文档库 最新最全的文档下载
当前位置:文档库 › 磁控溅射技术研究进展

磁控溅射技术研究进展

磁控溅射技术研究进展
磁控溅射技术研究进展

磁控溅射技术研究进展

薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。

1 磁控溅射技术原理

溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。

磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

溅射,非平衡磁控溅射,高功率脉冲磁控溅射等新技术,下面将一一介绍。

2 磁控溅射技术发展

2.1 反应磁控溅射

随着表面技术的发展化合物薄膜得到了广泛的应用,反应磁控溅射技术是沉积化合物薄膜的主要方式之一(沉积多元成分的化合物薄膜)。理想的反应溅射过程应该是发生在衬底表面, 但实际上反应不但发生在衬底上, 同时还发生在靶材上,这就导致了反应溅射的经典问题:反应溅射过程具有明显的非线性迟滞特征。反应溅射过程可以根据在薄膜沉积中反应气体的数量分为三种模式[3]:(1)金属模式,(2)过渡模式,(3)反应模式。由于迟滞现象,反应模式时沉积速率相对金属模式出现很大的下降,出现迟滞的主要原因是反应气体和靶表面金属原子发生反应生成化合物导致靶中毒,靶中毒的程度取决于靶表面溅射速率和反应速率之间的竞争。同时,由于离子轰击导致二次电子发射,通常化合物二次电子发射系数要高于金属二次电子发射系数,这样根据欧姆定律可知此时等离子阻抗降低,最终导致靶电压出现迟滞现象。

因为迟滞不能得到任意计量比的薄膜,并且会使过程很不稳定,因此一直以来,人们在消除迟滞方面做了大量的工作。最初,Maniv等人[4]在衬底和靶之间设置一栅板,这样使Ar 和反应气体分别在栅板两侧,迟滞得到了很大的改善。但是,由于栅板存在需要经常清洗、金属沉积到衬底减少等缺点,因此不适合在工业上应用。1986年Okamoto和Serikawa[10]发现,增加真空泵抽速能够改变反应气体流量和反应气体压力之间关系曲线的形状。当增加真空泵抽速时,迟滞现象减弱,最终使得迟滞消失,反应气体流量和分压之间仅仅是线性关系,应用这项技术就可以避免迟滞问题。但是,由于消除迟滞需要额外的泵来实现,它一般要求泵抽速达到通常使用泵抽速的10倍,这样大大增加了成本。

张艳茹、弥谦、杭凌侠等[11-13]在反应磁控溅射时引入甲烷气体后,反应磁控溅射沉积DLC薄膜的沉积速率大幅度提高,在相同工艺条件下,充入CH4后,当CH4与Ar 流量比为3:1时,沉积速率达到极值,是纯氩气沉积的4.2倍。在非接触式白光干涉仪上测量其Ra值,由37.82nm减小到2.45nm,激光波面干涉仪全口径检测结果显示,RMS值降低了1个数量级,由0.098波长减小到0.006波长。含氢碳源气体的加入改变了薄膜生长的机理,使得沉积速率提高,并改善了膜层表面粗糙度。

魏强、汪渊、侯捷等[14-18]采用射频反应磁控溅射技术,在优化工艺的条件下,研究衬底温度对MgO薄膜的影响,以及Ar/O2 通量对MgO薄膜的结晶取向的问题。研究结果表明,衬底温度的对MgO薄膜的晶粒生长起着重要作用,较高的衬底温度有利于MgO薄膜晶粒的生长,随着衬底温度的提升反应磁控溅射制备的MgO薄膜的晶粒具有明显的(200)晶向与(220)晶向,并且在的溅射气压恒定的情况下,改变Ar/O2 的气体流量也会使MgO的晶粒大小和结晶取向发生改变,其中O2通量的提升会使MgO薄膜表面的晶粒更加细致致密,并且结晶朝着(220)方向发展。

胡明等[19]采用中频磁控溅射技术,在3种偏压条件下( 0-80-300V),于AISI440C钢及单晶Si(100)基体表面制备了ZrN/-SiNx纳米多层薄膜。通过高分辨透射电子显微镜(HRTEM),分析表征了各纳米多层薄膜微观组织结构,并通过纳米压入仪与真空球——盘摩擦试验机,分别测试了各薄膜力学及真空摩擦学性能。重点研究了基体偏压对ZrN/-SiNx纳米多层薄膜微观组织结构的影响,进而对其力学及摩擦学性能的影响机制。结果表明:较低的基体偏压会导致纳米多层薄膜中ZrN层差的结晶状态,而较高的基体偏压则易于引起ZrN层与SiNx 层层间界面的交混。上述两种薄膜组织及结构的变化均不利于该纳米多层薄膜力学及摩擦学性能的改善。在适宜的偏压条件下(-80V),ZrN/-SiNx薄膜呈现出良好层间界面的晶体/非晶体纳米多层结构,与其

他偏压条件制备的纳米多层薄膜相比,该薄膜表现出更好的力学及摩擦学性能。

2.2 非平衡磁控溅射

Windown等人在1985年首先引人了非平衡磁控溅射的概念,并给出了非平衡磁控溅射平面靶的原理性设计。对于一个磁控溅射靶,其外环磁极的磁场强度与中部磁极的磁场强度相等或相近,则称为“平衡”磁控溅射靶。一旦某一磁极的磁场相对于另一极性相反的部分增强或者减弱,就导致了溅射靶磁场的“非平衡”。在常规溅射靶基础上改变磁场分布,适当增强边缘极磁场或削弱中部极磁场,保证极在靶表面构成的横向平行靶面磁场,仍能有效地约束溅射出的二次电子,在维持稳定的磁控溅射放电同时,使得另一部分电子沿着较强极产生的纵向垂直靶面磁场逃逸出靶表面,飞向镀膜区域。基于静电平衡原理,带电正离子也将随着电子一起飞向被镀工件,飞离靶面的电子还会与中性粒子发生碰撞电离,进一步增加镀膜区域的离子浓度。总之,通过调整溅射靶表面的磁场分布,可以显著地提高镀膜区域等离子体浓度。

非平衡磁控溅射系统工作原理如图2所示,在阴极(靶)上施加溅射电源,使靶材在一定真空度下形成辉光放电,产生离子、原子等粒子形成的等离子体,在永磁铁产生的磁场、工件上施加的负偏压形成的电场及粒子初始动能作用下流向工件。同时,在阴极和工件之间增加了螺线管,增加周边额外磁场,改变阴极和工件之间的磁场,使得外部磁场强于中心磁场,在这种情况下,不封闭的磁力线从阴极周边指向工件,电子沿该磁力线运动,极大地增加了电子与靶材原子和分子的碰撞机会,使得离化率大大提高。因此,即使工件保持不动,也可以从等离子区得到很大密度的离子流。非平衡磁控系统为离子镀膜提供了宏大的电动势,特别是对镀制具有外部复合特性的膜层十分有利。

刘志远等[21]利用非平衡磁控溅射离子镀设备,在轴承钢和硬质合金表面沉积了TiAlN薄膜,并对薄膜结构和主要性能进行了分

析。结果表明,所镀薄膜厚度超过3 um,薄膜生长较好,形成了细化的柱状晶粒,断口扫描结果表明,薄膜与基体的结合比较牢固,结合力可达41N。李芬等[22]采用非平衡磁控溅射技术,在AISI202不锈钢片和P111单晶硅基底上制备了TiAlN薄膜,并利用场发射扫描电镜FESEM、三维轮廓仪X射线衍射仪、XRD X射线电子能谱仪、XPS 纳米压痕仪,对薄膜的结构和性能进行了分析。结果表明:随着N2流量的升高,TiAlN薄膜的沉积速率降低,AlTi比率先升高后迅速降低,薄膜主要由TiN立方晶构成,且随N2流量的升高晶粒尺寸减小,柱状晶结构变疏松,在氮气流量为20ml/min时薄膜具有最高的硬度及结合力。赵广彬等[23]采用非平衡磁控溅射技术在硬质合金基体上制备了TiAlN薄膜400-800,对试样进行氧化实验,利用XRD、SEM、精密电子天平等,对TiAlN薄膜的物相断口组织形貌以及氧化增重结果进行分析。实验结果发现,在800 以下,TiAlN薄膜具有良好的抗高温氧化性。

2.3 高功率脉冲磁控溅射

高功率脉冲技术由于较高的溅射粒子离化率而得到人们重视,该技术在欧洲兴起已有多年,国内研究刚刚起步。利用直流功率和脉冲功率的祸合,可以获得高离化率的脉冲时段,通过高功率脉冲的占空比,可以调节沉积到基片上原子和离子的比例。这样通过改变基片偏压的模式以及磁控靶祸合功率的模式,即可实现常规磁控溅射、等离子体离子注入,可以实现先注入后沉积或先沉积后注入等多种工作模式。与阴极弧沉积相比,高功率脉冲磁控溅射由于辉光放电的特点使得发射的大颗粒显著减少。

传统的磁控溅射处理技术,溅射金属大多以原子状态存在,金属离化率较低。高金属离化率在沉积薄膜时有很多优点,可以提高薄膜质量,比如密度和结合力,尤其是对复杂形状工件的沉积反应的控制、沉积温度的降低、沉积材料到不同区域的导向等具有重要意义。为了增加溅射金属粒子的离化率,最近几十年发展了多项离化物理气相沉积技术。1999年,瑞典的V. Kouznetsov等人首次

采用高功率脉冲作为磁控溅射的供电模式,提出了HPPMS的方法,并沉积了Cu薄膜,相对普通的直流磁控溅射,HPPMS获得高的Cu离化率,膜层高致密度,高的靶材利用率,均匀的厚度[27-31]。技术上定义为高功率脉冲磁控溅射,是一种峰值功率超过平均功率2个量级的脉冲溅射,表明高功率脉冲的间隔很长,而靶面内平均的峰值高,功率密度大。物理上定义为高功率脉冲磁控溅射是一种溅射靶材原子高度离化的脉冲溅射[32]。

尹星等[33]采用高功率复合脉冲磁控溅射技术(HPPMS),在316不锈钢硬质合金基体上沉积了TiN薄膜,研究不同 N2流量下TiNx 膜层的沉积速率、硬度晶体生长取向、摩擦磨损等性能。并在相同的平均靶电流下与直流磁控溅射制备的TiN薄膜对比,结果表明:HPPMS 制备的膜层更加致密,在氩氮流量比为 7.4:1 时膜层显微硬度达2470 HV,晶粒尺寸也明显小于直流磁控溅射制备的TiN,摩擦磨损性能也得到了改善。

吴忠振等[34]采用高功率复合脉冲磁控溅射的方法(HPPMS),在不锈钢基体上制备ZrN薄膜,对比DCMS方法制备的ZrN薄膜,得出HPPMS制备的薄膜表面更平整光滑致密,既无空洞又无大颗粒等缺陷, Ar/N对薄膜相结构及硬度耐磨耐蚀等有较大影响。XRD结果显示,薄膜主要以ZrN(111)和ZrN (220)晶面择优生长,并呈现出多晶面竞相生长的现象。制备的ZrN薄膜的硬度最高可达33.1 GPa,同时摩擦系数小于,耐腐蚀性也有很大提高,腐蚀电位比基体提高了0.27 V,腐蚀电流下降到未处理工件的1/5。存在一个合适的Ar/N比,使得制备的ZrN薄膜具有较好的耐磨性和耐腐蚀性。

3 结论

区别于传统磁控溅射技术的反应磁控溅射、非平衡磁控溅射、高功率脉冲磁控溅射等新的磁控溅射技术得到了学界的高度重视。反应磁控溅射技术是沉积化合物薄膜的主要方式之一,可沉积多元成分的化合物薄膜,既可使用化合物材料制作靶材溅射沉积,也可

以在溅射纯金属或合金靶材时,通入一定的反应气体,如氧气、氮气,反应沉积化合物薄膜。非平衡磁控溅射通过调整溅射靶表面的磁场分布,可以显著地提高镀膜区域等离子体浓度。高金属离化率在沉积薄膜时有很多优点,可以提高薄膜质量,比如密度和结合力,尤其是对复杂形状工件的沉积反应的控制、沉积温度的降低、沉积材料到不同区域的导向等具有重要意义。由于上述三种磁控溅射技术具有的各自特点和优点,必将得到更广泛的应用。

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

关于磁控溅射发展历程的综述

磁控溅射 1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。1974年,j.chapin发现了平衡磁控溅射。这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。 磁控溅射的发展历程: 溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。 溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下: (1)二级溅射: 二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。 (2)传统磁控溅射(也叫平衡磁控溅射): 平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。 (3)非平衡磁控溅射: B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。这样可以使磁控溅射技术更适合工业生产。 (4)脉冲磁控溅射: 由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。其结果会严重的影响膜的结构和性能。但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。 (5)磁控溅射技术新型应用: 磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

直流磁控溅射功率对ITO薄膜光电学性能的影响

Advances in Material Chemistry 材料化学前沿, 2014, 2, 43-48 Published Online July 2014 in Hans. https://www.wendangku.net/doc/986353688.html,/journal/amc https://www.wendangku.net/doc/986353688.html,/10.12677/amc.2014.23007 The Effects of DC Magnetron Sputtering Power on Electrical and Optical Properties of ITO Thin Films Zhiting Geng*, Qing He School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing Email: *qhgzt@https://www.wendangku.net/doc/986353688.html, Received: Jun. 27th, 2014; revised: Jul. 18th, 2014; accepted: Jul. 22nd, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/986353688.html,/licenses/by/4.0/ Abstract The experiment of ITO thin film samples was deposited on glass substrates by DC reactive magne-tron sputtering. The effects of sputtering power on optical properties of ITO thin films were inves-tigated. The results of several tests show that within the scope of the set of power, the increase of sputtering power leads to the increase of the thickness of the films, but the decrease of the resis-tivity and visible light transmittance of ITO thin films. Keywords ITO Thin films, DC Reactive Magnetron Sputtering, Electrical and Optical Properties 直流磁控溅射功率对ITO 薄膜光电学性能的影响 耿志挺*,何青 华北电力大学能源与动力学院,北京 Email: *qhgzt@https://www.wendangku.net/doc/986353688.html, 收稿日期:2014年6月27日;修回日期:2014年7月18日;录用日期:2014年7月22日 *通讯作者。

磁控溅射制膜技术的原理及应用和发展-郭聪

磁控溅射制膜技术的原理及应用和发展 郭聪 (黄石理工学院机电工程学院黄石 435000) 摘要:磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。探讨了磁控溅射技术在非平衡磁场溅射、脉冲磁控溅射等方面的进步,说明利用新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:非平衡磁控溅射脉冲磁控溅射薄膜制备工艺应用 中图分类号:O484.1 0 前言 薄膜是指存在于衬底上的一层厚度一般为零点几个纳米到数十微米的薄层材料。薄膜材料种类很多,根据不同使用目的可以是金属、半导体硅、锗、绝缘体玻璃、陶瓷等。从导电性考虑,可以是金属、半导体、绝缘体或超导体;从结构考虑,可以是单晶、多晶、非晶或超晶格材料;从化学组成来考虑,可以是单质、化合物或无机材料、有机材料等。制备薄膜的方法有很多,归纳起来有如下几种:1)气相方法制模,包括化学气相淀积(CVD),如热、光或等离子体CVD和物理气相淀积(PVD),如真空蒸发、溅射镀膜、离子镀膜、分子束外延、离子注入成膜等; 2)液相方法制膜,包括化学镀、电镀、浸喷涂等; 3)其他方法制膜,包括喷涂、涂覆、压延、印刷、挤出等。[1] 而在溅射镀膜的发展过程中,新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等。辉光等离子体溅射的基本过程是负极的靶材在位于其上的辉光等离子体中的载能离子作用下,靶材原子从靶材溅射出来,然后在衬底上凝聚形成薄膜;在此过程中靶材表面同时发射二次电子,这些电子在保持等离子体稳定存在方面具有关键作用。溅射技术的出现和应用已经经历了许多阶段,最初,只是简单的二极、三极放电溅射沉积;经过30多年的发展,磁控溅射技术已经发展成为制备超硬、耐磨、低摩擦系数、耐蚀、装饰以及光学、电学等功能性薄膜的一种不可替代的方法,脉冲磁控溅射技术是该领域的另一项重大进展。利用直流反应溅射沉积致密、无缺陷绝缘薄膜尤其是陶瓷薄膜几乎难以实现,原因在于沉积速度低、靶材容易出现电弧放电并导致结构、组成及性能发生改变。利用脉冲磁控溅射技术可以克服这些缺点,脉冲频率为中频10~200kHz,可以有效防止靶材电弧放电及稳定反应溅射沉积工艺,实现高速沉积高质量反应薄膜。 1 基本原理 磁控溅射(Magnetlon Sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射镀膜采用在靶材表面设置一个平行于靶表面的横向磁场,磁场由置于靶内的磁体产生。在真空室中,基材端接阳极极,靶材端接阴极,阴极靶的下面即放置着一个强力磁铁。溅射时持续通入氩气,使之作为气体放电的载体(溅射气体),同时通入氧气,作为与被溅射出来的锌原子发生反应的反应气体。在真空室内,电子e在电场E的作用下,在加速飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子(二次电子)e。Ar+计在电场作用下加速飞向阴极靶,以高能量轰击Zn靶表面使其发生溅射,溅射出来的锌原子吸收Ar离子的动能而脱离原晶格束缚,飞往基材方向,途中与O 2 发生反应并释放部分能量,最后反应产物继续飞行最终沉积在基材表面。我们需要通过不断的实验调整工艺参数,从而 使得溅射出来的历原子能与O 2 充分反应,制得纯度较高的薄膜。另一方面,二次电子在磁场的作用下围绕靶面作回旋运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在

磁控溅射镀膜技术的发展

第46卷第2期2009年3月 真空VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积

磁控溅射原理

百科名片 磁控溅射原理:电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长, 在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。电子的归宿不仅仅是基片,真空室内壁及靶源阳极也是电子归宿。但一般基片与真空室及阳极在同一电势。磁场与电场的交互作用( E X B drift)使单个电子轨迹呈三维螺旋状,而不是仅仅在靶面圆周运动。至于靶面圆周型的溅射轮廓,那是靶源磁场磁力线呈圆周形状形状。磁力线分布方向不同会对成膜有很大关系。在E X B shift机理下工作的不光磁控溅射,多弧镀靶源,离子源,等离子源等都在次原理下工作。所不同的是电场方向,电压电流大小而已。磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。该技术可以分为直流磁控溅射法和射频磁控溅射法。磁控溅射(magnetron-sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射是在阴极靶的表面上方形成一个正交电磁场。当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。高能电子不断与气体分子发生碰撞并向后者转移能量,使之电离而本身变成低能电子。这些低能电子最终沿磁力线漂移到阴极附近的辅助阳极而被吸收,避免高能电子对极板的强烈轰击,消除了二极溅射中极板被轰击加热和被电子辐照引起损伤的根源,体现磁控溅射中极板“低温”的特点。由于外加磁场的存在,电子的复杂运动增加了电离率,实现了高速溅射。磁控溅射的技术特点是要在阴极靶面附件产生与电场方向垂直的磁场,一般采用永久磁铁实现。如果靶材是磁性材料,磁力线被靶材屏蔽,磁力线难以穿透靶材在靶材表面上方形成磁场,磁控的作用将大大降低。因此,溅射磁性材料时,一方面要求磁控靶的磁场要强一些,另一方面靶材也要制备的薄一些,以便磁力线能穿过靶材,在靶面上方产生磁控作用。磁控溅射设备一般根据所采用的电源的不同又可分为直流溅射和射频溅射两种。直流磁控溅射的特点是在阳极基片和阴极靶之间加一个直流电压,阳离子在电场的作用下轰击靶材,它的溅射速率一般都比较大。但是直流溅射一般只能用于金属靶材,因为如果是绝缘体靶材,则由于阳粒子在靶表面积累,造成所谓的“靶中毒”,溅射率越来越低。目前国内企业很少拥有这项技术。

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

磁控溅射镀膜技术的发展_余东海

第46卷第2期2009年3月 真 空 VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积 DOI:10.13385/https://www.wendangku.net/doc/986353688.html,ki.vacuum.2009.02.026

磁控溅射与真空技术

磁控溅射与真空技术 溅射时打火放电 1、可能靶材表面脏。 在低功率下长时间空溅,把靶材表面杂志打掉。然后慢慢加大功率。 2、靶与地之间有导电颗粒,导致高压下放电打火。 3、电源柜有问题,建议调换电源柜再观察。 扩散泵的常见故障及原因 由于真空设备长期运转及其它一些因素的影响,扩散泵的性能可能会逐渐变坏,现将使用中经常出现的一些问题如述如下; 1)极限真空变低,原因: a.系统中有渗漏; b.系统太脏; c.泵油污染; d.加热功率不够; e.冷却水不足; f.过量或过冷的冷却水; g.前级压力高;检查密封性能及前级管道是否有泄漏现象; h.快冷管内有水。 2) 抽气较慢,原因: a.加热功率低; b.油量不足; c.喷帽安装位置不当或受损。

3)进口压力波动,原因: a.加热器输入功率不当; b.油脱气; c.扩散泵进口前面系统有渗漏。 4)工作腔污染大,原因: a.前级压力高; b.在高于10-1Pa压力下长期工作; c.系统操作有误。 5) 返油率过大,原因: a. 顶喷嘴帽松动,间隙过大; b. 加热功率不对; 真空系统上测量规管座位置安排应遵循如下原则 ①不能将测量规管放在密封面较多的地方。因为每一个密封面都不可能保证绝对不漏气,密封面集中之处,必然是容易漏气的地方,测量值可能不准。 ②规管内壁各处,必须保证真空卫生。否则会造成测量不准。 ③规管应尽量接在靠近被测量的地方,以减少测量误差。 扩散泵的结构示意图和工作原理 当扩散泵油被电炉加热时,产生油蒸气沿着导流管经伞形喷嘴向下喷出。因喷嘴外面有机械 泵提供的真空(Pa),故油蒸气流可喷出一长段距离,构成一个向出气口方向运动 的射流。射流最后碰上由冷却水冷却的泵壁凝结为液体流回蒸发器,即靠油的蒸发喷射凝结重复循环来实现抽气。由进气口进入泵内的气体分子一旦落入蒸气流中便获得向下运动的动量向下飞去。由于射流具有高流速(约200m/s),高的蒸气密度,且扩散泵油分子量大(300~500),故能有效地带走气体分子。气体分子被带往出口处再由机械泵抽走。

高真空磁控溅射镀膜系统介绍

高真空磁控溅射镀膜系统介绍 1.设备简介 ●名称:高真空磁控溅射镀膜系统 ●型号:JGP560 ●极限真空:6.60E-05 Pa ●最高可控可调温度:500℃(1个样品位) ●3个靶位,8个样品位 2.真空简介 ●真空是一种不存在任何物质的空间状态,是一种物理现象。在“真空” 中,声音因为没有介质而无法传递,但电磁波的传递却不受真空的影响。 事实上,在真空技术里,真空系针对大气而言,一特定空间内部之部份 物质被排出,使其压强小于一个标准大气压,则我们通称此空间为真空 或真空状态。1真空常用帕斯卡(Pascal)或托尔(Torr)做为压力的单 位。目前在自然环境里,只有外太空堪称最接近真空的空间。 ●我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ●高真空的获得 油扩散泵的结构

●真空镀膜 ●真空镀膜实质上是在高真空状态下利用物理方法在镀件的表面 镀上一层薄膜的技术,它是一种物理现象。 ●真空镀膜按其方式不同可分为真空蒸发镀膜、真空溅射镀膜和现 代发展起来的离子镀膜。 3.磁控溅射镀膜原理介绍 ●磁控溅射法是一种较为常用的物理沉积法。磁控溅射是在真空室中,利

用低压气体放电现象,使处于等离子状态下的离子轰击靶表面,并利用环状磁场控制辉光放电,使溅射出的粒子沉积在基片上。磁控溅射可以方便地制取高熔点物质的薄膜,在很大面积上可以制取均匀的膜层。 ●磁控溅射工艺流程 在镀膜过程中,工艺的选择对薄膜的性能具有重要的影响,根据磁控溅射技术原理,结合设备的实际应用,制定工艺流程如图1 ●膜层的要求 磁控溅射膜层的沉积是物理气相沉积。膜层厚度范围为nm~μm数量级,膜厚<550nm,对光有干涉作用,属于薄膜范畴,通常称薄膜技术。 太阳能集热管内管外壁镀膜是采用属于物理气相沉积技术的磁控溅射镀获得太阳光谱选择吸收薄膜。 ●磁控溅射镀 磁控溅射镀特点 溅射速率高,沉积速率高 磁控溅射阴极源是一个较为理想的可控源,沉积的膜层厚度与溅射源的功率或放电电流有较好的线性相关性,所以有较好的可控性, 能较好地实现批量生产产品的一致性和重复性。 溅射源采用靶材有广泛的选择性和组合性 溅射源可较理想地置于真空室内长时间稳定工作,获得纯正的膜层,确保膜层质量。

磁控溅射镀膜技术的发展及应用_马景灵

溅射镀膜过程主要是将欲沉积成薄膜的材料制成靶材,固定在溅射沉积系统的阴极上,待沉积薄膜的基片放在正对靶面的阳极上。溅射系统抽至高真空后充入氩气等,在阴极和阳极之间加几千伏的高压,阴阳极之间会产生低压辉光放电。放电产生的等离子体中,氩气正离子在电场作用下向阴极移动,与靶材表面碰撞,受碰撞而从靶材表面溅射出的靶材原子称为溅射原子,溅射原子的能量一般在一至几十电子伏范围,溅射原子在基片表面沉积而后成膜。溅射镀膜就是利用低气压辉光放电产生的氩气正离子在电场作用下高速轰击阴极靶材,把靶材中的原子或分子等粒子溅射出而沉积到基片或者工件表面,形成所需的薄膜层。但是溅射镀膜过程中溅射出的粒子的能量很低,导致成膜速率不高。 磁控溅射技术是为了提高成膜速率在溅射镀膜基础上发展起来的,在靶材表面建立与电场正交的磁场,氩气电离率从0.3%~0.5%提高到了5%~6%,这样就解决了溅射镀膜沉积速率低的问题,是目前工业上精密镀膜的主要方法之一[1]。可制备成磁控溅射阴极靶材的原料很广,几乎所有金属、合金以及陶瓷材料都可以制备成靶材。磁控溅射镀膜在相互垂直的磁场和电场的双重作用下,沉积速度快,膜层致密且与基片附着性好,非常适合于大批量且高效率的工业化生产。 1磁控溅射的工艺流程 在磁控溅射过程中,具体工艺过程对薄膜性能影响很大,主要工艺流程如下[2]:(1)基片清洗,主要是用异丙醇蒸汽清洗,随后用乙醇、丙酮浸泡基片后快速烘干,以去除表面油污;(2)抽真空,真空须控制在2×104Pa以上,以保证薄膜的纯度;(3)加热,为了除去基片表面水分,提高膜与基片的结合力,需要对基片进行加热,温度一般选择 在150℃~200℃之间;(4)氩气分压,一般选择在0.0l~lPa范围内,以满足辉光放电的气压条件;(5)预溅射,预溅射是通过离子轰击以除去靶材表面氧化膜,以免影响薄膜质量;(6)溅射,氩气电离后形成的正离子在正交的磁场和电场的作用下,高速轰击靶材,使溅射出的靶材粒子到达基片表面沉积成膜;(7)退火,薄膜与基片的热膨胀系数有差异,结合力小,退火时薄膜与基片原子相互扩散可以有效提高粘着力。 2磁控溅射镀膜技术的发展 近年来磁控溅射技术发展非常迅速,代表性方法有非平衡磁控溅射、反应磁控溅射及高速溅射等等。 平衡磁控溅射技术:即最传统的磁控溅射技术,将永磁体或电磁线圈放到在靶材背后,在靶材表面会形成与电场方向垂直的磁场。在高压作用下氩气电离成等离子体,Ar+离子经电场加速轰击阴极靶材,靶材二次电子被溅射出,且电子在相互垂直的电场及磁场作用下,被束缚在阴极靶材表面附近,增加了电子与气体碰撞的几率,即增加了氩气电离率,使氩气在低气体下也可维持放电,因而磁控溅射既降低了溅射气体压力,同时也提高了溅射效率及沉积速率[3]。但传统磁控溅射有一些缺点,比如:低气压放电产生的电子和溅射出的靶材二次电子都被束缚在靶面附近大约60mm的区域内,这样工件只能被安放在靶表面50~100mm的范围内。这样小的镀膜区间限制了待镀工件的尺寸,较大的工件或装炉量不适合传统方法。 非平衡磁控溅射技术:这种磁控溅射方法部分解决了平衡磁控溅射的不足,是将靶面的等离子体引到靶前200~300mm的范围内,使阳极基片沉浸在等离子体中,减少了粒子移动的距离,离子束起到辅助沉积的作用[4]。然而单独的非平衡磁控靶在基片上很难沉积出均匀的薄膜层, 为此研究人员开发出了多靶非平衡磁控溅射镀膜系统,弥补了单靶非平衡磁控溅射的不足。 反应磁控溅射:随着表面工程技术的发展,越来越多地用到各种化合物薄膜材料。可以直接使用化合物材料制作的靶材通过溅射来制备化合物薄膜,也可在溅射金属或合金靶材时,通入一定的反应气体,通过发生化学反应制备化合物薄膜,后者被称为反应磁控溅射。一般来说纯金属作为靶材和气体反应较容易得到高质量的化合物薄膜,因而大多数化合物薄膜是用纯金属为靶材的反应溅磁控射来制备的[5]。 中频磁控溅射:这种镀膜方法是将磁控溅射电源由传统的直流改为中频交流电源。在溅射过程中,当系统所加电压处在交流电负半周期时,靶材被正离子轰击而溅射,而处于正半周期时,靶材表面被等离子体中的电子轰击而溅射,同时靶材表面累积的正电荷被中和,打弧现象得到抑制。中频磁控溅射电源的频率通常在10~80kHz之间,频率高,正离子被加速的时间就短,轰击靶材时的能量就低,溅射沉积速率随之下降。中频磁控溅射系统一般有两个靶,这两个靶周期性轮流作为阴极和阳极,一方面减小了基片溅伤;另一方面也消除了打弧现象。 高速溅射与自溅射:随着工业发展和表面工程的需求,高速溅射与自溅射等新型磁控溅射成膜方法成为镀膜领域新的发展趋势。高速溅射能够缩短镀膜时间,提高沉积速率,当溅射速率非常高,以至于在没有惰性气体氩气的情况下也能维持辉光放电,这种溅射方法称为自溅射[6]。高速溅射与自溅射中,被溅射材料的离子、电子化以及减少甚至取消惰性气体,都明显影响薄膜的形成机理,因此,可以制备出特殊性能的薄膜材料。 ①基金项目:河南科技大学实验技术开发基金(SY1112008); 科研创新能力培育基金(2012ZCX017)。  作者简介:马景灵(1970—),女,河南科技大学副教授,博士,E-mail:majingling.student@sina.com。 磁控溅射镀膜技术的发展及应用① 马景灵 任风章 孙浩亮 (河南科技大学材料科学与工程学院 河南洛阳 471023) 摘 要:近年来,随着新材料的开发,尤其是薄膜材料的发展和应用,带动磁控溅射沉积技术的飞速发展,在科学研究领域和工业生产中有着不可替代的重要作用。本文主要介绍了磁控溅射沉积技术的工艺过程及其发展情况,各种主要磁控溅射镀膜技术的特点,并介绍磁控溅射技术在各个领域的主要应用。关键词:磁控溅射 镀膜 辉光放电中图分类号:G4文献标识码:A文章编号:1673-9795(2013)10(b)-0136-02 (下转138页)

溅射技术及其发展的历程

溅射技术及其发展的历程 1842年格洛夫(Grove)在实验室中发现了阴极溅射现象。他在研究电子管阴极腐蚀问题时,发现阴极材料迁移到真空管壁上来了。但是,真正应用于研究的溅射设备到1877年才初露端倪。迄后70年中,由于实验条件的限制,对溅射机理的认同长期处于模糊不请状态,所以,在1950年之前有关溅射薄膜特性的技术资料,多数是不可*的。19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。到了80年代,溅射技术才从实验室应用技术真正地进入工业化大量生产的应用领域。最近15年来,进一步发展了一系列新的溅射技术,几乎到了目不暇接的程度。在21世纪来临的时刻,回顾一下溅射技术发展的历程,寻找其中某些规律性的思路,看来是有一定意义的。 1.最初溅射技术改革的原动力主要是围绕着提高辉光等离子体的离化率,增强离化的措施包括: [1]热电子发射增强—由原始的二极溅射演变出三极溅射。三极溅射应用的实际效果对离化率增强的幅度并不大,但是对溅射过程中,特别是在反应溅射过程中,工艺的可控性有明显地改善。 [2]电子束或电子弧柱增强—演变出四极溅射。Balzers一直抓住这条线,形成有其特色的产品系列,最近几年推出在中心设置一个强流热电子弧柱,配合上下两个调制线圈,再加上8对孪生靶,组合成新型纳米涂层工具镀膜机。是一个典型实例。 [3]磁控管模式的增强溅射—磁控溅射。利用磁控管的原理,将等离子体中原来分散的电子约束在特定的轨道内运转,局部强化电离,导致靶材表面局部强化的溅射效果。号称为“高速、低温”溅射技术。磁控溅射得到广泛应用的原因,除了效果明显之外,结构不复杂是一个重要的因数,大面积的溅射镀膜工艺得到推广。应该看到,靶面溅射不均匀导致靶材利用率低是其固有的缺点。 [4]最近有人推出离子束增强溅射模式。采用宽束强流离子源,配合磁场调制,与普通的二极溅射结合组成一种新的溅射模式。他不同于使用窄束高能离子束进行的离子束溅射(这种离子束溅射的溅射速率低),采用宽束强流离子源,配合磁场调制后,既有离子束溅射的效果,更重要的是具有直接向等离子体区域供应离子的增强溅射效果。同时还可以具有离子束辅助镀膜的效果。 2.1985年之后,溅射模式的变革增加了新的目标,除了继续追求高速率之外,追求反应溅射稳定运行的目标、追求离子辅助镀膜—获得高质量膜层的目标、等等综合优越性的追求目标日益增强。例如: [1]捷克人J.Musil在研究低压强溅射的工作中,在磁控溅射的基础上,重复使用各种原来在二极溅射增强溅射中使用过的手段。从“低压强溅射”一直发展到“自溅射”效应。其中大部分工作仍然处于实验室阶段。 [2]针对立体工件获得均匀涂层和色泽,Leybold推出对靶溅射运行模式。在随后不断改进的努力下,对靶溅射工艺仍然具有涂层质量优异的美名。 [3]针对膜层组分可随意调节的目标,推出非对称溅射的运行模式。我国清华大学范毓殿教授采用调节溅射靶磁场强度的方法,进行了类似的工作。 [4]推出非平衡溅射的运行模式最基本的目的是为了改善膜层质量,呈现离子辅助溅射的效果。后来,一些研究工作扩展磁场增强的布局,磁场在真空室内无处不在,看来效果并不理想,“非平衡”的热潮才逐渐降温。 [5]1996年Leybold 推出多年研发的成果:中频交流磁控溅射(孪生靶溅射)技术,消除了阳极”消失”效应和阴极“中毒”问题,大大提高了磁控溅射运行的稳定性,为化合物薄膜的工业化大规模生产奠定了基础。最近在中频电源上又提出短脉冲组合的中频双向供电模式,运行稳定性进一步提高。 [6]最近英国Plasma Quest Limited(PQL)公司推出S400型专利产品,名为“高密度等离子体发送系统”(High Plasma Launch System),属于上面提到的离子束增强二极溅射模式。其特点是:高成膜速率、

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

磁控溅射技术进展及应用

摘要:近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:磁控管溅射率非平衡磁控溅射闭合场非平衡磁控溅射自溅射 引言 磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面 1~8,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。1852年Grove首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展。60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。磁控溅射技术出现和发展,以及80年代用于制作CD的反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近十几年,发展出一系列新的溅射技术。 一、磁控溅射镀膜原理及其特点 1.1、磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。磁控溅射系统在阴极靶材的背后放置100~1000Gauss强力磁铁,真空室充入011~10Pa压力的惰性气体(Ar),作为气体放电的载体。在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上。而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。溅射系统沉积镀膜粒子能量通常为1~10eV,溅射镀膜理论密度可达98%。比较蒸镀011~

相关文档
相关文档 最新文档