ) A .4 B .6 C .7 D .8 3.下列命题中:①任意三点确定一个圆;②平分弦的直径垂直于弦;③等边三角形的外心也是三角形的三条中线、高线、角平分线的交点;④90°的圆心角所对的弦是直径;⑤同弧或等弧所对的圆周角相等.其中真命题的个数为( ) A .2 B .3 C .4 D .5 4.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD = 12,EB = 2,则⊙O 的直径为………( ) A .8 B .10 C .16 D .20 5.如图,在半径为6 cm 的⊙O 中,点A 是劣弧BC ⌒ 的中点,点D 是优弧BC ⌒ 上一点, 且∠D = 30°,下列四个结论: ①OA ⊥BC ;②BC = 63 cm ;③∠AOB = 60°;④四边形ABOC 是菱形. 其中正确结论的序号是( ) A .①③ B .①②③④ C .②③④ D .①③④ 6.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a > b ),则此圆的半径为( ) A.2b a + B .2b a - C . a +b 2 或 a ?b 2 D .a + b 或a - b 7.如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD = 22.5°,若CD = 6 cm ,则

数学人教版九年级上册圆的基本性质复习课教案

圆的基本性质复习课教案 学习目标: 1.进一步理解圆的轴对称性和旋转不变性; 2.进一步掌握由这两个性质得到的垂径定理,以及圆心角定理、 圆周角定理. 3.通过例题的探究,进一步培养学生的探究能力、思维能力和解 决问题的能力。 学习重点:圆的对称性、垂径定理,以及圆心角定理、圆周角定理及推论。 学习难点:相关性质的应用 学习过程: 一基础过关 1、圆的对称性 (1)、圆是______图形,圆的对称轴是______________,它有_____条对称轴. (2)、圆是___________图形,它的对称中心是________. (3)、圆具有_____________. 垂直于弦的直径弦,并且弦所对的两条弧. 推论:平分弦(不是直径)的直径弦,并且平分弦所对的两条弧. 中考链接(2015遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm, OC⊥AB于点C,则OC=_______ 变式训练:一条排水管的截面如图所示,已知排水管的截面圆半径 OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是 () A.16 B.10 C.8 D.4 3、圆心角、弧、弦之间的关系 (1)定理:在同圆或等圆中,相等的圆心角所对的相等,所对的相等. (2)推论:同圆或等圆中,两个_____、两条___、两条___中有一组量相等,它们所 对应的其余各组量也相等. 4、圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对 的圆心角的. 推论:半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是. 中考链接: 1、(2015湖南娄底)如图4,在⊙O中,AB为直径,CD为 弦,已知∠ACD=40°,则∠BAD=__________度. 2、(2016湖南娄底)如图,已知AB是⊙O的直径,∠D=40°, 则∠CAB的度数为() A.20° B.40° C.50° D.70° 二典例精析 例1、如图,AB是⊙O直径,C是⊙O上一点,OD是半径,且OD//AC。求证: CD=BD (学生以小组为单位,合作交流各自的想法,尽可能多角度、多途径来证明 这两条弦相等分组交流,派学生代表汇报成果。)

初中数学:圆的基本性质测试题(含答案)

初中数学:圆的基本性质测试题(含答案) 一、选择题(每小题4分,共24分) 1.如图G -3-1,在⊙O 中,AB ︵=AC ︵ ,∠AOB =40°,则∠ADC 的度数是( ) A .40° B .30° C .20° D .15° 2.在同圆或等圆中,下列说法错误的是( ) A .相等的弦所对的弧相等 B .相等的弦所对的圆心角相等 C .相等的圆心角所对的弧相等 D .相等的圆心角所对的弦相等 G -3-1 G -3-2 3.如图G -3-2,在两个同心圆中,大圆的半径OA ,OB ,OC ,OD 分别交小圆于点E ,F ,G ,H ,∠AOB =∠GOH ,则下列结论中,错误的是( ) A .EF =GH B.EF ︵=GH ︵ C .∠AOC =∠BO D D.AB ︵=GH ︵ 4.已知正六边形的边长为2,则它的外接圆的半径为( )

A.1 B. 3 C.2 D.2 3 5.在如图G-3-3所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须( ) A.大于60° B.小于60° C.大于30° D.小于30° G-3-3 G-3-4 6.如图G-3-4,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD; ④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤ 二、填空题(每小题4分,共24分) 7.如图G-3-5,AB是⊙O的直径,AC=BC,则∠A=________°. G-3-5

人教版九年级上册圆的基本性质练习题一

圆的基本性质知识点(一) 知识点一: 圆的定义 第一种:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转_______,_______所形成的图形叫作圆。固定的端点 O 叫做________,线段 OA 叫做_______。 第二种:圆心为 O ,半径为 r 的圆可以看成是所有到________的距离等于_______的点的集合。 知识点二: 圆的相关概念 1. 弦:连接圆上任意两点的______叫做弦,经过______的弦叫作直径。如图:____ 2. 弧:圆上_________的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆_________,每一条弧都叫做半圆。如图:____,____,_____, 3. 等圆:_____________的两个圆叫做等圆。 4. 等弧:在同圆或等圆中,____________的弧叫做等弧。 注: 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只 有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 5. 圆心角:顶点在_______, 两边_________的角叫做圆心角。如图:____ 6. 圆周角:顶点在_______且_________的角叫做圆周角。如图:_______ 知识点三: 圆心角、弧、弦、弦心距之间的关系 1. 定理:在同圆或等圆中,相等的圆心角所对的____相等,所对的____也相等,所对的________相等,所对的________也相等,; 即:∵AOB =∠DOE ∴_________ , ___________ , ____________ 2. 推论1:在同圆或等圆中,如果两条弧相等,那么他们所对的______相等、所对 的___相等, 所对的________也相等; 。 B A

圆的基本性质课程教案(含规范标准答案)

D B 圆的基本性质 基础知识回放 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ??BC BD =??AC AD =

B 圆心角定理 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论:

B A B A O 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对 的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜 边上的中线等于斜边的一半的逆定理。 弦切角定理: 弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 即:∵MN 是切线,AB 是弦 ∴∠BAM=∠BCA 切线的性质与判定定理 (1)判定定理:过半径外端且垂直于半径的直线是切 线

浙教版九上第三章圆的基本性质练习题(三)

圆的基本性质(三) A 组 1、 知:在直角三角ABO 中,090=∠A ,AC=3cm,BC=4cm,CD 是AB 边上的高,则D 在以 7、如图所示,BC 为⊙O 的直径,弦AD ⊥BC 于E ,0 60=∠C ,求证:ABD ?为等 边三角形。 B 组 8、 如图,弦CD ⊥AB 于P ,AB=8,CD=8,⊙O 半径为5,则OP 长为________。 9、 在⊙O 中,弦CD 与直径AB 相交于点E ,且∠=?AEC 30,AE=1cm ,BE=5cm ,那么弦CD 的弦心距OF=_________cm ,弦CD 的长为________cm 。 10、 矩形ABCD 的边AB 过⊙O 的圆心,E 、F 分别为AB 、CD 与⊙O 的交点,若AE=3cm ,AD=4cm ,DF=5cm ,则⊙O 的直径等于__________。 D

点,∠=?DAE 114,则∠CAD 等于( ) A. 57° B. 38° C. 33° D. 28.5° 15、已知AB 、CD 是互相垂直的两条弦,OE ⊥AD ,求证:OE= 2 1BC 。 16、如图,弧AC 是劣弧,M 是弧AC 中点,B 为弧AC 上任意一点,自M 向BC 弦引垂线,垂足为D ,求证:AB+BD=DC 。 C 组 17、△ABC 内接于⊙O ,CE ⊥AB 于E ,交⊙O 于F ,AD ⊥BC ,求证:∠FAO=∠BAC 。 18、如图,有四个矩形(长,宽均为b a ,),6、已知O 是△ABC 外接圆的外心,H 为△ A M D

ABC 重心,在AB 上取AD=AH ,在AC 上取AE=AO ,求证:△DAE 是等腰三角形。 19、以Rt △ABC 直角边BC 为直径作⊙O ,又AC=BC ,连结AO ,作CE ⊥AD 交AO 于F ,交AB 于E ,求证:AE=2BE 。 20、在图(1)中将线段21A A 向右平移1个单位到21B B ,得到封闭图形1221B B A A ,在图 图(4)中,在一块矩形的草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示草地面积是多少? C B E F A O

【人教部编版】2021年中考数学专题《圆的基本性质和圆的有关位置关系》(含解析)

【人教版】中考数学精选真题 专题1 圆的基本性质和圆的有关位置关系 学校:___________姓名:___________班级:___________ 1.【辽宁阜新中考数学试卷】如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是() A.30° B.40° C.50° D.60° 【答案】C. 【解析】 考点:圆周角定理. 2.【湖北襄阳中考数学试卷】点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40° B.100° C.40°或140° D.40°或100° 【答案】C. 【解析】 试题分析:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选C.

考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论. 3.【浙江省杭州市中考模拟】如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是() A.35° B.55° C.65° D.70° 【答案】B. 【解析】 考点:圆周角定理. 4.【湖南省邵阳市中考二模】如图,⊙O是△ABC的外接圆,AD是⊙O的直径,EA是⊙O的切线.若∠EAC=120°,则∠ABC的度数是() A.80° B.70° C.60° D.50° 【答案】C.

【解析】 试题解析:∵EA是⊙O的切线,AD是⊙O的直径, ∴∠EAD=90°, ∵∠EAC=120°, ∴∠DAC=∠EAC-∠EAD=30°, ∵AD是⊙O的直径, ∴∠ACD=90°, ∴∠ADC=180°-∠A CD-∠DAC=60°, ∴∠ABC=∠ADC=60°(圆周角定理), 故选:C. 考点:切线的性质. 5.【辽宁沈阳中考数学试题】如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB= cm时,BC与⊙A相切. 【答案】6. 【解析】 考点:切线的判定. 6.【黑龙江牡丹江中考数学试题】如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .

高中圆的基本性质与点圆关系-知识点及试题答案

高中圆的基本概念与点圆关系知识点与答案解析 第一节圆的基本概念 1. 圆的标准方程:(x- a)2+ (y- b)2 = r2(圆心(a,b),半径为r ) 例1写出下列方程表示的圆的圆心和半径 (1)x2 + ( y + 3) 2 = 2 ; (2) (x + 2) 2 + ( y T) 2 = a2 ( a^0) 圆心在直线x -2y -3 = 0上,且过A(2 , £) , B(-,七),求圆的方程. 例3已知三点A(3 , 2) , B(5 , -3) , C( - , 3),以P(2 ,-)为圆心作一个圆, 使A、 B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程. 2. 圆的一般方程:x2 + y2 + Dx+ Ey+ F = 0 (其中D2 + E2- 4F > 0),圆心为点(—D — 1),半径r D2 E2—4F 2 2 2 (I)当D2+ E2- 4F = 0时,方程表示一个点,这个点的坐标为(--,--) 2 2 (U)当D2+ E2- 4F < 0时,方程不表示任何图形。 例1:已知方程x2+y2+2kx+4y+3k+8=0表示一个圆,求k的取值范围。 解:方程x2+y2+2kx+4y+3k+8=0表示一个圆, ? ?? (2k)2 42 4(3k 8) 0,解得k 4或k 1 ???当k 4或k 1 时,方程x2+y2+2kx+4y+3k+8=0表示一个圆。 例2:若(2m2+m-1 x2+(m2-m+2)y2+m+2=啲图形表示一个圆,贝U m的值是. _____ 0 答案:—3 例3:求经过三点A (1,—1)、B (1,4 )、C (4,—2)的圆的方程。 解:设所求圆的方程为x2 y2 Dx Ey F 0, A (1,—1)、 B (1,4 )、 C (4,—2)三点在圆上,代入圆的方程并化简, 得 DEF 2

浙教版九年级上圆的基本性质

圆的基本性质自测题 一、填空题 1、已知圆O的半径为6㎝,弦AB=6㎝,则弦AB所对的圆心角是度。 2、内接于圆的平行四边形一定是形。 3、三角形ABC中,<A: 6、如图6,圆周角<A=30,弦BC=3,则圆O的直径是( ) A、3 B、3 3 C、6 D、63 7、如图7,CD是圆O的弦,AB是圆O的直径,CD=8,AB=10,则点A、B到直线CD的距离的和是 A、6 B、8 C、10 D、12 A C D E F O A C O

中考数学专题3 圆的基本性质含答案

中考数学专题3 圆的基本性质含答案 题型一 点与圆的位置关系 例 1 [2017·大冶校级月考]若⊙O 的半径为5 cm ,平面上有一点A ,OA =6 cm ,那么点A 与⊙O 的位置关系是( A ) A .点A 在⊙O 外 B .点A 在⊙O 上 C .点A 在⊙O 内 D .不能确定 【解析】 ∵⊙O 的半径为5 cm ,OA =6 cm ,∴d >r ,∴点A 与⊙O 的位置关系是点A 在⊙O 外. 变式跟进 1.[2016·宜昌]在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图1所示(图中小正方形的边长均相等).现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( A ) 图1 A .E ,F ,G B .F ,G ,H C .G ,H ,E D .H , E ,F 【解析】 ∵OA =1+22=5,∴OE =2<OA ,∴点E 在⊙O 内;OF =2<OA ,∴点F 在⊙O 内;OG =1<OA ,∴点G 在⊙O 内;OH =22+22=22>OA ,∴点H 在⊙O 外. 题型二 垂径定理及其推论 例 2 如图2,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,则DM 的长为( D ) A .5 B .6 C .7 D .8 图2 例2答图 【解析】 连结OA ,如答图所示.

∵⊙O 的直径CD =10,∴OA =5, ∵弦AB =8,AB ⊥CD ,∴AM =12AB =12×8=4, 在Rt △AOM 中,OM =OA 2-AM 2 =52-42=3, ∴DM =OD +OM =5+3=8. 【点悟】 已知直径与弦垂直的问题中,常连半径构造直角三角形,其中斜边为圆的半径,两直角边是弦长的一半和圆心到弦的距离,从而运用勾股定理来计算. 变式跟进 2.如图3,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若CD =8,且AE ∶BE =1∶4,则AB 的长度为( A ) A .10 B .5 C .12 D.53 图3 第2题答图 【解析】 如答图,连结OC ,设AE =x ,∵AE ∶BE =1∶4,∴BE =4x ,∴OC =2.5x ,∴OE = 1.5x ,∵CD ⊥AB ,∴CE =DE =12CD =4,Rt △OCE 中,OE 2+CE 2=OC 2,∴(1.5x )2+42=( 2.5x )2, ∴x =2,∴AB =10. 3.有一座弧形的拱桥如图4,桥下水面的宽度AB 为7.2 m ,拱顶与水面的距离CD 的长为2.4 m ,现有一艘宽3 m ,船舱顶部为长方形并且高出水面2 m 的货船要经过这里,此货船能顺利通过这座拱桥吗? 图4 第3题答图 解:如答图,连结ON ,OB . ∵OC ⊥AB ,∴D 为AB 中点,

相关文档
相关文档 最新文档