文档库 最新最全的文档下载
当前位置:文档库 › 第11章 药物遗传学

第11章 药物遗传学

第11章 药物遗传学
第11章 药物遗传学

第十一章药物遗传

药物遗传学(pharmacogenetics)是药理学与遗传学相结合的边缘学科,生化遗传学的一个分支学科。研究遗传因素对药物代谢动力学的影响,尤其是遗传因素引起的异常药物反应。药物遗传学的研究丰富了人类遗传学的内容,对临床医学有重要意义。药物遗传是异常药物反应的遗传基础。

药物使用应当因人而异。在同样摄取标准剂量的药物之后,有些人由于药物代谢快,血浆中药物浓度过低而疗效不佳;大多数人药物代谢正常,血浆中药物达到有效浓度而有显著药效;也有些人由于药物代谢慢,血浆中药物浓度过高,有可能出现中毒症状。所以使用药物时应根据患者的遗传特点,建立药物使用个体化原则,这样可以提高药效,减少或避免发生不良的药物反应。

本章重点讨论了琥珀酰胆碱敏感性,异烟肼慢灭活,葡萄糖-6-磷酸脱氢酶缺乏等药物反应的遗传基础;并详细讨论了酒精中毒、α1-抗胰蛋白酶缺乏症等生态遗传学机制;也介绍了药物基因组学概念和研究内容。

一、基本纲要

1.掌握琥珀酰胆碱敏感性药物反应的遗传机制。

2.掌握异烟肼慢灭活者和快灭活者的遗传机制。

3.掌握G6PG缺乏症临床症状、发病机制、致病基因定位、基因突变类型。

4.了解人类对酒精耐受性和酒精中毒的遗传基础。

5.了解吸烟引起慢性阻塞性肺疾患遗传学基础和吸烟与肺癌关系。

6.了解药物基因组学的研究内容和应用

二、习题

(一)选择题(A 型选择题)

1.G6PD是由单基因决定的,其遗传方式为。

A.X连锁的隐性遗传B.常染色体隐性遗传C.X连锁的显性遗传

D.常染色体显性遗传E.Y连锁的遗传

2.异烟肼是治疗结核病的药物之一,个体的差异使体内降解该药的酶活性高低不同,该酶活性高者为快失活者,反之为慢失活者。

A.6-磷酸葡萄糖脱氢酶B.肽链转移酶C.乙酰转移酶

D.糖基转移酶E.脱氢酶

3.异烟肼快失活者以方式遗传。

A.X连锁的隐性遗传B.常染色体隐性遗传C.X连锁的显性遗传D.常染色体显性遗传E.Y连锁的遗传

4.异烟肼快失活者长期服用异烟肼易导致。

A.神经炎B.肺炎C.心肌炎D.脑膜炎E.肝炎

5.异烟肼慢失活者长期服用异烟肼易导致。

A.神经炎B.肺炎C.心肌炎D.脑膜炎E.肝炎6.细胞色素P450主要对药物及其代谢物进行修饰。

A.甲基化B.糖基化C.氧化D.还原E.酰基化7.今后,我们可通过而避免极少数病人因个体差异而受到严重的药物毒性反应。

A.染色体检查B.基因分型C.检查尿液

D.X线检查E.超声波检查

8.在酒精中毒的过程中,乙醛脱氢酶的作用是。

A.使乙醇代谢为乙醛B.使乙醛代谢为乙酸C.使乙醇代谢为乙酸

D.使乙酸代谢为乙醛E.使乙酸代谢为乙醇

9.异烟肼慢灭活者是因为体内缺乏。

A.G6PD B.乙醛脱氢酶C.乙醇脱氢酶

D.乙酰化酶E.脱氢酶

10.下列哪个基因决定了乙酰化酶?

A.G6PD基因B.NAT基因C.ALDH基因

D.ADH基因E.CYP2D6基因

11.下列哪种ADH的变异基因型易出现酒精中毒症状,是何种人?

A.β1 βl,黄种人B.β1 βl,白种人C.β2 β2,黄种人

D.β2 β2,白种人E.β1 β2,黄种人

12.G6PD缺乏可影响一系列反应,会引起下列一些物质积累( ↑)或减少(↓),其中不合理的变化是。

A.NADPH ↓B.NADP ↑C.GSH ↓

D.GSSG ↑E.H202 ↓

13.可直接消除或减轻H202对血红蛋白氧化作用的物质是。

A.G6PD B.NADP C.NADPH

D.GSH E. GSSG

14.G6PD缺乏症的遗传方式是。

A.AR B.AD(不完全显性) C.XR

D.XD(不完全显性) E.Y连锁

15.异烟肼慢灭活者的基因型是。

A.RR B.Rr C.rr

D.A + B E.B + C

16.G6PD缺乏症患者可放心食用。

A.喹啉类抗疟药B.磺胺药C.阿司匹林等镇痛解热药

D.蚕豆E.黄豆

17.对药物代谢个体差异起决定作用因素的是。

A.身体状态B.给药方式C.所患疾病

D.年龄和性别E.遗传基础

18.单基因控制的药物代谢在人群中的变异是不连续的,常表现为。

A.单峰正态曲线B.双峰正态曲线C.三峰正态曲线

D.双峰或三峰曲线E.以上都不是

19.下列哪项指标可预测恶性高热的发生风险。

A.伪胆碱酯酶值B.过氧化氢酶值C.乙醇脱氢酶值

D.磷酸肌酸激酶值E.葡萄糖磷酸脱氢酶值

20.G6PD缺乏时导致机体下列哪些物质增多( ↑)或减少(↓) ?

A.H202 和NADPH ↑,GSH ↓B.H202 和GSH ↑,NADPH ↓

C.GSH 和NADPH ↑,H202↓D.H202↑,GSH 和NADPH ↓

E.H202,GSH 和NADPH↑

21.G6PD缺乏患者可以使用的药物是。

A.抗疟药B.磺胺药C.青霉素类药

D.解热镇痛药E.呋喃类药

22.长期服用异烟肼,可能发生多发性神经炎,这是由于异烟肼和在体内发生化学反应导致其缺少所致。

A.维生素C B.维生素E C.维生素D

D.维生素B12E.维生素B6

23.G6PD缺乏症禁忌的食品是

A.牛肉干B.鸡蛋C.鱼D.黄豆E.蚕豆

24.有关对乙醇敏感者,下列说法正确的是?

A.机体对乙醇代谢快

B.机体对乙醇代谢慢

C.机体内乙醇分解为乙醛快,乙醛分解为乙酸慢

D.机体内乙醇分解为乙醛慢,乙醛分解为乙酸快

E.机体内乙醇分解为乙醛和乙醛分解为乙酸均快

25.机体内使乙醇转化为乙醛的酶是。

A.NAD B.NADH C.ADH D.NADPH E.ALDH 26.有关成人低乳糖酶下列哪种说法是正确的?

A.不同种族和地区发生率差别不大

B.亚洲人群发生率较低

C.以牧业为主的人群中发生率较高

D.有些成年人能继续保持正常乳糖酶活性

E.以上都不对

27.从生化遗传学角度看,具有哪种酶学组成的人对乙醇最敏感?

A.ADH1和ALDH1B.ADH1和ALDH2C.ADH2和ALDH1

D.ADH2和ALDH2E.以上都不对

28.对乙醇敏感者,使机体表现出乙醇中毒的摄入量是。

A.3-5mg/kg B.0.3-0.5mg/ kg C.1-2mg/kg

D.0.6-0.8mg/ kg E.1.5-3mg/ kg

29.α1-AT具有遗传多态性,已发现多种变异型,最易发生(不完全显性)阻塞性肺部疾患的类型是。

A.MM B.MS C.SZ D.ZZ E.SS

30.能使烟雾中多环芳烃类化合物活化的酶是。

A.ADH B.NADH C.ALDH D.AHH E.GSH 31.有关乙醇代谢下列哪些说法是错误的?

A.ADH2比ADH1活性高B.ALDH2比ALDH1活性高

C.中毒症状是乙醇刺激机体产生肾上腺素的结果

D.白种人多数对乙醇敏感E.ADH是二聚体,由3种亚单位组成

32.琥珀酰胆碱敏感性患者体内缺乏的酶是。

A.过氧化氢酶B.乙酰转移酶C.磷酸肌酸激酶

D.伪胆碱酯酶E.琥珀酰胆碱酶

33.有人在服用异烟肼后会发生肝炎或肝坏死,造成这种结果的物质是。

A.乙酰胆碱B.异烟酸C.乙酰肼D.过氧化氢E.乳酸

(二)填空题

1.药物遗传学是与相结合发展起来的一门边缘学科。

2.过氧化氢酶基因定位于。

3.异烟肼慢灭活者的遗传方式是其长期服用异烟肼的副作用是。

4.异烟肼快灭活者长期服用异烟肼的副作用是。

5.葡萄糖-6-磷酸脱氢酶缺乏症的遗传方式是,俗称病。6.若体内活性高或活性低均可导致机体积累过多,引起酒精中毒。

7.我国成人体内缺乏,进食牛奶后会造成肠内积气、肠鸣、腹胀、稀便和腹泻等症状。

8.个体对药物的特应性的产生主要取决于。

9.α1-抗胰蛋白酶有、、三种变异型,其中变异型若易患慢性阻塞性肺病。

10.细胞色素氧化酶P450ⅡD6缺乏症的遗传方式是。

11.个体对药物的特应性主要受因素决定,同时也受因素的影响。12.药物反应的遗传基础涉及药物代谢相关或的基因。

13.异烟肼灭活有关的酶是。

14.G6PD缺乏症又称病,它由酶遗传性缺陷所引起,G6PD基因定位于。

15.服用大量异烟肼后,异烟肼慢灭活者体内易积累,引起;而快灭活者体内易产生,引发。

16.应用异烟肼治疗对,应加服,以消减神经损害。

17. 药物基因组学是研究与之间的关系。

18.药物基因组学药物效应基因大致可分为、和三大类。

(三)是非判断题

1.琥珀酰胆碱敏感性患者使用琥珀酰胆碱可能会导致呼吸停止1h以上,主要是体内缺乏琥珀酰胆碱酶

2.长期服用异烟肼时,部分患者出现肝炎甚至肝坏死,主要是由于异烟肼在肝内水解为异烟酸和乙酰肼,前者对肝脏有毒性作用。

3.G6PD缺乏症个体一般平时无症状,但在服用伯氨喹啉类药物或食用黄豆后出现血红蛋白尿、黄疸、贫血等急性溶血反应。

4.恶性高热是全身麻醉时发生体温明显升高的一种罕见并发症,为常染色体不

完全显性遗传。

5.ALDH主要有两种同工酶,黄种人几乎全部都有ALDH1和ALDH2;而在有

白种人中50%仅有ALDH1而无ALDH2,因此黄种人较白种人易产生乙醇中毒。

6.α1-抗胰蛋白酶有MM、SS和ZZ三种变异型,其中MM变异型若吸烟易患慢

性阻塞性肺病。

(四)名词解释

1.药物遗传学(pharmacogenetics)

2.药物基因组学(pharmacogenomics)

3.特应性(atopy)

4.生态遗传学(ecogenetics)

(五)问答题

1.简述长期服用异烟肼对不同人群的毒副作用及遗传基础。

2.简述葡萄糖-6-磷酸脱氢酶缺乏症患者的临床表现及代谢遗传基础。

3.为什么种族不同对酒精的敏感性存在差异?

4.吸烟与肺癌有何关系?

5.药物基因组学对药物研究的影响主要体现在哪几个方面?

三、参考答案

(一)A型选择题

1.A 2.C 3.D 4.E 5.A 6.C 7.B 8.B 9.D 10.B 11.C 12.E 13.D 14.D 15.C 16.E 17.E 18.D 19.D 20.D 21.C 22.E 23.E 24. C 25. C 26.E 27. C 28.B 29.D 30. D 31.D 32.D 33.C

(二)填空题

1.药理学遗传学

2.11p13

3.常染色体隐性遗传(AR) 多发神经炎

4.肝炎甚至肝坏死

5.连锁不完全显性遗传蚕豆

6.乙醇脱氢酶乙醛脱氢酶乙醛

7.肠乳糖酶

8.个体的遗传背景

9.MM SS ZZ ZZ 吸烟

10.常染色体隐性遗传

11.遗传环境

12.蛋白质酶

13.乙酰化酶(N-乙酰基转移酶)

14.蚕豆葡萄糖-6-磷酸脱氢Xq28

15.异烟肼多发件神经炎异烟酸和乙酰肼乙酰肼肝炎

16.维生素B6

17.基因多态性药物效应多样性

18.药物代谢酶药物作用靶点药物转运蛋白等

(三)是非判断题

1.错。应为:琥珀酰胆碱敏感性患者使用琥珀酰胆碱可能会导致呼吸停止1h 以上,主要是体内缺乏伪胆碱酯酶。

2.错。应为:长期服用异烟肼时,部分患者出现肝炎甚至肝坏死,主要是由于异烟肼在肝内水解为异烟酸和乙酰肼,后者对肝脏有毒性作用。

3.错。应为:G6PD缺乏症个体一般平时无症状,但在服用伯氨喹啉类药物或食用蚕豆后出现血红蛋白尿、黄疸、贫血等急性溶血反应。

4.对

5.错。应为:ALDH主要有两种同工酶,白种人几乎全部都有ALDH1和ALDH2;而在有黄种人中50%仅有ALDH1而无ALDH2,因此黄种人较白种人易产生乙醇中毒。

6.错。应为:α1-抗胰蛋白酶有MM、SS和ZZ三种变异型,其中ZZ变异型若吸烟易患慢性阻塞性肺病。

(四)名词解释

1.药物遗传学是药理学与遗传学相结合发展起来的边缘学科,主要研究遗传因素对药物动力学和药效学的影响以及引起的异常药物反应。

2.药物基因组学是在药物遗传学的基础上发展起来的、以功能基因组学与分子药理学为基础的一门科学,它应用基因组学来对药物反应的个体差异进行研究,从分子水平证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。

3.在群体中,不同个体对某些药物可能产生不同的反应,甚至可能出现严重的不良作用(如瘙痒、皮疹、溶血、胃肠反应等),这种现象称为个体对药物的特应性。4.生态遗传学是研究群体中不同基因型对各种环境因子的特殊反应方式和适应特点的一门遗传学分支学科。

(五)问答题

1.异烟肼是临床上常用的抗结核药,其副作用是在体内累积会导致多发性神经炎,长期服用对于某些人来说会导致肝损害。不同的人其副作用的大小有差异。

(1) 异烟肼在体内的代谢途径:

①在HN-乙酰基转移酶(乙酞化酶)催化下形成乙酰化异烟肼而解毒,但

后者可以水解为对肝有毒性的异烟酸和乙酰肼;

②与维生素B6结合形成失活型异烟肼,但使体内维生素B6缺乏。

(2) 乙酞化酶的分子基础:N-乙酰基转移酶基因簇(NAT,8Pter-q11):共有3个基因(NAT1、NAT2和NAT P),NAT1与NAT2高度同源并编码乙酞化酶,NAT P为假基因。NAT1负责某些芳基胺药物的N-乙酰化,无遗传变异性。NAT2负责异烟肼等药物的火活,已鉴定的有3种多态性(变异型),分为M1型、M2型和M3型。

(3)人群中异烟肼灭活的类型

①异烟肼慢灭活者:异烟肼在体内半发期为2~4.5小时,缺乏乙酰化酶,通常基因型为M1、M2和M3变异型的纯合子(NAT M/NAT M)。呈常染色体隐性遗传。由于异烟肼在体内累积,易发生多发性神经炎。

②异烟肼快灭活者:异烟肼在体内半衰朋为45~80(110)分钟,有正常的乙酰化酵、基因型为正常型(野生型,NAT A/NAT A)或变异型杂合子(NAT A/NAT M)。无或较少发生多发性神经炎,但长期服用异烟肼后。由于异烟肼在肝内可水研为异烟酸和乙酰肼,它们对肝有毒性作用,所以一部分异烟肼快灭活者会发生肝炎甚至肝坏死。

(4) 异烟肼给药时应注意:

①分清给药对象是异烟肼慢灭活者还是异烟肼快灭活者。对于前着,应尽量少服用或不服用该药,以免异烟肼在体内蓄积引起多发性神经炎;对于后者,也不能长期服用该药,以免发生肝炎共全肝坏死。

②同时加服维生素B6,以补充体内因服用异烟肼引起的维生素B6缺乏。

2.(1) 葡萄糖-6-磷酸脱氢酶缺乏症又称蚕豆病,主要表现为溶血性贫血,一般无症状,但在吃蚕豆或服伯氨哇琳类药物后出现血红蛋白尿、黄疽、贫血等急性溶血反应。

(2) G6PD缺乏症的遗传基础如下:

G6PD参与红细胞磷酸戊糖旁路代谢途径:

G6PD

葡萄糖→6-磷酸葡萄糖→NADPH →GSH

G6PD将6-磷酸葡萄糖的氢脱下交给辅酶(KADP)形成NADPH,NADPH再将氢交给谷胱甘肽(GSSG)使其变为还原型谷胱甘肽(GSH)。GSH可保护红细胞和血红蛋白的巯基免受氧化。

G6PD基因定位于Xq28,由13个外显于和12个内含子组成,全长18kb,编码531个氨基酸。若G6PD缺乏,则GSH减少,导致血红蛋白变性形成变性珠蛋白小体(Heinz小体),含有Heinz小体的红细胞通过脾(或肝)窦时被破坏而发生溶血。

根据酶活性及临床表现可将变异型分为3类:①酶活性严重缺乏( <10%);②酶活性严重或中度缺乏(10%~60%);③酶活性轻度降低、正常(60%~100%)或升高(>150%)。

G6PD缺乏症具有多态性,为X连锁不完全显性遗传。男性因是半合子,呈G6PD 的显著缺乏,女性杂合子酶活性变异范围大,可接近正常亦可显著缺乏。

3.酒精在体内的代谢过程主要分为两步反应:第一步是乙醇在肝脏乙醇脱氢酶(ADH)作用下形成乙醛;第二步是乙醛在乙醛脱氢酶(ALDH)作用下进一步形成乙酸。在第一个反应中生成的乙醛可刺激肾上腺素、去甲肾上腺素等物质的分泌,引起面红耳赤、心率快、皮温高等乙醇中毒症状。

基因型,其产物为ADH1,而黄种ADH具有多态性,大多数白种人具有ADH1

2

人具有ADH22基因型,其产物为ADH2。活性比ADH1活性高100倍。故大多数白种人在饮酒后产生乙醛较慢,而黄种人积蓄乙醛速度较快。

ALDH主要有两种同工酶:ALDH1和ALDH2。白种人几乎全部都有ALDH1和ALDH2;而在有黄种人中50%仅有ALDH1而无ALDH2,因此氧化乙醛的速度比较慢。由此可见,黄种人较白种人易产生乙醇中毒。

4.吸烟是否发生肺气肿或肺癌与个体的遗传素质有关。吸烟可刺激肺部巨噬细胞和中性粒细胞,大量释放弹性蛋白酶,分解肺泡弹性蛋白,使肺泡破坏、融合、呼吸面积减少,最终导致肺气肿发生。但正常血清和各种组织中存在着多种抑制蛋白酶活性的物质,如α1-抗胰蛋白酶(α1-AT),能有效地抑制弹性蛋白酶的活性,保护肺泡不受损伤,从而避免了肺气肿的发生。如果由于遗传缺陷,体内α1-AT活性低,不足以抑制吸烟刺激产生的弹性蛋白酶的作用,这样的个体就容易因吸烟而诱发肺气肿。同理,吸烟产生的烟雾中有大量具有潜在致癌活性的多环芳烃化合物,在体内受多环芳烃羟化酶(AHH)的作用,转化成具有致癌活性的物质。AHH的活性受多环芳烃化合物的诱导,而这种诱导性的高低因人而异,受遗传因素决定。因此,一个人如果这种诱导性较高,吸烟后就会诱生大量的AHH,活化烟雾中的致癌物质,诱发肺癌。

5.药物基因组学对药物研究的影响主要体现在以下几个方面:

(1) 可以增加药物审批的通过率,每一种药物在临床上都有10%-40%的人没有疗效,百分之儿或更多的人有副作用.如果制药公司可以人群个体的遗传多态性预测试验结果或筛选试验人群,其成功率就会提高。

(2) 可以对过去在临床试验中失败的未能通过审批的一些老药进行重新评价,确定其适合的用药人群。

(3) 可以缩短临床试验时间,加快药物审批速度。临床试验中如能事先知道试验人群代谢酶的基因型,就可预见其可能的药物反应.减少临床试验时间。

(4) 减少临床试验人数。在设计临床试验时可以筛选出具有代表性的人群,甚至改变临床试验模式。

(5) 根据药物相关基因的多态性,确定个体化给药模式,包括用药种类与用药剂量。

(李红枝)

医学遗传学名词解释精华双语版

adductive effect 加性效应:在多基因遗传的疾病或性状中,单个基因的作用是微小的,但是若干对等位基因的作用积累起来,可以形成一个明显的表型效应,称为加性效应。 allele 等位基因:位于同源染色体的特定基因座上的不同形式的基因,它们影响同一相对性状的形成。 autosomal dominant inheritance AD 常染色体显性遗传:控制某性状或疾病的基因是显性基因,位于常染色体上,其遗传方式称为常染色体显性遗传。 autosomal recessive inheritance AR常染色体隐性遗传:控制一种遗传性状或疾病的隐性基因位于常染色体上,这种遗传方式称为常染色体隐性遗传。 base substitution 碱基替换:一个碱基被另一个碱基所替换,是DNA分子中单个碱基的改变,称为点突变。 Cancer family癌家族:恶性肿瘤发病率高的家族。 cancer family syndrome 癌家族综合征:一个家族中有多个成员患有恶性肿瘤,其原因可以是遗传性的,也可称为遗传性瘤,也可以是环境中的各种致癌因素引起的。 carrier 携带者:表型正常但带有致病基因的杂合子称为携带者。Carter effect卡特效应:发病率低的性别,阈值较高,那些已发病的患者易患性一定很高,因而他们的亲属(尤其是发病率高的性别)发病风险增高。相反,发病率高的性别,阈值较低,已发病的患者易患性也较低,因而他们的亲属(尤其是发病率低的性别)发病风险较低。 chromosomal aberration 染色体畸变:染色体发生的数目和结构上的异常改变。 chromosome polymorphism 染色体多态性:在正常健康人群中恒定的染色体微小变异。 codominance 共显性:染色体上的某些等位基因没有显隐之分,在杂合状态时两种基因的作用都能表达,各自独立的表达基因产物,形成相应的表型。 coefficient of relationship 亲缘系数:两个有共同祖先的个体在某一基因座位上有相同等位基因的概率。 complete dominant完全显性:在显性遗传性状或疾病中,带有致病基因的杂合子表现出与纯合子完全相同的表型。Congenital malformation先天畸形:胎儿出生后,整个身体或其一部分的外形或内脏具有解剖学形态结构的异常。consanguinity近亲:医学遗传学上通常将3-4代内有共同祖先的一些个体称为近亲 CpG island CpG 岛:DNA在某些区域CpG序列的密度比平均密度高出很多,称为CpG岛。 criss-cross inheritance交叉遗传:XR患者多为男性,男性患者的致病基因只可能来自其携带者母亲,将来只能传给女儿,也就是从男到女再到男,这个现象就是交叉遗传。交叉遗传是XR病致病基因遗传的特点。 delayed dominance 延迟显性:某些带有显性致病基因的杂合子,在生命的早期并不表现相应的病理状况,当达到一定年龄时,致病基因的作用才显现。 diagnosis of genetic disease 遗传病的诊断:临床医生根据患者的症状、体征以及各种辅助检查结果并结合遗传学分析,从而确认是否患有某种遗传病并判断其遗传方式及遗传规律。 DMs 双微体:染色体区域复制后产生许多DNA片段并释放到胞浆中,这些多余的染色体DNA成分形成连在一起的双点样形状称为双微体。Dosage compensation剂量补偿:由于雌性细胞中的两条X染色体中的一条发生异固缩,失去转录活性,这保证了雌雄两性细胞中都只有一条X染色体保持转录活性,使两性X连锁基因产物的量保持在相同水平上. dynamic mutation 动态突变:又称为不稳定三核苷酸重复序列突变,其突变是由于基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断扩增,称为动态突变。 enzyme protein disease酶蛋白病:是由于遗传性酶缺乏或增多而引起的先天性代谢病,又叫遗传性酶病(hereditary enzymopathy)。AR epigenetics 表观遗传学:通过有丝分裂或减数分裂来传递非DNA 序列信息的现象称为表观遗传学。 expressivity 表现度:在发病个体间,杂合子因某种原因而导致的个体间的表现程度的差异。 euploid 整倍体异常:在二倍体的基础上,体细胞以整个染色体组为单位的增多或减少。 familiar carcinoma 家族癌:一个家族中多个成员患同一种癌,通常是较常见的癌或瘤患者一级亲属发病率远高于一般人群。fitness 适合度:在一定环境条件下,某种基因型个体能够生存下来并将其基因传递给子代的能力。 Flanking sequence侧翼序列:每个断裂基因中第一个外显子的上游和最末一个外显子的下游,都有一段不被转录的非编码区,称为侧翼序列。 fragile site 脆性部位:在特殊培养条件下出现的染色体恒定部位的宽度不等的不着色区。 fragile X chromosome 脆性X染色体:X染色体的Xq27~Xq28之间成细丝样,导致染色体的末端成随体样结构,由于这一部位容易发生断裂,故称为脆性X染色体。 frameshift mutation 移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对(但不是3或3的倍数),造成这一位置以后的一系列编码发生移位错误fusion gene 融合基因:染色体之间的错配联会和不等交换导致两种不同的基因发生交换所致。 GT-AG法则:在每个外显子和内含子的接头区都是一段高度保守的共有序列,内含子的5`端是GT,3端是AG,这种接头方式称为GT-AG 法则,普遍存在于真核生物中,是RNA剪接的识别信号。 Gene cluster基因簇:功能相同、结构相似的一系列基因常彼此靠近、成串地排列在一起,这一系列基因称基因簇。 genetics disease遗传病:经典遗传学认为,人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。genetic heterogeneity 遗传异质性:表型相同的个体具有不同的 基因型,这种现象称作遗传异质性。 genetic imprinting 遗传印记:位于同源染色体上的一对等位基 因,随其来源于父亲或母亲的不同而表现出功能上的差异,即一个 等位基因不表达或低表达,结果产生了不同的表型。 Genetic load遗传负荷:一个群体由于致死基因或有害基因的存在 而使群体适合度降低的现象。通常用平均每个个体所带有害基因数 来表示。 genetic consulting 遗传咨询:咨询医师应用医学遗传学与临床医 学的基本原理与技术解答遗传病患者及其家属或有关人员提出的 有关疾病的病因、遗传方式、诊断、治疗、预防、预后等问题,估 计患者亲属特别是子女中某病的再发风险,提出建议及指导,以供 患者及其亲属参考的全过程。 genetic screening 遗传筛查:将人群中具有风险基因型的个体检 测出来的一项普查工作,通过筛查,可了解遗传性疾病在人群中的 分布及影响分布的因素,估计某些疾病的致病基因频率,分析、研 究遗传性疾病的发病规律和特点,为人群预防对策提供依据。 Genome 基因组:一个生殖细胞中所有遗传信息。包括核基因组和线 粒体基因组。 gene frequency 基因频率:某一基因在其基因座位上所有等位基因 中所占的比例。 genotype frequency 基因型频率:某种基因型的个体占群体总个体 数的比例。 gene flow 基因流:在具有某一基因频率群体的部分个体,因某种 原因迁入与其基因频率不同的另一个群体,并杂交定居,是迁入群 体的基因频率改变。可使某些基因有效地从一个群体扩散到另一个 群体,这种现象称为基因流或迁移压力。 gene amplification 基因扩增:基因组中某个基因拷贝数目的增 加,细胞癌基因通过基因扩增使其拷贝数大量增加,从而激活并导 致细胞恶性转化。 gene diagnosis 基因诊断:又称分子诊断(molecular diagnosis) 利用分子生物学技术,直接探测遗传物质的结构或表达水平的变化 情况,从而对被检查者的状态和疾病作出诊断。 gene therapy 基因治疗:运用DNA重组技术设法修复患者细胞中有 缺陷的基因,是细胞恢复正常功能而达到治疗遗传病的目的,包括 基因修改和基因添加。 Gene family 基因家族:一系列外显子相关联的基因,其成员是由 一个祖先基因复制或趋异产生。 Hardy-Weinburg low 哈温定律:在一定条件下,群体的基因频率和 基因型频率在世代传递中保持不变,称为遗传平衡定律。其中一定 条件是指群体很大,随机婚配,没有选择,没有突变,没有大规模 的个体迁移。 Hemoglobinopathy血红蛋白病:珠蛋白分子结构或合成量异常所引 起的疾病。 Hereditary tomor遗传性肿瘤:符合Mendel遗传规律、呈ad遗传, 来源于神经或胚胎组织heritability 遗传率:在多基因遗传病中遗 传因素所起作用的大小。 heteroplasmy 异质性:由于线粒体DAN的突变,使在同一组织或细 胞内同时存在野生型和突变性的线粒体DAN。 的单基因肿瘤。 histone code 组蛋白密码:组蛋白在翻译后的修饰过程中发生改 变,提供一种识别的标志,为其他蛋白与DNA的结合产生协同或拮 抗效应,是一种动态转录调控成分。包括被修饰的氨基酸种类,位 置,和修饰方式。 Homologous chromosomes同源染色体:大小、形态、结构上相同的 一对染色体。成对的染homoplasmy 同质性:在同一组织或细胞内, 线粒体基因组都一致。 色体一条来自父体,一条来自母体。 HSRs 均质染色区:扩增过程在某一染色体区域产生一系列重复DNA 序列,即特殊复制的染色体区带模式,称为均质染色区。 halfzygous半合子:虽然具有二组相同的染色体组,但有一个或多 个基因是单价的,没有与之相对应的等位基因,这种合子称为半合 子 inbreeding coefficient近婚系数:是指一个个体接受在血缘上相 同即由同一祖先的一个等位基因而成为该等位基因纯合子的概率。 inborn errors of metabolism 先天性代谢缺陷:由于基因突变导 致酶蛋白缺失或活性异常引起的遗传性代谢紊乱,又称遗传代谢病。 incomplete dominace 不完全显性:在显性遗传性状或疾病中,杂 合子的性状介于显性纯合子和隐形纯合子之间。 irregular dominance 不规则显性:显性遗传中,由于环境因素的 作用,使得带有致病基因的杂合子并不表现出相应的性状,使得遗 传递方式不规则,成为不规则显性。 Karyotype核型:一个细胞内的全套染色体即构成核型。 landmark 界标:染色体上具有显著形态学特征的并且稳定存在的结 构区域,包括染色体两臂的末端、着丝粒及其在不同显带条件下均 恒定存在的某些带。 law of genetic equilibrium遗传平衡定律:如果一个群体满足下 述所有条件:1.群体无限大2.随机婚配,指群体内所有个体间婚配机 会完全均等3.没有基因突变,同时也没有来自其他群体的基因交流 4.没有任何形式的自然选择 5.没有个体的大量迁移,在这样一个理 想群体中,基因频率和基因型可以一代一代保持不变。这一规律称 为遗传平衡定律,又称为hardy-weinberg定律。 liability 易患性:由遗传背景和环境因素共同作用决定个体患某 种疾病的可能性大小。 Linkage group连锁群:在遗传学上,将位于同一对同源染色体上 的若干对彼此连锁的基因称为一个连锁群。 major gene主基因:对数量性状能产生明显表型效应的基因。 marker chromosome 标记染色体:由于肿瘤细胞的增值时空等原因 导致细胞有丝分裂异常并产生部分染色体断裂与重接,形成了一些 结构特殊的染色体,称为标志染色体。 maternal inheritance母系遗传:两个具有相对性状的亲本杂交, 不论正交或反交,子一代总是表现为母本性状的遗传现象. medical genetics医学遗传学:1.简单讲:医学遗传学是研究人类 疾病与遗传关系的一门学科。2.具体讲,医学遗传学是遗传学与临 床医学结合而形成的一门边缘学科,是遗传学知识在医学领域的应 用,可被视为遗传学的一个分支。 minor gene微效基因:在多基因性状中,每一对控制基因的作用是 微小的,故称微效基因。missense mutation 错义突变:碱基替换 导致改变后的密码子编码另一种氨基酸,是多肽链氨基酸种类和顺 序发生改变,产生异常的蛋白质分子。 modifier,modifying gene修饰基因:某些基因对某种遗传性状并 无直接影响,但可以加强或减弱与该遗传性状有关的主要基因的作 用。具有此种作用的基因即为修饰基因。 molecular disease 分子病:由于基因突变造成的蛋白质分子结构 异常或含量异常而导致的机体功能障碍的一类疾病。 monoclonal origin hypothesis of tumor 肿瘤的单克隆假说:致 癌因子引起体细胞基因突变,是正常体细胞转化为前癌细胞,然后 再一些促癌因素作用下,发展成为肿瘤细胞。也就是说,肿瘤细胞 是由单个突变细胞增殖而形成的,肿瘤是突变细胞的单克隆增殖细 胞群。 monogenic disease 单基因病:单一基因突变所引起的疾病。 mosaic 嵌合体:一个个体内同时含有两种或两种以上不同核型的细 胞系,此个体称为嵌合体。 mtDNA 线粒体DNA:一种双链闭合环状DNA分子,含有37个基因。 编码22种tRNA,13种mRAN,2种rRAN。 Multistep carcinogenesis 多步骤致癌假说:又称muitistep lesion theory多步骤损伤学说,细胞的癌变至少需要两种致癌基 因的联合作用,每一个基因的改变只完成其中的一个步骤,另一些 基因的变异最终完成癌变过程。 mutation load 突变负荷:由于基因突变产生了有害或致死基因, 或由于基因突变率增高而使群体适合度下降的现象。 mutation rate突变律:每一代每100万个基因中出现突变的基因 数量。(在一定时间内,每一世代发生的基因突变总数或特定基因座 上的突变数) Multigene family多基因家族:是指基因组中由一个祖先基因经重 复和变异所产生的一组来源相同,结构相似和功能相关的一组基因。 multiple alleles复等位基因:遗传学上把群体中存在于同一基因 座上,决定同一类相对性状,经由突变而来,且具有3种或3种以 上不同形式的等位基因互称为复等位基因。 natural selection自然选择:自然界中,有些基因型的个体生存 和生育能力较强,留下的后代较多,有些基因型的个体生存和生育 能力较弱,留下的后代较少,这种优胜劣汰的过程叫自然选择。 ncRNA 非编码RNA:是一类在真核细胞中被大量转录的RNA分子,既 不行使mRNA的功能,也无tRNA,rRNA的作用,但在调节真核细胞基 因表达的过程中发挥重要作用。 neutral mutation中性突变:指突变的结果既无益,也无害,没有 有害的表型效应,不受自然选择的作用。此时,基因频率完全取决 于突变率。(或者:产生的新等位基因与群体己有的等位基因的适合 度相同的突变)。 neoplasm 肿瘤:泛指由一群生长失去正常调控的细胞形成的新生 物。 nonsense mutation 无义突变:碱基替换是原来为某一个氨基酸编 码的密码子变成终止密码子,导致多肽链合成提前终止,产生无生 物活性的多肽链。 oncogene 癌基因:能引起宿主细胞恶性转化的基因。 pedigree 系谱:从先证者入手,调查其亲属的健康及婚育史,将调 查所得的资料按一定的方式绘制成系谱图。 pedigree analysis 系谱分析:从先证者入手,调查其亲属的健康 及生育状况,将调查资料以一定的方式绘制成系谱图进行系谱分析。 penetrance 外显率:在一个群体有致病基因的个体中,表现出相应 病理表型人数的百分比。 phenocopy 表型模拟:一个个体在发育过程中,在环境因素的作用 下产生的性状与由特定基因控制产生的性状相似或完全相同的现 象。 Ph chromosome Ph染色体:是一种特异性染色体。它首先由诺维尔 (Nowell)和亨格福德(Hungerford)在美国费城(Philadelphia) 从慢性粒细胞白血病患者的外周血细胞中发现,故命名为Ph染色体。 pleiotropy 基因多效性:一个基因决定或影响多个性状的形成。包 括初级效应及其引发的次级效应 Point mutation点突变:当基因(DNA链)中一个或一对碱基改变 时,称之为点突变。 Population genetics群体遗传学:以群体为单位研究群体内遗传 结构及其变化规律的分支学科。 prenatal diagnosis 产前诊断:对胚胎或胎儿在出生前是否患有某 种遗传病或先天畸形做出的诊断,是预防先天性和遗传性疾病患儿 出生的重要方法之一。 proband 先证者:在某个家族中第一个被医生确诊或被研究人员发 现的患有某种遗传性疾病或具有某种遗传性状的人。 pro-oncogene 原癌基因:广泛存在于人与哺乳动物细胞中,通常不 表达或低表达,在细胞增殖分化或胚胎发育过程中发重要作用,在 进化上高度保守,其表达具有组织特异性,细胞周期特异性,发育 阶段特异性。 pseudogene 假基因:在基因家族中不产生有功能基因产物的基因。 qualitative character 质量性状:在单基因遗传的性状或疾病取 决于单一的主基因,其变异在一个群体中的分布是不连续的,可以 吧变异个体明显的分为2~3个群,群之间差异显著,具有质的差异。 quantitative character 数量性状:在多基因遗传的性状或疾病 中,其变异在群体中的分布是连续的,某一性状的不同个体之间只 有量的差异而没有质的不同,这种形状称为数量性状。 random genetic drift 随机遗传漂变:在一个小的群体中由于所生 育的子女少,基因频率易在世代传递过程中产生相当大的随机波动。 Recurrence risk再发风险:某一遗传病患者的家庭成员中再次出 现该病的概率。 reverse diagnosis 逆向诊断:基因诊断和传统诊断方法的主要差 异在于直接从基因型推断表型,即可以越过产物直接检测基因结构 而作出诊断,改变了传统的表型诊断方式,故基因诊断又称为逆向 诊断。 RFLP 限制性基因片段多态性:DNA序列上发生变化而出现或丢失某 一限制性内切酶位点,是酶切产生的片段长度和数量发生变化,在 人群中不同个体间的这种差异称为限制性基因片段多态性。 samesense mutation 同义突变:碱基替换后,改变前后的密码子编 码同一种氨基酸。 segregation load 分离负荷:由于基因分离使得适合度高的杂合子 产生了适合度低的隐形纯合子的现象。 selection coefficient,s选择系数(压力):指在选择作用下适合 度降低的程度。S反映了某一基因型在群体中不利于存在的程度,因 此s=1-f. Sex chromatin性染色质:间期细胞核中性染色体的异染色质部分 显示出来的一种特殊结构。 sex-influenced inheritance 从性遗传:常染色体上的基因在表型 上由于受性别的影响而表现出在男女中的分配比例不同或基因表现 程度的差异。 sex-limited inheritance 限性遗传:基因位于常染色体上,由于 受到性别的限制,性状只能在一种性别中表现而在另一种性别中则 完全不能表现,但是这些基因均能传递给下一代,这种遗传方式为 限性遗传。 skipped generation隔代遗传:双亲正常,子女患病,子女的患病 基因来自父亲,这种遗传现象称为隔代遗传。 somatic cell gene therapy体细胞基因治疗:是指将一般基因转 移到体细胞,使之表达基因产物,以到达治疗目的。 split gene 断裂基因:大多数真核生物的编码序列在DNA上是不连 续的,被非编码序列所隔开。 SSCP single-strand conformation polymorphism单链构象多态 性:是一种分离核酸的技术,可以分离相同长度但序列不同的核酸 (性质类似于DGGE和TGGE,但方法不同)。 stem line 干系:在某种肿瘤内生长占优势或细胞百分数占多数的 细胞系称为干系。 susceptibility 易感性:由遗传基础决定一个个体患病的风险。 termination mutation 终止密码突变:一个终止密码子变成为某个 氨基酸编码的密码子,导致多肽链继续延长,形成过长的异常的多 肽链。 Thalassemia地中海贫血:简称地贫,也称珠蛋白生成障碍性贫血。 由于某种珠蛋白链合成速率降低,造成一些肽链缺乏,另一些肽链 相对过多,出现α链和非α链合成数量不平衡,导致溶血性贫血, 称为地中海贫血。 threshold 阈值:当个体易患性达到某个限度时个体即将患病,此 限度既为阈值。在一定环境条件下,阈值代表了致病所需的致病基 因的数量。 threshold effect 阈值效应:当突变的线粒体DNA达到一定的比例 时,才有受损的表型出现,则就是阈值效应。明显地依赖于受累细 胞或组织对能量的需求。 transition 转换:同种类型的碱基之间的替换。 transversion 颠换:两种不同种类碱基之间的替换。 tumor suppressor gene (anti-oncogene抗癌基因 or recessive oncogene 隐性癌基因)肿瘤抑制基因:起作用是隐性的,当一对等 位基因均发生缺陷而失去功能时可促使肿瘤发生。

遗传学

遗传学的诞生、细胞遗传学的建立、分子遗传学的形成、分子遗传学的发展。 从遗传学产生和发展的四个主要阶段 一、要了解遗传学,我准备先从遗传学的诞生开始讲。遗传是生物的一种属性,是生命世 界的一种自然现象,遗传与变异构成生物进化的基础。人类何时开始认识到生物性状特征世代相传和发生变异的现象,已无稽可查了,但早在1809年,法国生物学家拉马克就发表了论述进化的第一部系统著作《动物学的哲学》,强调“用进废退”的理论,提出了有名的获得性遗传的观点。然而,他对于许多过程的解释过分简单,不免包含了若干错误的意见和作者的主观臆测。1859年11月2日达尔文的《物种起源》正式出版,该书对已知的各种有关遗传与变异的事实作了全面的考察,建立了全新的进化理论,并且提出了自然选择、人工选择的学说,给予进化过程以科学的解释。虽然达尔文的论述比拉马克要系统、详尽得多,但受当时科学水平的限制和认识方法的局限,仍不免有若干偏颇之处。直到1900年,奥地利的神父格里戈-孟德尔经豌豆杂交试验而确立的遗传因子分离法则和独立分配法则被重新发现时,遗传学才被奠定在科学的基础上,成为一门自然科学。1906年英国生物学家贝特森首次提出了“遗传学”一词,以称呼这门研究生物遗传问题的新学科。 二、细胞遗传学是遗传学与细胞学相结合的一个遗传学分支学科。研究对象主要是真核生物,特别是包括人类在内的高等动植物。 早期的细胞遗传学着重研究分离、重组、连锁、交换等遗传现象的染色体基础以及染色体畸变和倍性变化等染色体行为的遗传学效应,并涉及各种生殖方式如无融合生殖、单性生殖以及减数分裂驱动等方面的遗传学和细胞学基础。以后又衍生出一些分支学科,研究内容进一步扩大。 18世纪末,孟德尔定律被重新发现后不久,美国细胞学家萨顿和德国实验胚胎学家博韦里各自在动植物生殖细胞的减数分裂过程中发现了染色体行为与遗传因子行为之间的平行关系,认为孟德尔所设想的遗传因子就在染色体上,这就是所谓的萨顿—博韦里假说或称遗传的染色体学说。 在1901~1911年间美国细胞学家麦克朗、史蒂文斯和威尔逊等先后发现在直翅目和半翅目昆虫中雌体比雄体多了一条染色体,即 X染色体,从而揭示了性别和染色体之间的关系。 1902~1910年英国遗传学家贝特森等把孟德尔定律扩充到鸡兔等动物和香豌豆等植 物中,并且创造了一系列遗传学名词:遗传学、同质结合、异质结台、等位基因、相引和相斥等,奠定了孟德尔遗传学的基础。 从1910年到20年代中期,美国遗传学家摩尔根、布里奇斯和斯特蒂文特等用果蝇作为研究材料,用更为明确的连锁和交换的概念代替了相引和相斥,发展了以三点测验为基础的基因定位方法,证实了基因在染色体工作线性排列,从而使遗传的染色体学说得以确立。细胞遗传学便在这一基础上迅速发展。 从细胞遗传学衍生的分支学科主要有体细胞遗传学——主要研究体细胞,特别是离体培养的高等生物体细胞的遗传规律;分子细胞遗传学——主要研究染色体的亚显微结构和基因活动的关系;进化细胞遗传学——主要研究染色体结构和倍性改变与物种形成之间的关系;细胞器遗传学——主要研究细胞器如叶绿体、线粒体等的遗传结构;医学细胞遗传学,这是

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

医学遗传学习题(附答案)第12章免疫遗传学

第十二章免疫遗传学 (一)选择题(A 型选择题) 1.决定个体为分泌型ABO抗原者的基因型是。 A.i/i B.I B/I B C.Se/se D.se/se E.I A/I B 2.孟买型个体的产生是因为基因为无效基因。 A.I A B.I B C.i D.Se E.H 3.Rh血型的特点是。 A.具有天然抗体 B.无天然抗体 C.具有8种 抗体 D.具有3种抗体 E.由3个基因编码。 4.Rh溶血病很少发生于第一胎的原因是。

A.Rh阳性的胎儿血细胞不能进入母体 B.母体初次致敏,未能产生足量的抗体 C.母体具有足量的抗体,但不能进入胎儿内 D.胎儿组织能够吸收母体的抗体 E.以上都不是 5.HLA-A、HLA-B和HLA-C编码一类抗原的重链,而轻链则由编 码 A.HLA-E B.HLA-F C.HLA-G D.β2微球蛋白基因 E.HLA-Ⅱ类基因 6.HLA-L、HLA-H、HLA-J和HLA-X这些基因均因突变而无表达产物,它 们被称为。 A.假基因 B.非经典基因 C.MIC 基因

D.补体基因 E.肿瘤坏死因子基因 7.在同一染色体上HLA各座位等位基因紧密连锁,完整传递,这种组成称为。 A.单倍体 B.单倍型 C.单体型 D.单一型 E.单位点 8.同胞之间HLA完全相同的可能性是。 A.0 B.1/4 C.1/2 D.3/4 E.1 9.父子之间HLA完全相同的可能性是。 A.0 B.1/4 C.1/2 D.3/4 E.1 10.与无丙种球蛋白血症疾病相关的基因是。 A.酪氨酸蛋白激酶基因 B.补体基因 C.HLA 基因

D.红细胞抗原基因 E.21-羟化酶基因 11.ABO抗原的决定与下列基因无关 A.MIC B.I A I B i C.H D.I B E.Se 12.Rh血型系统由基因编码。 A.hsp70 B.RHD C.I A I B i D.MIC E.Se 13.新生儿溶血症多数由原因造成。 A.HLA不相容 B.ABO血型不相容 C.Rh血型不相容 D.缺乏γ球蛋白 E.细胞免疫缺陷 14.HLA复合体所不具有特点是。 A.是人类基因组中密度最高的区域

医学遗传学

题型: 名词解释,6个,30分 填空,1分/空,20分 选择,单选,10分 问答,5题,共40分 1临床上诊断PKU 患儿的首选方法是 A 染色体检查B生化检查 C 系谱分析D基因诊断 2 羊膜穿刺的最佳时间是 A孕7~9周B孕8~12周 C孕16~18周D孕20~24周 3遗传型肾母细胞瘤的临床特点是 A发病早,单侧发病B发病早,双侧发病 C发病晚,单侧发病D发病晚,,双侧发病 4进行产前诊断的指症不包括 A夫妇任一方有染色体异常 B曾生育过染色体病患儿的孕妇 C年龄小于35岁的孕妇 D多发性流产夫妇及其丈夫 填空 5 多基因遗传病遗传中微效基因的累加效果可表现在一个家庭中……….. 6线粒体疾病的遗传方式………… 根据系谱简要回答下列问题 1 判断此病的遗传方式,写出先证者的基因型 2患者的正常同胞是携带者的概率是多少 3如果人群中患者的概率为1/100,问Ⅲ3随机婚配生下患者的概率为多少

二高度近视AR,一对夫妇表型正常,男方的父亲是患者,女方的外祖母是患者,试问这对夫妇婚后子女发病风险(画系谱) 三PKU是AR,发病率0.0001,一个个侄子患本病,他担心自己婚后生育患者,问其随机婚配生育患儿的风险 四某种AR致病基因频率0.01,某女哥哥是患者,问此女随机婚配或与表兄妹婚配风险。

五PKU是一种AR病,人群中携带者频率为1/50,一个人妹妹患病,他担心自己婚后生育患儿,问这名男子随机婚配生育患儿的风险是多大 答案 1B 2C 3B 4C 填空 1患者人数和病情轻重 2母系遗传 大题 一1 常隐aa 2 2/3 3 2/3×1/100×1/4=1/600 二1×1/2×1/8=1/8 三 1/2×1/50×1/4=1/400 四随机婚配:2/3×1/50×1/4=1/300 与表兄: 2/3×1/4×1/4=1/24 五2/3×1/50×1/4=1/300

医学遗传学知识总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科 2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病 3.遗传因素主导的遗传病单基因病和染色体病 4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病 5.环境因素主导的疾病非遗传性疾病 6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点 7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构 8.染色体的化学组成DNA 组蛋白RNA 非组蛋白 9.染色体的基本结构单位是核小体 10.染色质的类型:常染色质异染色质 11.常染色质是间期核纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质 14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质 15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三

级结构:超螺线管;四级结构:染色单体 16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY 17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变 18.点突变是基因(DNA链)中一个或一对碱基改变 19.基因突变的分子机制:碱基替换移码突变动态突变 20.碱基替换方式有两种:转换和颠换 21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变 22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变 23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症) 24.系谱是指某种遗传病患者与家庭各成员相互关系的图解 25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率 26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员 27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式

艺术学概论课程教学大纲

艺术学概论课程教学大 纲 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

“艺术学概论”课程教学大纲 第一部分课程性质与目的要求 (一)课程性质 《艺术学概论》是高等院校素质教育重点课程之一,教育部从2001年起,已将《艺术学概论》列为全国各类成人高等学校“专升本”(含师范类与非师范类)必考科目之一。包括北京大学、清华大学、北京师范大学在内的全国许多综合大学、师范院校,以至理工农医等各类高等院校都纷纷开设了此门课程。本课程对于培养师范类学生具有全面的艺术常识,较高的艺术修养,以及增强人文素质等方面,尤其具有重要的作用。 (二)课程目的要求 1.了解并掌握艺术的基本原理和主要特征。 2.了解并熟悉16门主要艺术的基本知识,提高艺术鉴赏力与艺术修养,增强人文素质。 3.从美学与文化学角度,了解和认识从艺术创作到艺术接受的全过程。 第二部分教学时数 本课程为3学分,教学时数54学时,具体分配如下:

教学内容课内学 时 录像 课 IP课 件 上编艺术总论 第一章艺术的本质与特征411第二章艺术的起源411 第三章艺术的功能与艺术教 育 411第四章文化系统中的艺术411中编艺术种类 第五章实用艺术421 第六章造型艺术421 第七章表情艺术421 第八章综合艺术421 第九章语言艺术421 下编艺术系统 第十章艺术创作721 第十一章艺术作品721 第十二章艺术鉴赏421复习辅导1 总计542013 第三部分教学内容与要求 上编艺术总论 第一章艺术的本质与特征

一、教学要求 1.理解艺术史上对艺术本质的几种主要看法,认识马克思“艺术生产”理论是解决艺术本质问题的科学理论基础。 2.理解艺术的特征主要具有形象性、主体性、审美性等,从而加深对艺术的基本认识和了解。 二、内容要点 第一节艺术的本质 中外艺术史上,对于艺术本质主要有“客观精神说”、“主观精神说”、“模仿说”(“再现说”)等三种代表性的观点。马克思“艺术生产”理论将艺术看作是一种特殊的精神生产,为解决艺术本质问题奠定了科学的理论基础。 第二节艺术的特征 艺术形象是客观与主观、内容与形式、个性与共性的统一。艺术创作、艺术作品与艺术鉴赏均具有主体性的特点。艺术的审美性是人类审美意识的集中体现,是真、善、美的结晶,艺术的审美性体现为内容美和形式美的统一。 三、本章的重点和难点 1.马克思“艺术生产”理论对于艺术学研究的重要启示。

人类遗传学

人类遗传病 09级生科三班 任婧 40908136

人类遗传病 文章摘要:就遗传病与性别之间的关系举例讨论,哪些遗传病在男性人群中易发生,哪些遗传病在女性人群中易发生,以此达到预防的目的,提高人类健康水平. 关键词:人类遗传病;性别;预防遗传病;人类健康 1.X连锁遗传 人类体细胞性染色体为XX或XY,即正常男性为46,XY,正常女性为46,XX.如致病基因在X染色体上相连锁,即为X连锁遗传.可分为X连锁显性遗传(X—linked recesssve inheritance)和X连锁隐性遗传(X—linked dominant inheritance).本病发病情况为前者一般女性患者多于男性,因为男性患者后代女儿全为患者而儿子不会患病;如:抗维生素D佝偻病;后者一般男性患者多于女性,因为女性携带者后代儿子可能发病,而女儿不会发病,如红绿色盲. 2.Y连锁遗传 即决定某种性状或致病基因在Y染色体上,其遗传方式为Y连锁遗传(Y—linked inheritance).具有Y连锁致病基因者均为男性,这些基因将随Y染色体进行传递,因为女性没有Y染色体,故不传递有关基因,即女性不会发病,只能由父亲传给儿子,父亲的致病基因由祖父传给,所以又称全男性遗传,如外耳道多毛症. 3.从性遗传 有些常染色体上的基因控制的性状,由于性别的差异,显示出男性女性分布比例上或表达程度上的差异,这些基因控制的性状或遗传病的遗传是从性遗传(Sox—conditionded inheritance).从性遗传与性别相关的特点是:从性遗传基因控制的性状或遗传病在男女两性中的发病程度和发病率显著不同.如男性早秃,是常染色体显性致病基因所致,一般35岁左右开始秃顶,男性表现早秃,即(Aa.XX)女性则不表现早秃.同样是纯合子(AA.XY)男性比(AA.XX)女性早秃严重,因而人群中男性秃头明显多于女性.研究发现,秃头基因能否表达还要受雄性激素调节.带有秃头基因的女性在体内雄激素水平提高时也可出现早秃.这一点可作为诊断女性是否患某种疾病的辅助指标.如女性肾上腺瘤可产生过量雄激素,导致秃顶基因的表达. 4.限性遗传 有些常染色体上的基因控制的性状或遗传病,由于基因表达的性别限制,可以是显性或隐性,只在一种性别中表现,而在另一种性别中完全不能表达,但这些基因均可传给下一代,称限性遗传(Sex—lim-ited inheritance).这主要是由于解剖学结构上的性别差异造成的,也可能是受性激素分泌水平差异限制.限性遗传与性别相关的特点是:限性遗传基因控制的

医学遗传学及答案

医学遗传学试卷 姓名 __________ 分数 _______________ 一、名词解释(每题3分,共18分) 1. 核型: 2. 断裂基因: 3. 遗传异质性: 4. 遗传率: 5. 嵌合体; 6. 外显率和表现度: 二、填空题(每空1分,共22分) 1. 人类近端着丝粒染色体的随体柄部次缢痕与( )形成有关,称为( ) )表示,近亲婚配后代基因纯合的可能性用 )和( )两类。 )。核型为46, XX, deL (2)(q35)的个体表明其体内 )或( )变化。 6.细胞分裂早中期、前中期、晚前期或更早时期染色体的带纹,称为( 2. 近亲的两个个体的亲缘程度用( ( )表示。 3. 血红蛋白病分为( 4. Xq27 代表( 的染色体发生了( )。 )-

)和( )的变化。 )造成的( )结构或合成量异常所引起的疾病。 )异常或缺失,使( )的合成受到抑制而引起 的溶血性贫血。 10. 在基因的置换突变中同类碱基卩密喘与卩密喘、瞟吟与瞟吟)的替换称( )-不同类型 碱基(P 密喘与瞟吟)间的替换称为( )<. 11. 如果一条X 染色体XQ27 — Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体, 则这条X 染色体被称为( )。 12. 多基因遗传病的再发风险与家庭中患者( )以及( )呈正相关。 三、选择题(单选题,每题1分,共25分) 1. 人类1号染色体长臂分为4个区,靠近着丝粒的为()。 A. O 区 B. 1区 C. 2区 D. 3区 E. 4区 2. DNA 分于中碱基配对原则是指( )A. A 配丁,G 配C B. A 配G, G 配T C. A 配 U, G 配 C D. A 配 C, G 配 T E. A 配 T, C 配 U 3. 人类次级精母细胞中有23个()<, A.单价体 B.二价体 C.单分体 D.二分体 E.四分体 4. 46, XY, t (2; 5)(Q21; q31)表示( )<,A —女性体内发生了染色体的插入B. 一男性体 内发生了染色体的易位 C 一男性带有等臂染色体 D. 一女性个体带有易位型的畸变染 色体 E. 一男性个体含有缺失型的畸变染色体 5. MN 基因座位上,M 出现的概率为o. 38,指的是()- A 基因库 B.基因频率 C 基因型频率 D 亲缘系数E.近婚系数 6. 真核细胞中的RNA 来源于( )<,A. DNA 复制 B. DNA 裂解 C. DNA 转化 D. DNA 转录 E .DNA 翻译 7. 脆性X 综合征的临床表现有()。A 智力低下伴眼距宽、鼻梁塌陷、通贯手、趾间距宽 B 智力低下伴头皮缺损、多指、严重唇裂及膊裂C .智力低下伴肌张力亢进。特殊握拳姿势、 摇椅足 D.智力低下伴长脸、大耳朵、大下颁、大睾丸E.智力正常、身材矮小、肘外 翻、乳腺发育差、乳间距宽、颈蹊 8. 基因型为P '邙'的个体表现为( )。A 重型9地中海贫血 B.中间型地中海贫血 C 轻型地中海贫血 D 静止型。地中海贫血E.正常 9. 慢性进行性舞蹈病属常染色体显性遗传病,如果外显率为90%, —个杂合型患者与正常人 结婚生下患者的概率为()<■ A. 50% B. 45% C. 75% D. 25% E. 100% 7. 染色体数日畸变包括( 8. 分子病是指由于( 9. 地中海贫血,是因(

遗传学及其应用

遗传学及其应用 阮庆丰 2013年11月10日 摘要 遗传学是20世纪兴起的一门年轻而又发展迅速的学科,随着研究的进展,它的分支已渗入到生物科学的所有领域,成为现代生物学的中心和带头学科。它既是生物学中的一门基础理论学科,同时又是应用性非常强的的一门课程。遗传学新理论、新技术、新成果层出不穷,而新成果又快速的转化为生产力。如遗传工程技术已成为世界多国的支柱产业,而基因诊断和基因治疗等正在为人类展示出美好的前景。这一切也向人们展示,21世纪的遗传学是一个极具活力的学科,它将带动整个生命科学迅速发展,使人类支配和主宰生命世界的能力再有一个巨大的飞跃。本文主要从遗传学的发展史,遗传学的基础和原理以及遗传学在遗传标记方面的应用三个方面,阐述了遗传学的发展和遗传学在生活中的实际应用。 关键词:遗传学发展史原理基础遗传标记 1.遗传学的概念及发展史 1.1遗传学的基本概念 遗传学是研究生物遗传和变异的科学,是生命科学最重要的分支之一。遗传和变异的生物界最普遍和最基本的两个特征。所谓遗传(heredity),是指亲代与子代之间相似的现象;变异(variation)则是指亲代与子代之间存在的差异。

1.2遗传学的研究对象和任务 遗传学所研究的主要内容是由细胞到细胞、由亲代到子代,亦即由世代到世代的生物信息的传递,而细胞及所含的染色体则是生物信息传递的基础。 遗传学研究的任务在于:阐明生物遗传和变异的现象及其表现的规律;探索遗传和变异的原因及其物质基础,揭示其内在的规律;从而进一步指导动物、植物和微生物的育种实践,防治遗传疾病,提高医学水平,造福人类。 1.3遗传学发展简史 人们在古代从事农事生产过程中便注意到遗传和变异的现象。春秋时有“桂实生桂,桐实生桐”,战国时又有“种麦得麦,种稷的稷”的记载。这说明古代人民对遗传和变异有了粗浅的认识。但直到19世纪才有人尝试把积累的材料加以归纳、整理和归类,并用理论加以解释,对遗传和变异进行系统的研究。总结起来,遗传学的诞生和发展经历了以下阶段: 一、遗传学的诞生 拉马克的“用进废退学说”和“获得性遗传假说”→达尔文的“泛生论学说”→魏斯曼的“种质学说”→孟德尔的“遗传因子假说”→遗传学正式成为一门独立的学科 二、遗传学的发展 (一)经典遗传学的发展 摩尔根的连锁遗传定律→人工诱变→群体遗传、数量遗传和杂种优势理论的确立→遗传物质是DNA或RNA的证实→“一个基因一个酶”学说 (二)现代遗传学的发展 分子遗传学的诞生和发展→基因表达调控的研究→重组DNA技术的诞生和发展→基因多样性的确立→基因组计划的启动和应用 遗传学100余年的发展历史,充分的说明遗传学是一门发展极为迅速的学科,无数事实说明,遗传学的发展正在为人类的未来展示出无限美好的前景。 2.遗传学的原理及基础 2.1遗传学的基本原理 通过前人的观测与实验以及后人对这些实验的总结和验证,遗传学家们已把各种基本概念作为遗传学的原理而建立起来。这些原理有诸如:

相关文档