文档库 最新最全的文档下载
当前位置:文档库 › 极值最值导数学案

极值最值导数学案

极值最值导数学案
极值最值导数学案

3.3.2函数的极值与导数 [知识回顾]:

1. 设函数)(x f y =在某个区间内有导数,如果在这个区间内0y '>,那么函数)(x f y = 在这个区间内为 函数;如果在这个区间内0y '<,那么函数)(x f y =为这个区间内的 函数.

2. 用导数求函数单调区间的步骤:

① ② ③ ④

[问题探究]:阅读教材P 93-94

1. 如下图,函数()y f x =在j i h g f e d c ,,,,,,,等点的函数值与这些点附近的函数值有什么关系?)(x f 在这些点的导数值是多少?在这些点附近,()y f x =的导数的符号有什么规律?

[新知]:

如上图,我们把点j h f d ,,,这样的点叫做函数()y f x =的 点,)(),(h f d f 等叫做函数()y f x =的 ;点i g e c ,,,这样的点叫做函数()y f x =的 点,)(),(e f c f 等叫做函数()y f x =的 .

极大值点、极小值点统称为极值点,极大值、极小值统称为极值.

极值反映了函数在某一点附近的 ,刻画的是函数的 . [想一想1]:1. 函数的极值 (填是,不是)唯一的. 2. 一个函数的极大值是否一定大于极小值.

3. 函数的极值点一定出现在区间的 (内,外)部,区间的端点 (能,不能)成为极值点. [想一想2]:1. 导数为0的点是否一定是极值点.

比如:函数3()f x x =在x=0处的导数为 ,但它 (是或不是)极值点.即:导数为0是点为极值点的 条件.

2.求函数极值的步骤:

[想一想3]:下图是导函数()y f x '=的图象,试找出函数()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点.

例1. 函数()x f 的定义域为开区间()b a ,,导函数()x f '在()b a ,内

的图象

如图所示,则函数()x f 在开区间()b a ,内有极小值点( ) A.1个 B.2个 C.3个 D.4个

[试一试]:

例2.求函数31

443

y x x =-+的极值.

变式1:已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图所示,求 (1)0x 的值 ; (2) a ,b ,c 的值.

[练一练]:

练1. 判断下列函数有无极值点,如果有请求出极值.

(1)3()27f x x x =-; (2)3()612f x x x =+-;

x

1 2 y y=f '(x)

b

a

o y

x

(3)321

()353

f x x x x =-+-; (4)2()x f x x e =?;

(5)2

()ln f x x x =-+; (6)2()1

x f x x =+

练2.(1)已知函数32

()f x ax bx =+,当1x =时,有极大值3.(Ⅰ)求,a b 的值;(Ⅱ)求函数()f x 的极小值.

(2)已知32

()f x x ax bx c =+++在1x =与2

3

x =-

时都取得极值 (Ⅰ)求,a b 的值; (Ⅱ)若3

(1)2

f -=,求()f x 的单调区间和极值.

北京高考及模拟试题精炼:

1.(2009北京) 设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,(2))f 处与 直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点

2. (2010北京) 设定函数())0(3

23

>+++=a d cx bx x a x f ,且方程()09'=-x x f 的两个根分别为1,4.(Ⅰ)当3=a 且曲线()y f x =过原点时,求()f x 的解析式;(Ⅱ)若()f x 在(,)-∞+∞无

极值点,求a 的取值范围.

3.(2010海淀末)函数2()1

x a f x x +=+()a R ∈ . (Ⅰ)若()f x 在点(1,(1))f 处的切线斜率为1

2,求

实数a 的值;(Ⅱ)若()f x 在1x =处取得极值,求函数()f x 的单调区间.

4. 已知函数()1)x

f x ax e =+(.(Ⅰ)若()f x 在2x =处取得极值,求实数a 的值;(Ⅱ)求 函数()f x 的单调区间及极值.

3.3.3、函数的最大(小)值与导数

我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果0x 是函数()y f x =的极大(小)值点,那么在点0x 附近找不到比()0f x 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果0x 是函数的最大(小)值,那么()0f x 不小(大)于函数()y f x =在相应区间上的所有函数值. [知识回顾]:

1. 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 点,)(0x f 是极 值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的 点,)(0x f 是极 值

[问题探究]:函数的最大(小)值(阅读教材P 96-97)

观察以下函数)(x f 在区间[]b a ,的图象,你能找出它的极大(小)值吗?最大值,最小值呢?

图1中,在闭区间[]b a ,上的最大值是 ,最小值是 ;

图2中,在闭区间[]b a ,上的极大值是 ,极小值是 ;最大值是 ,最小值是 . [新知]: 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. [想一想1]:

上图的极大值点 ,为极小值点为 ;最大值为 ,最小值为 .

[想一想2]:

1. 函数的最值是 得出的; 函数的极值是 得出的.

2. 函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的 条件(选填)

3. 函数在其定义区间上的最大值、最小值最多 个,而函数的极值可能 . [想一想3]: 2. 求函数极值的步骤

[试一试]:

例1 求函数31

()443

f x x x =-+在[0,3]上的最大值与最小值.

[练一练]:

1.下列说法正确的是( )

A. 函数的极大值就是函数的最大值

B. 函数的极小值就是函数的最小值

C. 函数的最值一定是极值

D. 在闭区间上的连续函数一定存在最值 2.函数)(x f y =在区间[a ,b ]上的最大值是M ,最小值是m ,若M = m ,则)(x f '( )

A. 等于0

B. 大于0

C. 小于0

D. 以上都有可能

图1

图2

3. 求下列函数在指定区间内的最值

①()[]312,3,3f x x x x =-∈-

②()31612,,13f x x x x ??

=-+∈-??

??

4. 已知函数2

()ln (1)2

ax f x x a x =+-+,a ∈R ,且0a ≥.(Ⅰ)若(2)1f '=,求a 的值; (Ⅱ)当0a =时,求函数()f x 的最大值;

5. 已知函数c ax ax x f +-=236)(在[]2,1-上的最大值为3,最小值为29-,求c a ,的值.

北京高考及模拟试题选练:

1.(2012朝阳期末统练18)设函数2

()ln 2,R 2

ax f x a x x a =+-∈.(Ⅰ)当1a =时,试求函

数()f x 在区间[1,e]上的最大值; (Ⅱ)当0a ≥时,试求函数()f x 的单调区间.

2. (2011北京文)已知函数()()x

f x x k e =-.(高考说明样题)

(Ⅰ)求()f x 的单调区间; (Ⅱ)求()f x 在区间[0,1]上的最小值.

3.(2012北京文)已知函数()()012>+=a ax x f ,()bx x x g +=3.

(Ⅰ)若曲线()x f y =与曲线()x g y =在它们的交点()c ,1处具有公共切线,求b a ,的值; (Ⅱ)当9,3-==b a 时,若函数()()x g x f +在区间[]2,k 上的最大值为28,求k 得取值范围.

4.(2013北京文)

已知函数2

()sin cos f x x x x x =++.

(Ⅰ)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (Ⅱ)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.

5.(2014?北京)已知函数f (x )=2x 3

﹣3x . (Ⅰ)求f (x )在区间[﹣2,1]上的最大值; (Ⅱ)若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围;

(Ⅲ)问过点A (﹣1,2),B (2,10),C (0,2)分别存在几条直线与曲线y=f (x )相切?

6.(2010崇文二模文18)已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极

值.(Ⅰ)求,a b 的值及函数()f x 的单调区间;(Ⅱ)若对[2,3]x ∈-,不等式23

()2f x c c +<

恒成立,求c 的取值范围.

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

3.3.2函数的极值与导数学案

高二数学选修1-1 3.3.2函数的极值与导数学案 一、学习任务: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤. 二、探究新知: 复习1:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0y '>,那么函数y=f(x) 在这个区间内为 函数;如果在这个区间内0y '<,那么函数y=f(x) 在为这个区间内的 函数. 复习2:用导数求函数单调区间的步骤:①求函数f (x )的导数()f x '. ②令 解不等式,得x 的范围就是递增区间.③令 解不等式,得x 的范围,就是递减区间 . 探究任务一: 问题1:如下图,函数()y f x =在,,,,,,,a b c d e f g h 等点的函数值与这些点附近的函数值有什么关系?()y f x =在这些点的导数值是多少?在这些点附近,()y f x =的导数的符号有什么规律? 看出,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其它点的函数值都 ,()f a '= ;且在点x a =附近的左侧()f x ' 0,右侧()f x ' 0. 类似地,函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其它点的函数值都 ,()f b '= ;而且在点x b =附近的左侧()f x ' 0,右侧()f x ' 0. 新知:我们把点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值. 试试:(1)函数的极值 (填“是”,“不是”)唯一的. (2) 一个函数的极大值是否一定大于极小值. (3)函数的极值点一定出现在区间的 (内,外)部,区间的端点 (能,不能)成为极值点. 反思:极值点与导数为0的点的关系:导数为0的点是否一定是极值点. 自学检查:例1 求函数31 443 y x x =-+的极值. 变式1:已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图所示,求 (1) 0x 的值(2)a ,b ,c 的值. 小结:求可导函数f (x )的极值的步骤: 变式2:已知函数32()3911f x x x x =--+. (1)写出函数的递减区间; (2)讨论函数的极大值和极小值,如有,试写出极值;(3)画出它的大致图象. 练1. 求下列函数的极值: (1)2()62f x x x =--;(2)3()27f x x x =-;(3)3()612f x x x =+-;(4)3()3f x x x =-. 练2. 下图是导函数()y f x '=的图象,试找出函数()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点. 巩固训练: 1. 函数232y x x =--的极值情况是( ) A .有极大值,没有极小值 B .有极小值,没有极大值 C .既有极大值又有极小值 D .既无极大值也极小值 2. 三次函数当1x =时,有极大值4;当3x =时,有极小值0,且函数过原点,则此函数是( ) A .3269y x x x =++ B .3269y x x x =-+ C .3269y x x x =-- D .3269y x x x =+- 3. 函数322()f x x ax bx a =--+在1x =时有极值10,则a 、b 的值为( ) A .3,3a b ==-或4,11a b =-= B .4,1a b =-=或4,11a b =-= C .1,5a b =-= D .以上都不正确 4. 函数32()39f x x ax x =++-在3x =-时有极值10,则a 的值为 5. 函数32()3(0)f x x ax a a =-+>的极大值为正数,极小值为负数,则a 的取值范围为 6.如图是导函数()y f x '=的图象,在标记的点中,在哪一点处(1)导函数()y f x '=有极大值? (2)导函数()y f x '=有极小值?(3)函数()y f x =有极大值?(4)导函数()y f x =有极小值? 7. 求下列函数的极值: (1)2()62f x x x =++; (2)3()48f x x x =-. 8.已知函数2()()f x x x c =-在2x =处有极大值,求c 的值. 三、本节课收获: o 1 2 y

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

(完整版)导数与极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x (可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x )是 极大值;反之,那么f(x )是极大值 题型一图像问题 1、函数() f x的导函数图象如下图所示,则函数() f x在图示区间上() (第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点 2、函数() f x的定义域为开区间() a b ,,导函数() f x '在() a b ,内的图象如图所示,则函数() f x在 开区间() a b ,内有极小值点() A.1个 B.2个 C.3个 D.4个 3、若函数2 () f x x bx c =++的图象的顶点在第四象限,则函数() f x '的图象可能为() D. C. B. A. 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是() C. A.

5、 已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2x O 22D. C. B. A. O x O x x O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C A x y y=f(x)

3.3.3函数的最大(小)值与导数教学设计

§1.3.3 函数的最大(小)值与导数 宜宾市四中李斌 一、教学内容分析 1.在教材中的位置: 本节内容安排在《普通高中课程标准实验教科书数学选修1-1》人教A版,第三章、第三节“导数在研究函数中的应用” 2.学习的主要工具: 基本初等函数的识图能力与函数的极值与导数知识。 3.学习本节课的主要目的: 本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后“生活中的优化问题”打好基础。 4.本节课在教材中的地位: 函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。 二、学情分析 学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。 三、课堂设计思想 培养学生学会学习、学会探究、学会合作是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

四、教学目标 1.知识和技能目标 (1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。 (2)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的方法 和步骤。 2.过程和方法目标 (1)问题驱动,自主探究,合作交流。 (2)培养学生在生活中学习数学的方法。 3.情感和价值目标 (1)通过观察认识到事物的表象与本质的区别与联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. (4)通过学生的参与,激发学生学习数学的兴趣。 五、教学重点与难点 重点:求闭区间上连续可导的函数的最值的求解,理解确定函数最值的方法,并联系函数单调性的应用。 难点:求函数的最值的方法的提炼,同时让有余力的学生了解函数的最值与极值的区别与联系 六、教学方法 发现探究式、启发探究式 本节课教学基本流程: 复习检查→情境导入、展示目标→合作探究、精讲点拨→反思总结、课后升华、当堂检测→布置作业 七、教学过程设计

1.3.2 函数的极值与导数 导学案(教师版)

1.3.2函数的极值与导数 内容要求 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件. 知识点1极值点与极值的概念 (1)极小值点与极小值 如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附 近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左 侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y =f(x)的极小值. (2)极大值点与极大值 如(1)中图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值. 【预习评价】(正确的打“√”,错误的打“×”) (1)函数f(x)若有极大值和极小值,则极大值一定大于极小值.() (2)若f′(x0)=0,则x0是函数f(x)的极值点.() (3)若f(x)在区间(a,b)上是单调函数,则f(x)在区间(a,b)上没有极值点.() 提示(1)函数f(x)的极大值和极小值的大小关系不确定,如图所示,极大值f(x1)小于极小值f(x2),所以(1)错. (2)反例:f(x)=x3,f′(x)=3x2,则f′(0)=0,但0不是f(x)=x3的极值点,(2)错. (3)由极值的定义可知(3)正确.

答案(1)×(2)×(3)√ 知识点2求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: (1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值. (2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. 【预习评价】 函数f(x)=1 3x 3-x2-3x+6的极大值为________,极小值为________. 解析f′(x)=x2-2x-3,令f′(x)>0,得x<-1或x>3,令f′(x)<0得-1<x<3,故f(x)在(-∞,-1),(3,+∞)上单增,在(-1,3)上单减,故f(x)的极大值为 f(-1)=23 3 ,极小值为f(3)=-3. 答案23 3-3 题型一求函数的极值 【例1】求函数f(x)= 2x x2+1 -2的极值. 解函数的定义域为R. f′(x)=2(x2+1)-4x2 (x2+1)2 =- 2(x-1)(x+1) (x2+1)2. 令f′(x)=0,得x=-1,或x=1. 当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,-1)-1(-1,1)1(1,+∞) f′(x)-0+0- f(x)↘-3↗-1↘ 由上表可以看出: 当x=-1时,函数有极小值,且极小值为f(-1)=-3;

函数的最值与导数导学案

函数的最大(小)值与导数(1) 贺龙中学高二数学编写人钟高斌审核人审批人 【使用说明及学法指导】学生姓名:___________ 1.先精读教材96 p-P98内容,用红色笔进行勾画,再针对导学案的问题,二次阅读教材部分内容,并回答。 2.限时完成导学案合作探究部分,书写规范。 3.找出自己的疑惑和需要讨论的问题准备课上讨论和质疑。 4.必须记住的内容:利用 【学习目标】 1..理解函数的最大值和最小值的概念 2、了解函数最值的概念,会求简单函数的最值 3、激情投入、高效学习,培养严谨的数学思维品质。 预习导学: 1、如果在区间[]b a,上函数)(x f y=的图像是一条连续不断的曲线,则称函数) (x f y=在这个区间上必有___________ 2、利用导数求函数的最值步骤 (1) ____________________________________________________ (2) ____________________________________________________ ____________________________________________________ 探究点一:求函数的最值 例1 求 4 4 3 1 ) (3+ - =x x x f 在[]3,1-的最大值与最小值. 小结:__________________________________________________________

【我的疑惑】__________________________________________________________ 【巩固练习】 1、求函数 5224+-=x x y 在区间[]2,2-上的最大值与最小值 小结: 2.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 3、函数()ln f x x =-x 在区间(]e ,0上的最大值是__________ 4、已知函数 3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为M, m , 则M-m=_______. 【巩固提升】 1.函数 234213141x x x y ++=,在]1,1[-上的最小值为( ) A.0 B.2- C.1- D.1213 2、已知32()f x x ax bx c =+++的大致图象如图, (1)求a,b,c 值 (2)求2212x x +的值 小结:

2015-2017年高考文科数学试题汇编--导数与极值最值

1.【2016高考四川文科】已知函数3()12f x x x =-的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解, 但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点, 2.【2015高考福建,文12】“对任意(0,)2x π ∈,sin cos k x x x <”是“1k <”的 () A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B 当1k <时,s i n c o s s i n 22 k k x x x =,构造函数()sin 22 k f x x x = -,则'()c o s 210f x k x =-<.故()f x 在(0,)2x π∈单调递增, 故()()022 f x f ππ <=-<,则sin cos k x x x <;当1k =时,不等式sin cos k x x x <等价于1 sin 22 x x <,构造 函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π ∈递增,故 ()()022g x g ππ<=-<,则s i n c o s x x x <.综上所述,“对任意(0,)2 x π ∈, sin cos k x x x <”是“1k <”的必要不充分条件,选B . 【考点定位】导数的应用. 【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,

1.3.2 函数的极值与导数 学案

1.3.2函数的极值与导数 学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件. 知识点一函数的极值点和极值 思考1观察y=f(x)的图象,指出其极大值点和极小值点及极值. 答极大值点为e,g,i,极大值为f(e),f(g),f(i),极小值点为d,f,h,极小值为f(d),f(f), f(h). 思考2导数为0的点一定是极值点吗? 答不一定,如f(x)=x3,尽管f′(x)=3x2=0,得出x=0,但f(x)在R上是递增的,不满足在x=0的左、右两侧符号相反,故x=0,不是f(x)=x3的极值点. (1)极小值点与极小值 若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧,右侧,就把叫做函数y=f(x)的极小值点,叫做函数y=f(x)的极小值. (2)极大值点与极大值 若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧,右侧,就把叫做函数y=f(x)的极大值点,叫做函数y=f(x)的极大值. (3)极大值点、极小值点统称为;极大值、极小值统称为. 知识点二函数的极值的求法 思考1极大值一定比极小值大吗? 答极大值与极小值之间无确定的大小关系.在某一点的极小值也可能大于另一点的极大值,如图所示.

f (a )为极大值,f (d )为极小值,但f (a )

函数的极值和最值与导数

高二理科数学下学期训练四 函数的极值与最值 姓名学号分数 1.已知函数y=f(x)在定义域内可导,则函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的() A.充分不必要条件B.必要不充分条件 C.充要条件D.非充分非必要条件 2.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是() A.(2,3) B.(3,+∞) C.(2,+∞) D.(-∞,3) 3.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是() 4.函数f(x)=ax3+bx在x=1处有极值-2,则a,b的值分别为() A.1,-3B.1,3 C.-1,3 D.-1,-3 5.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围是() A.(-1,2) B.(-3,6) C.(-∞,-3)∪(6,+∞) D.(-∞,-1)∪(2,+∞) 6.函数y=2x3-3x2-12x+5在[-2,1]上的最大值、最小值分别是() A.12,-8 B.1,-8 C.12,-15 D.5,-16 7.函数y=ln x x的最大值为() A.e-1B.e C.e2D.10 8.若函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为() A.-10 B.-71 C.-15 D.-22 9.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是() A.[3,+∞) B.[-3,+∞) C.(-3,+∞) D.(-∞,-3) 10.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的

相关文档
相关文档 最新文档