文档库 最新最全的文档下载
当前位置:文档库 › 轧机齿轮箱设计中的几个问题

轧机齿轮箱设计中的几个问题

轧机齿轮箱设计中的几个问题
轧机齿轮箱设计中的几个问题

轧机齿轮箱设计中应注意的几个问题

中国重型机械研究院有限公司传动所

一、轧机齿轮箱的分类

根据不同的分类方法,轧机齿轮箱可分为不同的类型,不同类型的轧机齿轮箱,其设计要求和结构特点也自然各不相同。

1、按轧机类型可分为

热连轧机齿轮箱

冷连轧机齿轮箱

粗轧机齿轮箱

中轧机齿轮箱

精轧机齿轮箱

板带轧机齿轮箱

棒材轧机齿轮箱

线材轧机齿轮箱

管轧机齿轮箱

铜轧机齿轮箱

铝(板、箔)轧机齿轮箱

铝铸轧机齿轮箱

2、按轧机传动系统的构成方式分

轧机复合齿轮箱:电机和轧机间只有一个齿轮箱

轧机分立式齿轮箱:电机和轧机间由主减速机和分齿箱组成

3、按传动精度分

高精度轧机齿轮箱:适用于精轧高速传动,如箔轧机、高速轧机

中等精度轧机齿轮箱:6级精度轧机齿轮箱

低精度轧机齿轮箱:一般粗轧机齿轮箱

4、按传动级数分

单级轧机齿轮箱

多级轧机齿轮箱

5、按输出轴数目分

单出轴轧机齿轮箱

双(多)轴轧机齿轮箱

6、按输出轴转向分

单转向轧机齿轮箱

双转向轧机齿轮箱

7、按输入方式分

单输入轴轧机齿轮箱

双(多)输入轴轧机齿轮箱

8、按采用的传动类型分

圆柱齿轮轧机齿轮箱

行星齿轮轧机齿轮箱

圆锥圆柱齿轮轧机齿轮箱(直交式、非直交式)

圆柱及行星齿轮轧机齿轮箱

轧机类型的多样化,决定了轧机齿轮箱类型的多样化。不同类型的齿轮箱或传动装置,其结构及设计目标自然各不相同,例如对冷、热连轧机齿轮箱,其设计目标为高可靠性、长寿命。对高线轧机及箔、带轧机齿轮箱,其设计目标为振动及噪声小、运行平稳、动态性能好。对粗轧及可逆轧机齿轮箱,则要求其整机刚性好,抗冲击及过载能力强。

二、轧机齿轮箱的设计目标及准则

对不同类型的轧机齿轮箱,其设计要求及准则不尽相同。

1、对高速高精度轧机齿轮箱

一般要求其传动平稳性、稳定性、动态性能要好,其设计要求为:接触、弯曲及胶合强度核算符合要求,动态性能分析要求不发生一阶、二阶共振(扭振分析),传动精度分析满足要求(侧隙控制,回差要求),重点是后者。设计中应有动态性能及润滑性能监控设施,修形应偏重减小冲击。

此类轧机一般为精轧机齿轮机,高线轧机齿轮箱等。

2、对重载高可靠性轧机齿轮箱

如热连轧机齿轮箱及开坯轧机齿轮箱,其传动精度要求是次要的,特点是冲击负荷大、可靠性要求高、寿命要求长、设计要求安全系数要大,取许可σFlin,σFlin一般稍低,或实际工作应力应低,动态性能分析一般也应进行,修形应偏重提高接触率。

3、齿轮箱设计的基本要求

(1)基本计算项目

·接触强度计算·回差(间隙)计算

·弯曲强度计算·胶合强度计算

·冷却散热计算·修形计算

·动态性能分析及计算·轴承寿命计算

·极限载荷及静强度计算·其它特殊计算

(2)轧机传动系统设计的动力学准则

①系统工作频率及其它特征频率应远离各阶固有频率;

②第二阶固有频率应是第一阶固有频率的二倍以上,以后各阶相邻固有频率之比≥1.3,分布要合理;

③振型图的节点不能位于齿轮上;

④扭矩放大系数TAF(扭矩峰值与其平均值之比)不大于

2.5.

上述目标可通过调整系统结构参数和零部件的种类来实现,和轧机齿轮箱的设计息息相关。

(3)轧机齿轮的修形要求

齿端修形:

修形量△S1=4f Hβ(偏差+0.02)mm

修形长度△b1≤2.2Mn+5(或0.1b2+5)mm

齿端修形一般应对小齿轮进行。

齿廓修形:

修形量:

小齿轮

S1min=(2+0.01599W t)×25.4×10-4 mm

S1max=(5+0.01599W t)25.4×10-4 mm

大齿轮

S2min=(0+0.01599W t)×25.4×10-4 mm

S2max=(3+0.01599W t)25.4×10-4 mm

式中:W t----轮齿单位齿宽上的圆周力,W=Ft/6(N/mm)

修形高度:

一般可按△h=1/3 m 计算,但要验证εα≥1,即修形后的啮合线长度大于端面基节。

齿廓修形对齿顶修形时一般大小轮都要进行。

对一般工程应用问题,采用上述算法已能满足使用要求,对要求较高的齿轮的修形要求,亦可通过建立更为精确的数学-----力学模型,精确计算出轮齿的弯曲变形、接触变形、剪切变形,同时考虑制造误差动态下的变化情况,同时通过对其动态性能的优化来决定修形量及修形曲线。当然亦可参照其它行业类似工况下的修行方法或规范,如船舶及军工行业等。

三、轧机齿轮箱设计的几个问题

1、传动副的布置形式

轧机齿轮箱的结构型式除满足轧机的安装布置要求外,还应从传动设计的合理性方面进行考虑,尤其对多级轧机齿轮箱,其结构型式对整机重量和造价有重大影响。以西重所开发的铝铸轧机齿轮箱为例,以往齿轮箱均以多级方式组合成需要的速比,再

在末级以1:1的两组齿轮将动力分为两个支流输出,此种方式的齿轮箱必将十分庞大、笨重,若采用先分流再减速的传动方案,整机重量则可减少2/3,当然亦可采用双电机通过齿轮箱分别直接驱动两辊,则结构更为紧凑。

目前西重所开发的铝铸轧机齿轮箱已成为铝铸轧机传动配置的主导产品。

从减少齿轮箱占地面积及体积和重量的角度,多级传动副的布置也常采用垂直、叠加及多层布置等方式,小型轧机的齿轮箱有时甚至和轧机也复合为一体了。

2、箱体设计中的问题

箱体有铸造和焊接两种类型,尤以焊接最为常见,但无论对任何一种类型,均应充分注意其刚性,重载轧机齿轮箱应采用有限元分析技术,根据其应力应变的分布情况,决定支承肋的分布、板的厚度、焊缝的位置。

亦可据此分析对轮齿啮合的影响,进而决定齿向载荷分布系数和修形量。

大型齿轮箱箱体设计时,注意应留有供加工、装配、运输、贮存、安装及维修时找正的基准面。

3、封闭功率与单辊驱动问题

结构设计中应注意避免自激振动发生,或者传动链中存在封闭功率。如薄板、箔轧制中,由于易产生封闭功率,常产生自激振动,此时若采用单独驱动,则可自动消除封闭功率,但此时应

注意两辊工作转速的同步性要高,否则系统将无法正常工作。封闭功率的存在加大了封闭回路构件的负荷,这自然也包括其中的传动齿轮箱的负荷加大了。确定设计载荷时务应准确估计封闭功率的存在和影响,如能采用消除封闭功率的传动方案,则无需考虑此项影响。事实上,由于轧机轧制作业的复杂性,设计时应综合各种情况对传动系统的影响,故设计也应充分体现这种特点及要求。

循环功率的存在也加大了能耗,单独驱动由于消除了封闭功率,因而可实现节能。

4、齿轮的设计及要求

对重载及高精度轧机齿轮箱,其齿轮材料应在MQ级以上,重点区域探伤要求应在Ⅲ级以上,齿轮材料应采用20CrNi2MoA、18Cr2Ni4W、17Cr2Ni2Mo、12Cr2Ni4等优质钢、轮齿磨齿前均应喷丸强化,大型重载齿轮应采用深层渗碳。

齿轮结构设计时,对1米以下齿轮,可采用整体锻件,反之则可采用焊接齿轮、鑲圈齿轮、把合齿轮等结构。

齿轮的精度等级对高速精轧齿轮箱应为5级,反之可取6级。

5、轧机齿轮箱设计的动态分析问题

对下列类型的轧机齿轮箱应进行包括齿轮箱在内的整个传动链系统的动力学分析。

1、冷、热连轧机主传动齿轮箱。

2、载荷或转速呈周期性变化的轧机齿轮箱,如管轧机齿轮

箱。

3、高速及高精度轧机齿轮箱,如高线轧机齿轮箱、高精度箔、带轧机齿轮箱。

4、重载荷可逆轧机齿轮箱。

动力学分析应通过采用传递矩阵法、集中参数法和有限元方法等建立系统的分析模型,进而求解得到系统的动态响应、固有特性和振型,据此确定其是否符合动力学设计准则的要求,并对其动态性能进行评判。

齿轮箱

齿轮箱是一种广泛应用于许多行业的基础传动装置, 其产品水平及性能直接决定着配套主机的水平及性能, 因此多年来人们对有关齿轮箱的设计研究和探索从来没有停止过。本文讨论齿轮箱开发设计中的几个基本问题, 应说明的是, 以下所述齿轮箱系指各类减速箱、增速箱、变速箱等, 其传动型式可选择齿轮传动、蜗轮蜗杆传动、行星齿轮传动、摆线针轮传动及以上各种传动的组合。由于使用要求及环境的不同, 齿轮箱的类型及结构型式多种多样, 设计原则及方法也各不相同, 这里仅就其基本及共性问题进行分析、总结、概括, 试图归纳出对产品的开发设计有实用价值的一些原则及方法, 以便使产品的开发设计更快捷、更高效。 1 设计的输入条件产品开发设计的一个重要前提条件是首先要对产品的使用工况及要求有全面深刻的了解, 它一般包括下述几个方面的要求, 也即通常所说的产品开发设计的输入条件: ( 1)动力传递要求, 如原动机及工作机类型、传递功率及转矩、载荷特征及变化规律等。( 2)工作转速要求, 如输入、输出转速值及变化规律、有无空档及反转等要求。( 3)起动及过程要求, 如有无带载起动、过程制动及逆止、过载保护及起动时间与电流等要求。( 4)工作环境及状况要求, 如工作温度、湿度、海拔高度、起动频率及工作制度等。( 5)密封要求, 如接触还是非接触密封、浮动密封或其它密封, 压力要求及操控方式( 液动、气动或手动)。( 6)润滑及冷却要求, 如自身润滑还是循环润滑, 水冷还是风冷。( 7) 安装及连接要求, 如安装方位及方式、输入与输出的形式及连接方式等。( 8)监控要求, 如温度、振动状态、润滑状# 144 # 重型机械2010 ( S2) 况指示等。( 9) 其它特殊要求。审定开发设计的输入条件时应特别注意设计载荷的确定, 尤其是对重载传动或有高可靠性要求及对产品的体积、重量有特殊要求时更应如此。有条件时尽量按实测载荷谱进行设计, 当没有载荷谱可用时, 也要尽可能类比类似工况时的设计载荷进行设计。对一些专用产品, 注意要满足其相应行业标准或规范的要求。 2 设计目标不同使用环境下齿轮箱产品开发设计所追求的目标也各不相同, 大体可分为: 大功率重载齿轮箱: 设计目标为高可靠性、长寿命, 典型实例为风力发电增速箱、热连轧主传动齿轮箱, 立磨齿轮箱等。车辆及船用齿轮箱: 设计目标为体积小、重量轻、有换档要求时应操纵灵活及平顺, 典型实例为工程机械变速箱、车辆行走齿轮箱及船用推进齿轮箱等。高精度齿轮箱: 设计目标为输出转速波动小、回差小、振动小等。典型实例为伺服传动齿轮箱、箔带精轧机齿轮箱、数控机床传动齿轮箱等。通用齿轮箱: 设计目标为模块化、系列化及标准化程度高、互换性好、价格适中。高速齿轮箱: 设计目标为传动平稳、振动及噪声小、动力学性能好。典型实例为汽轮机增速箱、高速线材轧机齿轮箱等。带载起动齿轮箱: 设计目标为输出转速或力矩可控、过载能力强。典型实例为皮带输送机齿轮箱、起重机提升齿轮箱、搅拌机齿轮箱等。一般用途齿轮箱: 设计目标为造价低、精度不高。典型实例为农机齿轮箱、手动齿轮箱等。事实上, 对一个具体的齿轮箱产品, 其设计目标也有可能会同时具备以上所述的多个特征, 自然其设计要求也就要复杂些, 要具体问题具体分析, 这样才能有针对性的解决具体问题。确定了齿轮箱开发设计所追求的目标, 可有助于建立产品优化设计时的目标函数, 或应重点关注的设计要素及方向。3 设计的六大特性在系统总结多年从事传动齿轮箱设计开发经验的基础上, 对于现行的各种类型齿轮箱, 在进行其具体的设计开发时, 一般而言, 应遵循的原则可概括为下述六个方面, 或称为六大特性, 如图1所示。图 1 齿轮箱设计的六大特性311 产品设计的系统性在进行产品设计前, 应对产品的应用环境、载荷状况、作业条件、重要程度等进行全面了解, 将产品置于整机应用系统中去评判其对产品设计和制造工艺的要求。系统性应关注的问题主要是: ( 1)产品在系统中的作用及重要性, 如对产品的寿命、可靠性、重量等的要求。( 2)系统应用方面对产品的特殊要求, 如带载起动情况、软起动要求、制动要求、逆止或超越要求、频繁起制动或反转要求、匀速要求、有无封闭功率存在。( 3)从优化系统动态性能方面对产品的相关要求, 如风力发电增速箱、精轧机齿轮箱都对其整个系统的振动固有频率和振型的影响有一定要求。系统性观点是进行产品设计的重要前提。它是产品设计应关注的宏观层面的问题, 对传动系统的许多要求, 如软起动、制动、调速、逆止或超越等, 往往要结合系统的整体设计方能完成, 因此系统性观点

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

摩根公司高速线材轧机操作与维护手册SN

美国摩根公司 高速线材轧机操作与维护手册 酒钢集团榆中钢铁有限责任公司 二〇〇五年一月 目录 1.预精轧操作规程---------------------------------------------1-5 2.减定径机操作与维护规程---------------------------------6-29 一减径机操作规程--------------------------------------6-12 二定径机维护规程-------------------------------------13-29 3.碎断剪操作与维护规程-----------------------------------29-23 4.切头分断剪操作与维护规程-----------------------------33-38 5.转辙器操作与维护规程-----------------------------------38-42 6.精轧机前水箱和导槽操作与维护规程-----------------43-45 7.精轧机操作与维护规程(缺)-------------------------- 8.斯太尔摩控冷辊道操作与维护规程--------------------46-48 9.集卷筒操作与维护规程-----------------------------------49-51 10.吐丝机操作与维护规程---------------------------------52-54 11.集卷板操作与维护规程---------------------------------55-58 12.双臂芯轴操作与维护规程------------------------------58-59 13.运卷小车操作与维护规程------------------------------60-63 14.夹送辊操作与维护规程---------------------------------63-65

我国高速线材轧机的国产化

我国高速线材轧机的国产化 王玉文 On Domestic Localization of High Speed Rod & Wire Mill Wang Yuwen (Chongqing Iron & Steel Designing Institute, Chongqing 400013) 1978年以前,我国高速线材轧机在轧钢生产中还处于空白。从1987年起,马钢、首钢、酒钢等企业先后引进了各种类型高速线材轧机。从那时起,冶金部和机械部联合组织力量对高速线材设备进行了攻关。通过广大科技人员的努力,目前已达到了全线整体设计、整机制造的目标,并批量出口菲律宾、尼日利亚、马来西亚等国家。10多年间,高速线材轧机设备制造在我国不仅实现了“零”的突破,而且出现了从整套设备引进到整套设备出口的转机。 1 国内高速线材轧机现状 我国共有各种线材轧机800多套,其中高速线材轧机只有25套,约占线材轧机总数18.5%,但高速线材产品产量达870万t,占全国线材总产量1 650万t的52.7%。其他线材轧机多为复二重和横列式轧机,设备陈旧,工艺落后,盘重小,规格单一,尺寸精度差,表面质量和冶金性能差,技术装备水平低,能耗和各种单耗指标高,已无法满足市场对线材产品质量日益严格的要求和深加工的需要,经济效益较差。因此,无论从产品的质量、品种上要求,还是为节能降耗提高经济效益,横列式和复二重式线材轧机必将被高速线材轧机和半连续轧机取代。 2 高速线材轧机设备国产化的可能性和必要性 1985年以后,我国先后从国外引进高速线材轧机二手和成套设备16套,其中成品线材Φ5.5 mm~8.0 mm规格轧制速度达105 m/s以上的高水平轧机6套。在引进的成套高速线材轧机设备中,绝大部分采取了国外技术总负责、联合设计、合作制造方式。有的设备制造分交率达87%,一般都在80%左右。太原矿山机器厂(太矿)、陕西压延机器厂、西安航空发动机公司、大连重型机器厂、洛阳矿山机器厂等都较好承担过国内制造高线设备任务。这些厂家通过与国外合作制造高线设备,不仅学习、消化、掌握了国外设备制造工艺、制造标准和对材料性能的要求,而且积累了许多宝贵经验和教训,为国内制造高线设备打下了坚实基础。 太原矿山机器厂博采众家之长,开发国内新产品,在与德马克、西马克、摩根、达涅利等国外高线设备制造有声望的厂家合作中,参与对设计资料的转化和制造过程的实践以及实际产品的检验,感到国外四家公司设备设计各有所长,也各有不足。以粗中轧为例,摩根和德马克型采用焊接闭口式机架,刚性、稳定性好,组焊后加工窗口精度容易保证;西马克型采用组装式结构,组装工艺复杂,窗口精度不易保证;摩根型轧机的结构较为简单,但重量大;德马克、西马克轧机的结构较为复杂,但重量较轻。

高速线材精轧机安装方案

高速线材精轧机安装要点和部分安装规范 一、座浆法安放垫板组的施工要点 1、首先对基础进行检查确认,基础表面如有浮浆、杂质和油污要彻底处理干净。 2、在垫板位置下面用风铲将基础凿成一锅底形坑,坑的长度比垫板长60-80mm,宽度比垫板 宽40-60mm,坑深20-40mm。 3、用压缩空气吹掉坑内杂物,座浆的前一天,用水将基础表面充分润湿,然后排出坑内积水。 4、坑内及坑周围不得滴入油污,在坑内涂一层薄的水泥浆以利新老混凝土的粘接。 5、垫板的棱角、毛刺要进行处理,座浆前要将垫板油污清洗干净。 6、将适量的座浆料但如搅拌板上搅匀再加水搅拌,达到手捏成团,摔地成砂,立即倒入坑内 使用,搅拌好的混凝土应在30分钟内用完,超时间不得再加水使用。 7、将拌好的混凝土灌入坑内,随即用干净无油的木槌捣固,捣至“冒汗”即浮浆逸至表面为 止再灌混凝土、再捣至达到要求,混凝土表面应呈中间高四周低的馒头形,以便放置垫板时排出空气。 8、待混凝土表面稍干后即可将平垫板放在其上,用手压或小锤轻击垫板进行找平找标高,混 凝土的表面应低于垫板上平面2-5mm. 9、座浆后的垫板,要用草袋等物覆盖,养护24-36小时,养护期间放置碰撞和振动。 10、待座浆层混凝土强度达到设计强度的75%以上时,即可进行机械设备的安装工作。 11、座浆法放置垫板通常是每根地脚螺栓两侧各设置一块座浆垫板,座浆垫板的面积必须大于 计算出的设备承压面积。 二、垫铁的安装规范 1、当设备的负荷由垫铁组承受时,垫铁组的位置和数量应符合下列要求 ①、每个地脚螺栓旁边至少有一组垫铁,垫铁尽量靠近地脚螺栓。 ②、每一垫铁组宜减少垫铁的块数,切最多不能超过4块,并不宜采用薄垫铁,放平垫铁时,厚 的放在下面,薄的放中间且不宜小于2mm,各组垫铁应焊牢。 ③、每组垫铁应放置整齐平稳,接触良好,设备调平后每组垫铁均应压紧,并用手锤逐组轻击 听音检查,对高速运转的设备,当采用0.05mm塞尺检查垫铁之间及垫铁与底座面之间的间隙。 ④、设备调平后,垫铁端面应露出设备底座外缘,平垫铁宜露出10-30mm,斜垫铁宜露出10-50mm。 垫铁组深入设备底座面的长度应超过设备地脚螺栓中心。 2、垫铁高度在50-100mm之间,设备底座有接缝处的两侧应各垫一组垫铁。 3、承受主要负荷的垫铁组应使用成对垫铁,切深入设备底座面的长度超过地脚螺栓孔,调平后 灌浆前进行点焊,承受主要符合并在设备运行时产生较强连续振动的垫铁组不应采用斜垫铁而

机械系统的载荷特性及动力机的选择

机械系统的载荷特性及动力机选择原则 本章介绍机械系统的载荷特性及动力机选择,掌握机械系统的载荷特性及动力机选择原则 26.1.1工作机械的载荷 载荷类型机械设计中载荷的组合及其类别工作载荷的确定方法1)按作用形式分 直接作用载荷--载荷以力或力矩形式直接作用在机器上;如由工作阻力产生的载荷、惯性载荷、风载荷、驱动力、制动力等。 间接作用载荷--以变形的形式间接作用在机器上;如温度、地震的作用引起的载荷。 对于绝大多数的机器来说,直接作用的载荷是主要的。 2)按照载荷产生的来源分 (1) 工作载荷由机器工作阻力产生的载荷。工作载荷是各种机器最重要最基本的载荷。 (2) 动力载荷动力载荷包括惯性载荷、振动载荷和冲击载荷。当机器或机器的某机构运动速度的大小或方向发生变化时(如起动或制动)将产生惯性载荷。 (3) 自重载荷设备自身重量产生的载荷。 (4) 风载荷具有一定质量的空气以一定速度流动被结构物表面阻挡时,对结构物产生压力。 (5) 温度载荷温度变化使构件热胀冷缩,当构件的胀缩受到约束时,在构件中产生附加力。 (6) 水力载荷水对构件产生的压力和流动阻力等。 3)按载荷是否随时间变化分 静载荷指大小,位置和方向不变的载荷。在工程中大多数机械承受的都是变载荷,严格意义的静载荷是很少见的,但在设计上常把变化不大或变化速度缓慢的载荷,近似地作为静载荷来处理 变载荷指随时间有显著变化的载荷。一般机械承受的变载荷主要有周期载荷,冲击载荷和随机载荷等几种。 a)周期载荷 载荷的大小是随时间作周期性变化的,它可用幅值、频率和相位角三个要素来描

述。 b)冲击载荷 载荷作用时间短,而且幅值较大,例如,锻锤在锤打坯料时所受的载荷就属于冲击载荷。在设计中对于数值较小,频率较高的多次冲击载荷,常按一般的周期载荷来处理。 c)随机载荷 载荷的幅值和频率都是随时间变化的,且变化规律不能用一个函数确切地进行描述,只能应用数理统计方法才能获得它们的统计规律。 26.1.2 动力机的种类及其机械特性 电动机液压马达气动马达内燃机 电动机在额定电压和额定频率下工作,并按规定的接线方法,定子和转子电路中不外接电阻,此时获得的机械特性称为电动机的固有机械特性。右图是电动机的机械特性曲线。根据转矩增加使电动机转速下降的程度不同,电动机的机械特性分为硬特性和软特性两类。同步电动机、一般交流异步电动机和直流并激电动机属于硬特性,即其负载转矩在允许范围内变化时,电动机转速变化不大,而且同步电动机的转速可保持恒定。转子回路串电阻的交流绕线型异步电动机和直流串激电动机则属于软特性,即随负载转矩的增加,电动机的转速显著下降,但是它们的起动转矩比较大。 电动机改变某些参数时获得的机械特性称为人为机械特性。可通过降低供电电压、在转子或定子电路内串接对称电阻及在转于电路接入并联电阻等方法,获得人为机械特性。 交流电动机根据电动机的转速与旋转磁场的转速是否相同,分为同步电动机和异步电动机两种。 同步电动机是一种用交流电流励磁建立旋转的电枢磁场,用直流电流励磁构成旋转的转子磁极,依靠电磁力的作用旋转磁场牵着旋转磁极同步旋转的电动

轧机齿轮箱设计中的几个问题

轧机齿轮箱设计中应注意的几个问题 中国重型机械研究院有限公司传动所 一、轧机齿轮箱的分类 根据不同的分类方法,轧机齿轮箱可分为不同的类型,不同类型的轧机齿轮箱,其设计要求和结构特点也自然各不相同。 1、按轧机类型可分为 热连轧机齿轮箱 冷连轧机齿轮箱 粗轧机齿轮箱 中轧机齿轮箱 精轧机齿轮箱 板带轧机齿轮箱 棒材轧机齿轮箱 线材轧机齿轮箱 管轧机齿轮箱 铜轧机齿轮箱 铝(板、箔)轧机齿轮箱 铝铸轧机齿轮箱 2、按轧机传动系统的构成方式分 轧机复合齿轮箱:电机和轧机间只有一个齿轮箱 轧机分立式齿轮箱:电机和轧机间由主减速机和分齿箱组成

3、按传动精度分 高精度轧机齿轮箱:适用于精轧高速传动,如箔轧机、高速轧机 中等精度轧机齿轮箱:6级精度轧机齿轮箱 低精度轧机齿轮箱:一般粗轧机齿轮箱 4、按传动级数分 单级轧机齿轮箱 多级轧机齿轮箱 5、按输出轴数目分 单出轴轧机齿轮箱 双(多)轴轧机齿轮箱 6、按输出轴转向分 单转向轧机齿轮箱 双转向轧机齿轮箱 7、按输入方式分 单输入轴轧机齿轮箱 双(多)输入轴轧机齿轮箱 8、按采用的传动类型分 圆柱齿轮轧机齿轮箱 行星齿轮轧机齿轮箱 圆锥圆柱齿轮轧机齿轮箱(直交式、非直交式) 圆柱及行星齿轮轧机齿轮箱

轧机类型的多样化,决定了轧机齿轮箱类型的多样化。不同类型的齿轮箱或传动装置,其结构及设计目标自然各不相同,例如对冷、热连轧机齿轮箱,其设计目标为高可靠性、长寿命。对高线轧机及箔、带轧机齿轮箱,其设计目标为振动及噪声小、运行平稳、动态性能好。对粗轧及可逆轧机齿轮箱,则要求其整机刚性好,抗冲击及过载能力强。 二、轧机齿轮箱的设计目标及准则 对不同类型的轧机齿轮箱,其设计要求及准则不尽相同。 1、对高速高精度轧机齿轮箱 一般要求其传动平稳性、稳定性、动态性能要好,其设计要求为:接触、弯曲及胶合强度核算符合要求,动态性能分析要求不发生一阶、二阶共振(扭振分析),传动精度分析满足要求(侧隙控制,回差要求),重点是后者。设计中应有动态性能及润滑性能监控设施,修形应偏重减小冲击。 此类轧机一般为精轧机齿轮机,高线轧机齿轮箱等。 2、对重载高可靠性轧机齿轮箱 如热连轧机齿轮箱及开坯轧机齿轮箱,其传动精度要求是次要的,特点是冲击负荷大、可靠性要求高、寿命要求长、设计要求安全系数要大,取许可σFlin,σFlin一般稍低,或实际工作应力应低,动态性能分析一般也应进行,修形应偏重提高接触率。 3、齿轮箱设计的基本要求 (1)基本计算项目

进口摩根型高速线材预精轧机和精轧机设备国产化实践

进口摩根型高速线材预精轧机和精轧机设备国产化实践成西平 (广州市广园机械设备有限公司)摘要 国内高速线材的发展,引进了一批进口高速线材轧机,分析研究了摩根型高速线材预精轧机组和精轧机组的设备结构特点,抓住关键部件,制订了国产化的技术方案,实现了预精轧机组的传动箱、辊箱的开发成功和精轧机辊箱和锥箱的开发成功,开拓了市场,满足了高线厂家的生产急需。关键词进口摩根型预精轧机精轧机设备国产化0、前言 摩根型高速线材轧机已发展到第五、第六代,设计速度高达140m/s,其预精轧机组、精轧机组是当今世界高速线材轧机设备中最先进的设备之一,运行稳定可靠,轧制的线材质量好。因此,国内引进的高速线材轧机的厂家中很多都选用摩根型高速线材预精轧机组、精轧机组。广园机械设备有限公司(原广园科技有限公司)在前几年正确分析高速线材轧机备件市场,果断决策开展达涅利型高速线材轧机备件和辊箱国产化的同时,于2004年3月开始对进口的摩根型五代预精轧机和精轧机辊箱从零部件的转化、研制,进行国产化设计开发,于2005年10月份生产出合格的产品,分别送给包钢、韶钢的高速线材厂上机试用,均一次上线试用成功,并运行良好,获得了钢厂的好评。在预精轧机、精轧机零部件成功的基础上,总结达涅利机型精轧辊箱开发成功经验,广园公司组织了对预精轧机、精轧机整体辊箱的技术开发攻关,抓住关键零部件,即辊箱箱体、螺旋伞齿轮、偏心套、轧辊轴、面板、油膜轴承等技术开发,组织力量进行技术攻关,从而获得了成功二在2005年10月零部件上机试用成功的基础上,2005年末,10”预精轧辊箱在包钢进口摩根五代预精轧机上试用又获成功,2006年7月广园公司开发的预精轧锥箱(传动箱)和辊箱一起同时在韶钢高速线材厂预精轧机上试用成功。6”、8”精轧机辊箱研发也获得了成功,广园公司研制的摩根型五代预精轧机辊箱、传动箱和精轧机6”、8”辊箱已准备批量投入国内高速线材轧机备件市场。在满足高速线材厂家需求的同时,也促进了广园公司技术的发展和经济效益的提高。1、摩根型五代预精轧机、精轧机辊箱的结构特点和技术性能要求1.1摩根型五代预精轧机的结构特点 高速线材生产线随着轧制速度的不断提高和用户对线材成品尺寸精度和质量要求的不断提高,从上个世纪的七十年代开始,在精轧机前设置了4~6架预精轧机。预精轧机的出现,在工艺线上增加了活套的数量,从而使进入精轧机的轧件尺寸精度和质量都得到了很大的提高,这样就保证了精轧机出口产品的尺寸高精度(≤±O.08n姗)和高质量,满足用户的需求。摩根型五代预精轧机的结构型式有平一立交替布置的,也有V型布置的,国内高速线材厂家大多采用平一立交替布置型结构,由辊箱与水平、立式传动箱组成,称为无扭无张力悬臂辊式预精轧机。摩根型五代预精轧机 ’具显著的结构特点: (1)悬臂辊环式结构。辊环通过锥套与轧辊轴的上端连接。 (2)辊箱为插入式结构,机架由辊箱和齿轮箱组成。辊箱由箱体和面板组成。面板与齿轮箱连165接,箱体内装有偏心套机构,用来调整辊缝。 (3)辊缝调整机构是由一根带左右丝扣的丝杆和螺母组成。旋转丝杆使两组偏心套相对旋转,从而使两根轧辊轴相对轧制中心线作对称移动实现辊缝调节,保持原有轧制中心线和导卫的位置不变。 (4)水平机架的齿轮箱内由输入轴和同步齿轮轴组成,立式机架的齿轮箱传动系统比水平多了一对螺旋伞齿轮,用来改变传动方向和调速比,其余部分与水平机架相同。, (5)机架间设置活套,活套为立式活套,焊接结构,活套由活套扫描器进行套量的调节控制,实现无张力轧制。1.2摩根型五代预精轧机辊箱的技术性能要求

机械系统动态设计理论

机械系统动态设计理论 授课教师 专业: 班级: 姓名: 学号:

机械动态优化设计综述 1 机械动态优化设计的概念、目的及必要性 机械产品和机械设备日益朝着高速、高效、精密、轻量化及自动化的方向发展,产品结构日趋复杂,产品更新换代的速度日益加快, 对产品的性能要求越来越高,这要求产品或设备的结构系统具有良好的静态和动态特性。如何降低产品或设备在工作情况下的振动和噪声, 保护操作者的身心健康以及设备本身,同时尽量不影响周围的环境, 成为一个必须解决的问题。传统的静态理论规范越来越难以满足市场的迅速变化,同时,传统的设计方法,很难综合考虑各方面的约束条件, 得到的往往只是复杂问题的可行方案,而非最优方案,也难以很好的满足机械设备动态特性要求。对产品进行动态优化设计,可以在很大程度上解决此类问题, 特点是把问题解决在设计阶段;其优点是代价较小, 能够适应当前激烈的市场竞争的需要。 机械动态优化设计主要是指系统参数的数值优化,其研究内容是将数学规划理论、机械振动理论和数值计算方法结合起来,以计算机为工具,建立一整套科学的、系统的、可靠而又高效的方法。其主要内容有:(1)建立符合实际情况的结构动力学模型。(2)选择有效的结构动态优化设计方法。本质是在产品的设计阶段就将系统的动态特性问题考虑进去,从而取代传统设计中所使用的先依据静态设计规范及理论设计出样品或样机,再不断进行修改的设计方法,即进行动态优化设计。其目的是在产品的开发阶段就对产品的动态性能进行优化, 这是一项正在迅速发展的技术,它涉及到现代动态分析、计算机技术、产品结构动力学理论、设计方法等许多学科,由于其涉及问题的复杂性,迄今为止还没有提出一套完整的动态优化设计

高速线材轧机间活套知识

高线轧机间活套基础知识 活套 现代高速线材轧机为保证产品尺寸精度,采用微张力及无张力轧制,以消除轧制过程中各种动态干扰引起的张力波动和由此引起的轧件尺寸波动。由于精轧机组为集体传动,故精轧采用微张力轧制,其微张力值由固定速比和各架给定孔槽面积保证,速比不会因控制而改变,轧件面积将因来料面积波动而波动。为了减少张力变化引起的精轧机的轧件尺寸波动,在精轧机前的预精轧、中轧几机组常设若干个活套,以消除连轧各架的动态速度变化的干扰、保证轧件精度。 活套定义及作用 通过自动控制系统调节相邻机架的速度使机架间产生“多余”轧件,该“多余”轧件在起套装置辅助下形成且能动态保持弧形的套状物,这个套状物就称为活套。活套控制功能适用于轧件断面小轧制速度较快的场合,能消除连轧机架的动态速度变化的干扰、保证轧件精度,活套可以实现无张力轧制。所谓无张力轧制即是在轧制过程中,机架间轧件不存在拉钢关系,是通过改变活套存储量来实现的。当相邻两机架间轧件受拉时,套量减小,可起缓冲作用,防止机架间产生张力,免使轧件断面拉缩,影响轧件尺寸的精度;另一方面吸收过量的轧件,防止堆钢而造成机架间的堆钢事故。但是活套的套量调节范围及套量的存储量是有限的,当相邻机架速度匹配不合理或其它原因而使起套量偏差太大,自动控制系统来不及或无法调节,就会引起堆钢。 活套由活套台、支撑辊、导槽、起套辊及活套扫描器等组成。支撑辊、起套辊起着对轧件的导向和支持作用。起套辊、转向导板均由气缸驱动,起套辊气缸由双电磁阀控制。 活套种类:下活套、侧活套、立活套。在高速线材轧机上,下活套通常用于中轧机组。 下活套的套量控制比较困难,因为下活套的光电扫描器工作环境恶劣,难以实现自动控制。

南京高精传动设备制造集团有限公司高线粗中轧齿轮箱飞剪减速机技术协议资料讲解

XXXXX钢铁集团有限公司 高线工程项目 65万吨/年高速线材生产线1H-14V平立交替轧机齿轮箱,1#、2#飞剪 技术协议 甲方:XXXXXXX钢铁集团有限公司 乙方:南京高精传动设备制造集团有限公司 年月日

XXXXX钢铁集团有限公司(甲方)和南京高精传动设备制造集团有限公司(乙方)就XXXX钢铁集团有限公司65万吨/年高速线材生产线1#~14#轧机齿轮箱,1#、2#飞剪的设计、制造、技术服务等有关技术事宜经过友好协商,达成如下技术协议: 1 概述 1.1设备的用途和要求 新建高速线材生产线设计规模为年产65万吨的高速热轧盘条,该生产线为单线高速线材生产线,布置在21m主轧跨内。平台标高+2000mm,轧制线标高+2800mm。 产品规格:φ5.5~16.Omm 主要钢种:普碳钢、优质碳素结构钢、低合金钢(包括Q235、HPB235、HPB300、HRB335、HRB400)。 钢坯出炉温度:1050~1200℃;断面温差:≤30℃;长度方向温差:≤30℃。 来料方向:左进料(从操作侧看)由甲方提供车间工艺平面布置图(电子版一份)1.2 1H~14H轧机减速机供货范围:

2 技术要求 2.1规范和标准 轧机齿轮箱的设计、制造、检验、包装、运输、测试按国家、行业、设备图纸的标准、规范和要求执行,这些标准和规范是最新和有效的版本,对于国外采购的设备按其相应的国际标准执行。 2.2设备详细技术要求 买方要求供货商应承担供货范围内所有设备与整条连续生产线中相衔接设备的技术协调责任并保证所供设备与衔接设备之间的完整过渡。买方负责供货范围内的减速机详细设计,安装指导和调试指导工作。为方便齿轮箱的设计与制造,本技术同时将与齿轮箱相配的轧机的结构及性能要求提供如下。 2.2.1对齿轮箱的要求 2.2.1.1 齿轮箱速比及主电机功率应符合设计要求,来料方向为左进料(从操作侧看),齿轮箱的摆放位置和方向应根据现场平面布置图确定。轧机间距问题要求在减速机设计师充分考虑与相邻机架减速机基础之间距离,保证不干涉。 2.2.1.2 齿轮箱结构形式:根据买方、轧机厂家提供资料卖方进行设计;水平齿轮箱水平剖分,立式齿轮箱立式剖分。在设计时尽量考虑设备零件的互换性。 2.2.1.3 每台齿轮箱由一台直流电机单独传动。齿轮箱与主电机间的接手为鼓形齿联轴器(属于卖方供货范围)。供货厂家对所选联轴器向买方提供详细型号和说明,买方认可后才可以选用。 2.2.1.4 齿轮箱润滑方式为稀油强制润滑齿轮啮合处的润滑油由喷嘴向其喷射,轴承处润滑由油管通过节流孔调节流量,保证各轴承润滑良好。所有配管要求进行酸洗、冲洗、钝化处理。油为L-CKD320硫磷型重负荷极压工业齿轮油,油压0.12~0.18Mpa,由买方提供集中供油。齿轮箱供货厂家提供各架齿轮箱详细的流量、压力参数要求以便买方及时对整个轧线润滑系统进行核算。

高速线材精轧机辊环装配要点

高速线材精轧机辊环装 配要点 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高线轧机辊环装配要点 摘要:分析造成爆辊、松辊、锥套断裂等故障的原因,制定辊环装配操作要点。 关键词:高速线材轧机;辊环;锥套;辊轴;装配 1 前言 柳钢棒线厂有2条高速线材轧机生产线,设计年产量均为50万吨。生产线最大轧制速度120m/s,保证速度105m/s,其精轧机为摩根第五代45o顶交悬臂V型无扭超重载型轧机,由230×5+Φ160×5共10架轧机组成。高速线材轧机的辊环安装、拆卸方式均采用锥套装配。在实际使用过程中,影响辊环装配的因素较多,装配操作不当会产生爆辊、松辊、锥套断裂等生产故障。因此,归类分析影响辊环装配的因素,制定合理的装辊、卸辊压力范围,可有效地避免爆辊、松辊、锥套断裂等事故的发生。 2 影响因素分析 根据高速线材轧机辊环结构(见图1)分析影响其装配的因素。 图1高速线材轧机辊环结构示意图 安装尺寸 辊环、锥套、辊轴以及换辊小车拔辊器、压辊器的几何尺寸直接影响辊环装配,是最重要的影响因素。 (1)辊环的材质为WC,其HRC硬度达到83,属于高耐磨材料。辊环的中心孔与锥套的外圆接触,所以辊环的中心孔与锥套的配合公差是一个非常关键的参数。根据生产实际情况和摩根提供的设计参数进行对比,考虑到辊环高硬度不容易变形的特点,我们适当修改了配合公差参数(见表1)。 (2 辊轴的锥度一致,不能够超出公差范围,否则会影响到锥套内圆和辊轴互相接触的面积,接触面要在70%以上。 (3)换辊小车拔辊器、压辊器与锥套的4个耳朵相互配合,通过设定的压力值完成装辊、卸辊,拔辊器、压辊器与锥套耳朵配合(见表2),尺寸要得到保证。 表面硬度 锥套内圆和辊轴直接接触,采用过盈配合,锥套、辊轴的硬度要相匹配。通常辊轴的HRC硬度在55~65,如果锥套的硬度过高就不利于辊轴的保护;锥套的硬度过低,锥套会产生塑性变形不能够保证正常轧制的力矩要求,导致锥套打滑、辊松事故发生,所以锥套的硬度必须保证在一定范围之内。锥套的硬度比辊轴小10~20为宜。例如,我们使用的锥套HRC硬度在36~39,很少发生锥套打滑、辊松事故。

机械工程控制基础作业

第一题:生活中常见开环控制系统与闭环控制系统综合性能分析。 电加热炉开环系统与闭环系统综合性能分析 一、反馈及反馈控制 反馈:所谓信息的反馈,就是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。负反馈:如果反馈回去的信号与原系统的输入信号的方向相反,称为负反馈。正反馈:如果反馈回去的信号与原系统的输入信号的方向相同,称为正反馈。 系统中还会存在外反馈、内反馈。外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈,称为外反馈。内反馈:在系统或过程中存在的各种自然形成的反馈,称为内反馈。它是系统内部各个元素之间相互耦合的结果。内反馈是造成机械系统存在一定的动态特性的根本原因,纷繁复杂的内反馈的存在使得机械系统变得异常复杂。 二、开环控制 开环控制是指系统的被控制量(输出量)只受控于控制作用,而对控制作用不能反施任何影响的控制方式。采用开环控制的系统称为开环控制系统。例如: 电加热炉。 被控制对象:炉子 被控制量(输出量):炉温

控制装置:开关K和电热丝,对被控制量起控制作用。 开环控制的特点: 由于开环控制的特点是控制装置只按照给定的输入信号对被控制量进行单向控制,而不对控制量进行测量并反向影响控制作用。这样,当炉温偏离希望值时,开关K的接通或断开时间不会相应改变。因此,开环控制不具有修正由于扰动(使被控制量偏离希望值的因素)而出现的被控制量与希望值之间偏差的能力,即抗干扰能力差。 开环系统主要问题:无法自动减小或消除由于扰动而产生的误差。 三、闭环控制 闭环控制是指系统的被控制量(输出量)与控制作用之间存在着反馈的控制方式。采用闭环控制的系统称为闭环控制系统或反馈控制系统。闭环控制是一切生物控制自身运动的基本规律。人本身就是一个具有高度复杂控制能力的闭环系统。 如图所示:该电热炉由于有反馈的存在,整个控制过程是闭合的,故也称为闭环控制。 可以看到:控制系统的输出量对系统的控制作用有影响,或控制器与控制对象之间既有顺向作用又有反向联系,故这种控制系统称为闭环控制系统。说明的是:输出量对系统的控制作用的影响称为“反馈”。闭环系统:控制的是控制对象的输出量 (被控量),测量的是输出量与给定值之间的偏差。因此只要出现偏差,就能自动纠偏,用它可以实现准确的控制,因此,它是自动控制系统工作的主要方式。其框图如下图所示:

高速线材轧机

高速线材轧制生产工艺 概高速线材轧机的产品 线材的定义 自20世纪60年代中期高速线材轧机及扎后空冷技术问世以来,随着线材生产技术本身的日趋完善和相关技术的进步,高速线材轧机的产品在品种规格范围,盘重,尺寸精度,表面及内在的质量上比以往的线材轧机产品有长足进步,能更好的满足经济和技术发展的需要。 线材的概念 线材是热轧材中断面尺寸最小的一种,由于轧钢厂需要将线材在热状态下圈成盘卷并以此交货故称为盘条。 高速线材的规格 规格:高速线材轧机以其合理的孔型系统和高适应性的机电设备及布置方式,使其产品规格范围远比常规线材轧机的大。一些带有盘条作业线的高速轧机生产直径范围为5.5~60mm 线材的用途 用途线材不仅用途很广而且用途也很大,它在国民经济各部门占有重要地位。据有关资料统计,各国线材产量占全部热轧材总量的5.3﹪~15.3﹪.美国约占5﹪,日本约占8﹪,英国约占9﹪,法国约占14﹪,我国约占20﹪左右。线材的用途概括起来可分为两大类:一类是线材产品直接被使用,主要用在钢筋混凝土的配筋和焊接结构构件方面,另一类是将线材产品直接被使用,主要用是通过拉拔成为各种钢丝,再经过捻制成钢丝绳,或再经编制成钢丝网;经过热锻或冷锻成铆钉;经过冷锻用滚压成为螺栓,以及经过各种切削加工及用热处理制成机器零件或工具;经过缠绕成型用热处理制成弹簧等等。 高速线材轧机生产工艺特点 高速线材轧机的发展是由改造线材轧机的精轧机组和控冷工艺开始的。高速轧机生产技术成熟以后有广泛的应用于小型和线材轧机的改造,这是因为无扭精轧机组无论是在生产效率上,还是产品质量上都大大优于横列式轧机,即使在较低速度范围内使用也优于横列式轧机。通常高速线材轧机的工艺特点可以概括为连续、高速、无扭和空冷,其中高速轧制是最主要的工艺特点。大盘重高精度性能优良则是高速线材轧机的产品特点。 高速度轧制的意义 在高速线材轧机的轧制速度取得突破性进站以后,人们仍在追求实现更高的轧制速度。因为轧制速度高,生产效率就高,成本就低,所以速度就是效益。 无扭精轧是保证高速的前提条件

电梯机械系统动态特性研究

电梯机械系统动态特性研究 虽说看起来电梯机械结构非常的简单,但是电梯安装是一种机电一体化程序,它们之间的契合度非常高,牵一发而动全身,采用的自动化技术也是较为先进的,自动化电路管理也相当复杂。鉴于此,本文对电梯机械系统动态特性进行了分析探讨,仅供参考。 标签:电梯系统;机械因素;动态特性 一、电梯的介绍 目前,电梯已经广泛的应用在我国城市高层建筑当中,城市中绝大部分的人都乘坐过电梯,对电梯也有一点了解。但是他们对电梯的了解也仅仅在其功能上,了解程度也在最为基础阶段,对其结构以及分类都一无所知。电梯的定义一般分为狭义与广义,狭义上的电梯也就是大多数人了解的,是一种生活工具,为人们服务的轿厢升降设备,但是不包含扶梯;广义上的电梯定义是将电梯当作一种运动的物体,也当作一种运输机电设备,将电梯看作是一种具有动力能够沿著固定轨道、路线等运输货物的箱体结构。电梯的分类具有很多种,根据不同的功能能够将电梯进行具体的细分:按照电梯的运行速度进行划分,可以将电梯分为低速、快速、高速、超高速四种类型,在一些超高层大厦、楼房当中经常采用的是超高速电梯,因为超高速电梯运行速度为4m/s,这样可以减少人们等待电梯的时间,为出行的人节约时间;高速电梯一般应用在中等的写字楼中,因为楼层相对不是太高,为了保证安全,一般会采用速度为2-4m/s的高速电梯;快速电梯就是-人们一般生活的小区当中,这样的电梯一般多为民用,空间大,速度一般维持在1-2m/s,这样的电梯基本上以人员上下班为主;剩下的就是速度在1m/s的低速电梯了,这种电梯运行速度非常慢,主要是以运送货物为主,也是人们口中经常说的货梯。 二、电梯系统的安全技术分析 1.引起电梯系统振动问题的机械因素 1.1曳引机因素 曳引机引起的电梯系统的振动是日常生产中常见的因素,因为曳引机的正常使用就会产生振动,再加上,一旦电梯在使用年份上过长,曳引机的振动就会越来越大,从而导致电梯系统的振动也越来越大,因此,还是需要对曳引机进行定期的维护处理,才能保证电梯的平稳、安全运行。 1.2减速器的密封圈因素 如果电梯减速器的密封圈有损坏,就会对电梯的减速装置造成影响,在电梯运行中,就会让使用者感觉到电梯下降过快,减速慢,站不稳等现象。而且,不

高速线材精轧机辊环装配要点

高线轧机辊环装配要点 摘要:分析造成爆辊、松辊、锥套断裂等故障的原因,制定辊环装配操作要点。 关键词:高速线材轧机;辊环;锥套;辊轴;装配 1 前言 柳钢棒线厂有2条高速线材轧机生产线,设计年产量均为50万吨。生产线最大轧制速度120m/s,保证速度105m/s,其精轧机为摩根第五代45o顶交悬臂V型无扭超重载型轧机,由230×5+Φ160×5共10架轧机组成。高速线材轧机的辊环安装、拆卸方式均采用锥套装配。在实际使用过程中,影响辊环装配的因素较多,装配操作不当会产生爆辊、松辊、锥套断裂等生产故障。因此,归类分析影响辊环装配的因素,制定合理的装辊、卸辊压力范围,可有效地避免爆辊、松辊、锥套断裂等事故的发生。 2 影响因素分析 根据高速线材轧机辊环结构(见图1)分析影响其装配的因素。 2.1 安装尺寸 辊环、锥套、辊轴以及换辊小车拔辊器、压辊器的几何尺寸直接影响辊环装配,是最重要的影响因素。 (1)辊环的材质为WC,其HRC硬度达到83,属于高耐磨材料。辊环的中心孔与锥套的外圆接触,所以辊环的中心孔与锥套的配合公差是一个非常关键的参数。根据生产实际情况和摩根提供的设计参数进行对比,考虑到辊环高硬度不容易变形的特点,我们适当修改了配合公差参数(见表1)。 (2)锥套的内圆和辊轴直接接触,采用过盈配合的方式,锥套内圆的锥度要和辊轴的锥度一致,不能够超出公差范围,否则会影响到锥套内圆和辊轴互相接触的面积,接触面要在70%以上。 (3)换辊小车拔辊器、压辊器与锥套的4个耳朵相互配合,通过设定的压力值完成装辊、卸辊,拔辊器、压辊器与锥套耳朵配合(见表2),尺寸要得到保证。

2.2表面硬度 锥套内圆和辊轴直接接触,采用过盈配合,锥套、辊轴的硬度要相匹配。通常辊轴的HRC硬度在55~65,如果锥套的硬度过高就不利于辊轴的保护;锥套的硬度过低,锥套会产生塑性变形不能够保证正常轧制的力矩要求,导致锥套打滑、辊松事故发生,所以锥套的硬度必须保证在一定范围之内。锥套的硬度比辊轴小10~20为宜。例如,我们使用的锥套HRC硬度在36~39,很少发生锥套打滑、辊松事故。 2.3装配温度 如果辊环、锥套和辊轴的温度相差太大,因热膨胀系数不同,造成辊环、锥套和辊轴三者受力不均,装辊、卸辊就容易出故障。辊轴在正常轧制时温度为50℃~60℃,装辊、卸辊时要求辊环、锥套和辊轴的温度在25℃左右。因此,(1)辊环的冷却水必须够量,压力和温度要稳,保证有良好的冷却效果,避免由于辊环温度过高导致辊轴的温度超标。(2)停止轧制后要空转3min,保证辊轴的温度下降到25℃左右。如果停机后辊轴的温度达不到要求,必须采取强冷的措施降低辊轴温度,否则在卸辊时很容易出现锥套断裂,不得不爆辊的事故。(3)在装辊前必须保证辊环、锥套和辊轴的温度在25℃左右。如果因设备故障、更换辊箱、季节变化造成辊环、锥套、辊轴的温度不同,可以采取加热的措施进行控制,这样安装辊环就比较顺利,辊环在运行轧制时就不会出现锥套打滑、辊松事故。 2.4 锥套的磨损程度 锥套的磨损程度影响辊环装配的稳定性。在辊环装配中锥套起着连接的作用,锥套的硬度、耐磨性低于辊轴、辊环,属于易损件。在使用时锥套的尺寸容易发生变化,随着磨损程度的加大,锥套与辊轴、辊环的接触面减小,不能保证轧制力矩的要求,它们之间的接触面通常必须在70%以上。因此,在使用前必须检查锥套尺寸。我们采取涂红丹的方法来检查锥套与辊轴的接触面。生产实际中锥套的统计寿命见表3,根据锥套使用的寿命,定期更换磨损的锥套。 2.5 接触面的洁净程度 当接触面不洁净时改变了摩擦系数,不能保证轧制力矩,造成锥套打滑、辊松事故,以及卸辊时出现锥套断裂爆辊事故。在影响接触面洁净度的许多因素中,锈蚀是最主要,而锥套是最容易产生锈蚀的部件。对比使用过的铸铁、锻钢、不锈钢三种材质的锥套,不锈钢的锥套效果最好,很少有锈蚀,接触面洁净度最干净。同时,在安装辊环前,必须用无水酒精清洗辊轴、锥套和辊环,保证接触面洁净。 3结语 影响高速线材轧机辊环装配的因素很多,但是只要找到了关键的因素,并采取了正确的措施,就一定能够保证高速线材轧机正常运转。从这两年生产的情况看,出现爆辊、松辊、锥套断裂等生产故障很少,避免了不必要的辊环、锥套消耗,降低了生产成本。 作者:甘超军,大学学历,轧钢工程师,现在柳钢股份公司棒线厂从事轧钢工艺技术工作。

相关文档