文档库 最新最全的文档下载
当前位置:文档库 › 氰酸酯树脂材料及其在复合材料中的应用

氰酸酯树脂材料及其在复合材料中的应用

氰酸酯树脂材料及其在复合材料中的应用
氰酸酯树脂材料及其在复合材料中的应用

氰酸酯树脂材料及其在复合材料中的应用

学院:

班级:

姓名:

学号:

摘要:氰酸酯树脂是一种新型的高性能复合材料基体树脂, 它与常用的导弹用聚合物基复合材料基体树脂如环氧树脂系列、聚酰亚胺树脂系列、双马来酰亚胺树脂系列等相比, 具有更优异的综合性能, 包括良好的工艺性能、较高的热稳定性、极佳的微波介电性能以及优良的耐湿热性能和较高的尺寸稳定性等, 因而在导弹中有着极大的应用前景。本文主要介绍氰酸酯树脂的性能及其在导弹的雷达天线罩、结构材料和隐身材料等方面的应用情况。

关键词:氰酸酯树脂,宇航复合材料,导弹材料,微波介电性能

Abstract:Cyanate resin is a new type of high performance composite matrix resin, it and common missile with polymer matrix composites matrix resin such as epoxy resin series, polyimide resin series, bismaleimide resin series and so on, compared to have a more excellent comprehensive performance, including good process performance, high thermal stability, excellent microwave dielectric properties and excellent resistance to hot and humid performance and higher dimensional stability, so the missile has great application prospect. This paper mainly introduces the performance of cyanate ester resin and the missile radome, structure materials and stealth material application.

Keywords:Cyanate resin, aerospace composite material, missile materials, microwave dielectric properties

一、简介

氰酸酯树脂通常是指含有两个- O- C≡N-官能基的二元酚衍生物,其通式为: N≡C- O- Ar - O- C≡N。氰酸酯树脂英文全称Triazine A resin、TA resin、Cyanate resin,缩写为CE。

氰酸酯树脂CE的重均分子量为2000,常温下呈固态或者半固态,也有某些品种为液体,可以在50~60℃温度范围内软化。

氰酸酯CE可溶于常见溶剂,如丙酮、丁酮、氯仿、四氢呋喃等,会被25%的氨水、4%的氢氧化钠溶液、50%硝酸和浓硫酸腐蚀,但是它可以耐苯、二甲基甲酰胺、甲醛、燃料油、石油、浓醋酸、三氯醛酸、磷酸钠浓溶液、30%的过氧水H2O2等。

氰酸酯CE具有优良的高温力学性能,弯曲强度和拉伸强度都比双官能团环氧树脂高;极低的吸水率(<1.5%);成型收缩率低,尺寸稳定性好;耐热性好,玻璃化温度在240~260℃,最高能达到400℃,改性后可在170℃固化;耐湿热性、阻燃性、粘结性都很好,和玻纤、碳纤、石英纤维、晶须等增强材料的粘接性能好;电性能优异,具有极低的介电常数(2.8~3.2)和介电损耗角正切值(0.002~0.008),并且介电性能对温度和电磁波频率的变化都显示特有的稳定性。

用有机锡化合物作为氰酸酯树脂固化反应的催化剂,制得的CE固化树脂和复合材料具有优良的性能。

固化氰酯酸树脂具有低介电常数和极小的介电损耗,高玻璃化转变温度,低收缩率、低吸湿率以及优良的力学性能和粘结性能等特点。

二、性能

1、反应性

芳基氰酸酯不能重新排成芳基异氰酸酯,可进行一系列反应。

(1)亲核反应

—OCN基团中的C≡N可与活泼氢反应

(2)亲电加成反应

氰酸酯可与酸酐反应,生成亚氨基甲酸酯。

(3)1,3—偶极加成反应

氰酸酯可与NaN3、Ar—CNO等发生1,3—偶极加成反应(4)与芳香族酚的反应

氰酸酯可以与酚类化合物反应生成二芳基亚胺碳酸酯,在热与催化

剂作用下发生环三聚生成三嗪环结构。

2、固化机理

氰酸酯在热或催化剂的作用下,可以发生环三聚形成三嗪环,环三聚反应可以被酸、碱和酚类化合物催化。

3、物理性能

氰酸酯树脂的物理性能因分子结构的不同,表现出很宽广的变化范围,

物理状态可以是液体、晶体以及树脂状固体等。如双酚A型氰酸酯(BCE),合成的粗品BCE单体在常温下为淡黄色至白色颗粒状晶体,熔点为74℃左

右。提纯后的BCE单体在常温下为白色粉末状晶体。熔点为79℃。

4、工艺性能

氰酸酯树脂具有良好的溶解性能和工艺性能,可以适应包括预浸料、树

脂传递模塑、缠绕、挤拉、压力模塑和压缩模塑等各种加工要求。

5、流变性能

热固性树脂的流变行为主要受两方面影响:一方面是温度的升高导致树

脂粘度的下降,另一方面是固化反应过程中由于分子量的增加所引起粘

度的增加。

三、在复合材料中的应用

氰酸酯独特的结构决定的这些性能包括具有优异的介电性能、高耐热性能、良好的综合力学性能、较好的尺寸稳定性以及极低的吸水率等。氰酸酯树脂高温性能与双马来酰亚胺类似,可用于宇宙飞船、飞机、导弹、天线罩、雷达罩、微电子和微波水平。

1、CE在高性能印刷线路板基体

CE在高性能PCB中的应用宇航电子技术的发展, 要求信号传输的速度更快, 而其损失更小。作为电子元器件的载体, PCB必须具有极佳的电绝缘性能[1-3], 即其介电常数和介质损耗因子必须控制在一个较低的范围内。同时由于电路集成密度的提高,电子元器件因为功率耗损而放热,为保证电路工作的可靠性, PCB 应具有耐高温性能(玻璃化转变温度>180℃)、较好的尺寸稳定性(热膨胀系数CTE 要低)、低吸湿率和良好的耐腐蚀性能。传统的PCB采用的是EP、PI和聚四氟乙烯( PTFE) , 前两者存在着介电性能较差、吸湿率高的缺陷。而CE基PCB与PTFE基PCB相比, 虽然其介电性能和耐热性不如后者, 但CE基PCB具有与EP相近的工艺性、高尺寸稳定性和无须使用昂贵的萘化钠蚀刻液, 且其介电性能和耐热性已足以满足当前高性能PCB的要求, 完全可以取代PTFE基PCB[4-8]。

2、CE在高性能透波材料(雷达罩)基体

制造雷达罩一般选用EP、聚酯(UP)或BMI[9],但对于在600MHz~ 100GHz的高频率范围内工作的雷达罩来讲, 要求基体树脂的介电常数<3.5,介质损耗因子<0.01,玻璃化温度>150℃,并且具有优良的耐湿热性能。上述三中树脂不能同时满足这些要求,需要寻求新的材料。

雷达天线罩是导弹的一个结构功能部件, 它保护雷达天线在恶劣环境条件下能够正常的工作, 除了要求天线罩能经受住导弹在飞行过程中产生的气动载荷、气动加热和雨、雪、风沙等的侵蚀外, 更重要的是要求具有优良的高透微波性能。对于材料的微波介电性能, 可用两个重要的参数描述, 即介电常数和介质损耗角正切。介电常数是表征电介质材料在电场作用下极化情况的参数, 是保证天线罩材料电气性能的重要指标, 对于半波壁天线罩, 为保持一定的传输性能, 材料的介电常数越小, 天线罩壁所容许的相对厚度误差越大, 因此在选用材料时, 应尽量选用介电常数低的材料。介质损耗角正切是衡量电介质材料在电场中损耗能量并转变为热能的物理参数, 用以表征材料的介质损耗性能,雷达天线罩材料应具有较低的损耗角正切。

目前CE已成功地应用于雷达罩[10]。如BASF公司的一种CE/石英纤维预浸料,

以这种预浸料作蒙皮,以X6555泡沫为芯层, 以METALBOND2555结构膜为胶粘剂做成的雷达罩, 比EP和BMI做的雷达罩介质损耗减小三倍,介电常数降低10%,吸湿率更小,湿态介电性能更优。

3、CE在航空航天用高韧性结构复合材料基体

最早应用于宇航领域的商品化CE基复合材料为美国Narmco公司的R 5245C[11], 它是一种用碳纤维增强的CE与其它树脂的混合物。随后, Scola等人又研究出一种EP改性的BT树脂(bismaleimidetriazine resin,即BMI三嗪树脂) [12],它用高强度的碳纤维增强后CAI值(compress after impact)达220MPa,且可在132℃~149℃范围内的高湿热环境下使用后来,一些供应CE基复合材料预浸料的公司[12-16] , 在CE中加入Tg 170℃非晶态热塑性树脂, 使CE在保持优良耐湿热性能和介电性能的同时,CAI值达到了240MPa~ 320 MPa,有效地解决了复合材料的易开裂问题[13],其使用温度与改性后的PI、BMI相当。

CE也可制成宇航中常用的泡沫夹芯结构材料[4],泡沫夹芯结构材料在使用和存放的过程中,湿气易通过表面层渗入泡沫芯, 在高温环境下使用时容易导致结构性破坏[9]。CE基复合材料采用特殊的处理工艺: 铺层前充分烘干、用再生聚芳酰胺纤维作增强材料、选用特殊的催化剂和提高固化温度可解决以上问题。Hexcel公司在CE中加入热塑性树脂、发泡剂和表面剂, 制得了一种泡沫结构材料,它的耐热性、耐湿性均优于常用的聚氯乙烯( PVC)和聚甲基丙烯酰胺( PMI) 等泡沫材料[17]。而Si-wolop等人报道的另一种泡沫复合材料, 是在中空的陶瓷微球外包覆一层CE薄膜, 成功地使CE的CTE降低到0.000013/K 并且在173℃~ 230℃能够保持较高的机械强度, 用于宇航飞行器支撑板、承力结构件等[4]。

4、CE 在隐身材料中的应用

在海湾战争和北约对南联盟的轰炸中, 美国的B2A隐身轰炸机和F117A隐身战斗机引起了人们的极大兴趣,由此各国掀起了研究隐身材料的热潮。隐身的关键是减小飞行器的雷达散射截面,从而产生低可视性。隐身技术包括外形技术和材料技术, 二者必须配合使用,其中材料技术又可分为雷达吸波涂层和结构吸波材料[17,18]。

在现代战争中, 随着电子技术的迅速发展, 高分辨率、高可靠性的先进探测器相继出现, 对导弹的生存能力、突防能力构成非常严重的威胁。目前研制的导弹大多数是高亚声速, 具有射程大,飞行时间长的特点, 很容易受到敌方拦截。隐身技术本质上是一种反探测技术,即尽量减少敌方探测器能探测到的来自目标的雷达波、红外、光、声等的信号强度,以降低目标被发现的概率。

目前关于隐身材料的具体设计很多,其中一种较成熟的理论是:用透波性好、强度高的复合材料作表面层, 以蜂窝状结构为夹芯, 在夹芯壁上涂以吸波涂层或在夹芯中填充轻质泡沫吸波材料。透波表面层的厚度应为四分之一波长的奇数倍;这样, 电磁波透射到表面层, 部分反射(反射波1),部分透射,透射波再经吸波基板反射(反射波2) , 反射波1和反射波2 相位相反。于是相互抵消,从而防止了反射(显然这里的反射波1和反射波2均极其微弱),达到隐身的目的。CE 的透波率极高, 透明度好, 是做透波层的绝佳材料。美国亨茨维尔特殊公司研制的另一类型的雷达吸波材料[19],以高分子聚合物为基体,均匀分布氰酸酯的晶须,用晶须来切断入射雷达波信号并吸收大量能量,通过在此过程中产生的热量消耗吸收的能量,从而达到隐身的目的。此材料已应用于巡航导弹中。

5、CE 在人造卫星中的应用

卫星结构材料与其它的宇航结构材料有明显的差别[20]。卫星结构材料要解决的主要问题是在满足强度要求的条件下,尽量提高刚度。为提高刚度,其结构设计往往较为复杂,这样就加大了制造的难度,因此要求材料具有较好的成型工艺性。卫星在大气层外真空和高低温交替的环境下,易于受树脂中残余挥发分的损害[9],挥发物质覆盖在光学和电子部件的表面而使其失去功能。氰酸酯的聚合反应属于加聚反应,聚合过程中无小分子等挥发分放出,因而可避免此问题。

此外,CE基复合材料的高尺寸稳定性、抗辐射能力、抗微裂纹能力等优异的性能使其在卫星材料中的应用日益扩大,广泛用作先进通讯卫星构架、抛物面天线、太阳电池基板、支撑结构、精密片状反射器和光具座等。如Fiberite公司的Arnold报道了一种用活性端基聚硅氧烷增韧改性的CE,可在复合材料表面形成一层SiO2膜,从而防止了材料因接触到原子氧而受腐蚀[21]。此种材料在不易用金属化膜保护复合材料的场合下尤为适用。

6、在导弹材料中的应

导弹是一种长期储存、一次使用的复杂产品, 材料性能的优劣对其技术性能影响很大。导弹对其材料的性能要求如下[22-24]:

(1)导弹在运输、发射及飞行的过程中都承受较大的载荷, 包括导弹在运输中由于颠簸而承受的震动过载和导弹发射与飞行时弹体承受的轴向过载, 因此导弹的弹翼、弹舱段、承力式储箱、连接框架等主要受力结构部件都要求有高的比强度、比刚度以及抗震能力,以保证导弹使用安全可靠, 同时有效减轻导弹结构质量, 增加有效载荷, 提高导弹的战术性能、增大射程;

(2)当导弹在超低空的飞行速度大于2个马赫数( Ma> 2) 时, 由于气动加热, 弹体表面温度可达200℃以上, 因此弹体结构材料( 尤其是蒙皮) 必须有较高的热稳定性;

(3)飞航导弹大多在沿海地区储存和执行战备值班任务, 或者装载于舰艇上出海航行,海洋环境的湿热、盐雾和霉菌会使导弹受到严重腐蚀。另外, 使用液体火箭发动机的导弹,其燃料储箱、发动机壳体及动力系统管道材料必须抵御硝酸、偏二甲肼等化学试剂的浸蚀, 因此, 导弹结构材料必须具有优良耐化学腐蚀性能;

(4)导弹结构材料应具有良好的工艺性能和高的经济效益, 在保证结构件质量的前提下, 努力做到工艺简单、工序少、周期短, 尽量采用整体成型, 减少螺栓连接、铆接。以上种种性能要求, 传统的钢、铝合金、钛合金等很难完全满足, EP 基复合材料虽具有良好的工艺性能、耐腐蚀性、较高的比强度和比刚度, 但其长期使用温度一般在140℃左右, 且耐湿热性较差, 限制了它的进一步应用; 耐高温的PI、BMI、聚四氟乙烯(PTFE)和聚醚醚酮(PEEK)等,又大都存在着成型温度高、加工困难等缺陷, 也难于满足导弹材料的性能要求。而CE对于以上诸要求均能满足, 因而广泛的用作导弹的结构材料。

四、总结

氰酸酯也常用来改性其他树脂。使之和不饱和聚酯共聚,可提高材料的耐

热性及力学性能,大大改善介电性能。可与丙烯酸树脂混合,制得相容性极好的共混体系。氰酸酯和环氧树脂的相容性很好,在普通环氧树脂中掺入20%~ 30%氰酸酯树脂,体系在48℃下可稳定贮存数周,体系可用铜、锌、钴或锰的辛酸盐、环烷酸盐、乙酰丙酮化物或锌的羧酸盐催化。25℃时凝胶时间至少有1000h。在177℃时, 在0.2到20min内即可凝胶,固化物热变形温度高,为180℃~ 200℃,机械强度高,吸水率低,介电常数低( 3. 0~ 3. 1),介电损耗小(0.008~ 0. 009)。与双马来酰亚胺树脂共固化后, 材料的玻璃化转变温度可高于250℃。

总之,氰酸酯树脂无论是在军用高科技领域还是在民用领域都有广泛的应用前景。

参考文献

[1] 王胜杰, 许元泽, 杨振中, 愈洁, 赵得禄. 氰酸酯聚合物的研究. 化学通报, 1996;(12) : 8

[2]王仲群, 宁荣昌, 李爱红. 氰酸酯树脂的性能和应用.玻璃钢/ 复合材料,1997;133(2) : 22

[3] Seibold R W et al. Advanced in materials and processesfor high performance electronics fabrication and assembly part II. SAMPE Journal, 1997;33(2) : 9

[4] FangT, Shimp D A. Polycyanate ester resins:science and applications.Prog. Polym. Sci. 1995; 20: 61~ 118

[5] Bogan G W et al. Unique polyaromatic cyanate ester forlow dielectric printed circuit boards. SAMPE Journal, 1988; 24(6) :19

[6] 文汉译. 理想的覆铜板即将到来. 电子材料, 1991;10( 1) : 21

[7] Ising S J et al. Mositure resistant cyanate formulations forPCB. In: 5th Int. SAMPE Electronics Conf. , Los Angeles, 1991;288~ 299

[8]Ising S J et al. Solventless polycyanate ester bath for prepreg processing. Can. Pat. , 779844, 1991: 17

[9] 邢雅清, 郭扬. 复合材料用氰酸酯树脂基体的研究与应用. 纤维复合材料, 1996; 47( 3) : 6

[10] Speak S C et al. Novel cyanate ester-based products forhigh performance radome. In: 36th Int. SMPE Symp. Exhib. , SanDiego, 1991; 336~ 347

[11] 何鲁林. 氰酸酯树脂的发展概况. 航空材料学报,1996; 16( 4) : 54

[12] Rusehagen L J et al. Hydrolysis and blisting of cyanate ester networks. J. Appl. Polym.Sci. , 1997; 64( 1) : 107~ 119509

[13] Rau A V. Processing of toughened cyanate ester matrix composites( liquid molding) . Diss. Abstr. Int. B, 1997 ; 57( 10) : 6354

[14] Shimp D A et al. Mositure effects and their controls in the curing of polycyanate resins. Polym. Mater. Sci. Eng. , 1992; 66:504~ 505

[15]Snow A W et al. Composites cyanate and epoxy resin hydrogen bonding studies. Polym. Mater. Sci. Eng. 1992; 66: 508~

[16] Woo F M et al. Phase structure and toughing mechanism of a thermoplastic modified aryl dicyanate. Polymer, 1994; 35( 8) :1658~ 1665

[17]Wang Y S et al. Foamable cyanate ester thermoplastic blend composition. US Pat. Appl. , 524868, 1990: 13

[18] Stonier R A. Stealth aircraft & technology from world warII to the gulf part I: history and background. SAMPE Journal, 1991;27( 4) : 9

[19] 邱惠中, 江辉. 国外巡航导弹用材料及工艺. 宇航材料工艺, 1998; 28( 4) : 9

[20]Speak S C et al. Novel cyanate ester based products for high

performance radome. In: 36th Int. SMPE Symp. Exhib. , San Diego, 1991; 336~ 347

[21] 肖少伯, 刘志雄. 卫星结构轻型化与复合材料应用.宇航材料工艺, 1993; 23( 4) : 1

[22] Arnold C et al. Siloxanw modified cyanate ester resins for space applications. In: 37th Int. SAMPE Symp. Exhib. , Anaheim,1992: 128~ 136

[23] 沈世绵, 王孟平. 飞航导弹材料. 北京: 宇航出版社, 1994, 1~13.

[24] 彭望泽. 防空导弹天线罩( 第一版) 宇航出版社, 1993, 5.

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

氰酸脂树脂的性质及其应用

氰酸酯树脂的性质及其应用 摘要:介绍了氰酸酯树脂的性能、反应特性,重点综述了氰酸酯树脂基复合材料在机舱潜艇防火结构及卫星结构和空间光学系统结构等方面的应用情况及发展前景。 关键词:氰酸酯树脂性质应用 树脂基复合材料也称纤维增强塑料,是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。自20世纪70年代后相继开发了一批如碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶纤维、高密度聚乙烯纤维等高性能增强材料,并使用高性能树脂、金属与陶瓷为基体,制成先进复合材料(AdvaJlced Complosite Materi.als,简称AcM)。 这种先进复合材料具有比玻璃纤维复合材料更好的性能,是用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。如美国全部用碳纤维复合材料制成了8座商用飞机——里尔芳2100号;哥伦比亚号航天飞机用碳纤维/环氧树脂制作长18.2 m、宽4.6 m的主货舱门,用凯芙拉纤维/环氧树脂制造各种压力容器;用先进复合材料作为主承力结构制造了可载80人的波音一767大型客运飞机,不仅减轻了重量,还提高了飞机的各种飞行性能。复合材料在这几个飞行器上的成功应用,表明了复合材料的良好性能和技术的成熟这对于复合材料在重要工程结构上的应用是一个极大的推动。 氰酸酯树脂是20世纪80年代开发出来的一类高性能树脂。由于其具有优良的耐湿热性及介电性能,已被视为最有发展前途的新一代雷达天线罩用夹层复合材料的面板树脂材料。研究表明,氰酸酯树脂的收缩率较低,介电损耗角正切值很低,仅为0.002~o.008,介电常数为2.8~3.2,具有优良的黏结性和良氰酸酯树脂面板夹层结构复合材料、面板及芯材的吸湿特性进行了研究,并且对其湿热处理前后面板、芯材及整体夹层材料的介电性能变化进行了研究,初步分析了其产生优良介电性能与耐湿热性的原因。 1. 氰酸酯树脂的性质 氰酸酯树脂是一类含2个以上氰酸酯官能团(一O一C三N)的新型基体树脂,氰酸酯树脂性能主要包括:力学性能、介电性能、吸湿特性。 1.1 力学性能 对原始干态及经过480h,70℃,85%RH湿热处理的氰酸酯树脂夹层材料试样进行力学性能的测试。分别对不同夹层结构材料的长梁弯曲、短梁弯曲及压缩性能进行了测试。长梁弯曲实验主要测试的是夹层材料的面板强度,短梁弯曲实验测试夹层材料芯材的剪切强度,压缩实验测试夹层结构材料芯材的压缩强度。实验结果取5个试样测试结果的平均值,并计算标准差。 对使用铝箔封边后的氰酸酯夹层复合材料进行湿热处理,处理条件为70℃,85%RH,480h,对其进行长梁弯曲实验,同时对未经处理的夹层结构复合材料进行测试,氰酸酯树脂夹层复合材料的面板剪切强度受到湿热环境的明显影响,其强度由39.8MPa降至36.6MPa,强度保持率约为91.2%,具有较好的力学性能耐湿热性。由此可见,经过湿热处理后,夹层材料的芯材剪切强度有了一定程度的下降,其值由0.270MPa降至0.257MPa,但是,其湿热后强度保持率高达95.3%,远高于传统环氧树脂面板材料。生此种结果的原因主要

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

氰酸酯树脂材料及其在复合材料中的应用

氰酸酯树脂材料及其在复合材料中的应用 学院: 班级: 姓名: 学号:

摘要:氰酸酯树脂是一种新型的高性能复合材料基体树脂, 它与常用的导弹用聚合物基复合材料基体树脂如环氧树脂系列、聚酰亚胺树脂系列、双马来酰亚胺树脂系列等相比, 具有更优异的综合性能, 包括良好的工艺性能、较高的热稳定性、极佳的微波介电性能以及优良的耐湿热性能和较高的尺寸稳定性等, 因而在导弹中有着极大的应用前景。本文主要介绍氰酸酯树脂的性能及其在导弹的雷达天线罩、结构材料和隐身材料等方面的应用情况。 关键词:氰酸酯树脂,宇航复合材料,导弹材料,微波介电性能

Abstract:Cyanate resin is a new type of high performance composite matrix resin, it and common missile with polymer matrix composites matrix resin such as epoxy resin series, polyimide resin series, bismaleimide resin series and so on, compared to have a more excellent comprehensive performance, including good process performance, high thermal stability, excellent microwave dielectric properties and excellent resistance to hot and humid performance and higher dimensional stability, so the missile has great application prospect. This paper mainly introduces the performance of cyanate ester resin and the missile radome, structure materials and stealth material application. Keywords:Cyanate resin, aerospace composite material, missile materials, microwave dielectric properties

树脂基复合材料成型工艺介绍

树脂基复合材料成型工艺介绍 树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。 模压成型工艺的主要优点: ①生产效率高,便于实现专业化和自动化生产; ②产品尺寸精度高,重复性好; ③表面光洁,无需二次修饰; ④能一次成型结构复杂的制品; ⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法 是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法 将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。 ③织物模压法 将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。 ④层压模压法 将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。 ⑤缠绕模压法 将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。 ⑥片状塑料(SMC)模压法 将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。 ⑦预成型坯料模压法 先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC

环氧树脂复合材料的分类组成特性以及应用

环氧树脂复合材料的分类组成特性以及应用 日期: 2008-03-03 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

树脂基复合材料成型工艺

树脂基复合材料成型工艺 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发镇,其老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基符合材料的成型方法已有20多种,并成功地用于工业生产,如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺;

(11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺;(22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。

视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。 复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇ 成型工艺 层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材

玻璃纤维增强环氧树脂基复合材料的制备

综合实验研究 玻璃纤维增强环氧树脂基复合材料的制备 院系:航空航天工程学部 专业:高分子材料与工程专业 指导教师:于祺 学生姓名:王娜

目录 第1章概述 1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法 第2章手糊法制备玻纤/环氧树脂复合材料 2.1实验原料 2.1.1环氧树脂 2.1.2玻璃纤维 2.1.3咪唑固化剂 2.1.4活性稀释剂 2.2手糊成型简介 2.4实验部分 2.4.1实验仪器 2.4.2实验步骤 第3章力学性能测试 3.1剪切强度 3.2弯曲强度 3.3实验数据的分析 3.3.1 浸胶的用量及均匀度 3.3.2 固化时间与温度的影响 3.3.3 活性稀释剂的用量 第4章结论与展望 4.1结论与展望 参考文献

第1章概述 1.1 玻璃纤维增强环氧树脂复材的研究现状 EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。 1.2 本次试验的目的及方法 实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。目的在于1,了解材料科学实验所涉及到的设备的基本使用。 2,掌握环氧树脂固化体系的配置及设计。 3,对手糊成型操作了解,及查找文献完成论文的能力。 就此要求我们第2组采用环氧树脂E-44,20cm×20cm的玻璃纤维布15张,用咪唑固化剂并加入稀释剂防止体系过粘。通过查阅相关文献,确定咪唑固化环氧树脂的最佳固化条件:60℃/2h+80℃/2h,制备了玻璃纤维增强环氧树脂复合材料,之后将制备的样品进行力学性能测试,其层间剪切强度为5.750Mpa,弯曲强度为127.64Mpa。

氰酸酯树脂增韧改性

氰酸酯树脂增韧改性 【摘要】氰酸酯树脂(CE)的优良力学性能、电性能、热性能等,使其在尖端领域具有极大的潜力。但是由于其结晶度高,交联密度大,韧性差,限制了氰酸酯树脂的发展。本文从增韧改性CE角度出发,介绍了近几年增韧改性氰酸酯树脂的的方法及研究成果。包括(热固性树脂改性CE、热塑性树脂改性CE、橡胶弹性体改性CE和纳米无机材料改性CE等),并着重阐述了其增韧机理。 【关键词】氰酸酯树脂,增韧改性,增韧机理 1,引言 氰酸酯(CE)是20世纪60年代由一些学者从立构受阻酚中分离得到的一类有机单体,之后人们陆续开发出一系列人工合成的芳基CE和烷基CE,并对此领域进行了大量研究。氰酸酯是指分子中含有两个或两个以上氰酸酯官能团(-OCN)的酚类衍生物,结构通式为NCO-R-OCN,其中R为直链烷基或含有苯环的烷基,由于结构中的氧原子、氮原子的电负性接近,其结构是共振结构:-OCN,碳、氮原子之间的Π键的键能较低,易断裂,故-OCN具有较高的活性。氰酸酯树脂常温下多为固态或半固态,可溶于常见的溶剂(如丙酮、氯仿、四氢呋喃、丁酮等)且与增强纤维(如玻璃纤维、kevlar纤维、碳纤维、石英纤维以及晶须等)有良好的浸润性、表现出良好的粘结性、涂覆性以及流变学特性。氰酸酯树脂收缩率较低,吸湿率小于1.5 %,电学性能好,介电损耗角正切值低,仅为0.002~0.008,介电常数为2.8~3.2,具有良好的阻燃性。此外氰酸酯树脂还具有优良的力学性能,其弯曲强度和弯曲模量高于双官能团环氧树脂,弯曲模量介于双马来酰亚胺和多官能团环氧树脂之间,玻璃化转变变温度(Tg)较高,为240~280 ℃,并且改性后可以在170 ℃左右进行固化。所以氰酸酯树脂经常用于尖端领域,如航空航天、印刷电路板、雷达罩、医学器材、工程结构、粘胶剂、导弹材料等。 尽管氰酸酯树脂具有很多优异的性能,但是由于氰酸酯树脂网络结构中含有大量的芳香环,结晶度高,交联密度大,所以其固化物脆性较大,在作为结构材料(尤其是主受力结构材料)使用时,其韧性(包括相应复合材料的损伤容限)常常不能满足要求,限制了氰酸酯树脂的推广,急需增韧改性。本文介绍了近年来CE树脂增韧改性的研究进展,热塑性树脂[如聚苯醚(PES)、聚碳酸酯(PC)等]改性,热固性树脂[如环氧树脂(EP)、双马来酰亚胺树脂(BMI)、有机硅树脂等]改性,橡胶弹性体改性和纳米无机材料改性等。 2,CE树脂增韧改性方法 2.1,热塑性树脂增韧改性 热塑性树脂对氰酸酯树脂的玻璃化温度影响较小,可以增韧,增韧后树脂耐热性降低。由于热塑性树脂的分子量较大,粘度较大,加工工艺性变差。通常大多采用热熔共混法进行改性,树脂由均相变成相分离,形成半互穿聚合物网络。随着热塑性树脂含量的增加,固化体系出现了相分离(CE为连续相,热塑性树脂为连续相)、共连续相及相反转(热塑性树脂为连续相,CE为分散相),热塑性树脂由于在CE中富集或形成连续相从而有效地阻止了微裂纹的产生和扩展,故能有效地改善CE体系的韧性。通常选择玻璃化温度高、力学性能优良的非晶态的热塑性树脂与氰酸酯树脂进行共混,从而达到增韧的目的。 Lin Chao[1]等人利用带有羟基和氨基基团的聚苯醚环氧微球对双酚A氰酸酯树脂进行增韧。发现当聚苯醚环氧微球的含量达到5 wt%的时候,BADCy/MS的冲击强度和弯曲强

氰酸酯改性

?氰酸酯树脂的改性及其反应机理的研究 ?1.前言 氰酸酯(CE)树脂固化后形成三嗪环结构,再加上大量的芳香环、芳杂环结构使其具有优良的力学性能、较高的玻璃化转变温度(Tg)一般在230℃以上;由于三嗪环结构高度对称,分子偶极距达到平衡,极性很弱,因而CE具有极低的介电常数(ε=2.6)和介质损耗因数(tan δ=0.002-0.007)且在很宽的频率范围内(1MHz -lOGHz)介电性能稳定;CE还具有优良的粘接性能和良好的溶解性能,可以在177℃下固化,且在固化过程中无挥发性低分子物产生,主要应用于航空、航天及微电子工业,近年来在印制电路工业备受青睐。虽然CE具有上述优异的综合性能,但是由于CE聚合后的交联密度大,加上分子中三嗪环结构高度对称,结晶度高,致使固化物较脆,因此需提高其韧性和工艺性并降低成本。目前氰酸酯增韧改性的方法很多,主要有热固性树脂增韧、热塑性树脂增韧、橡胶弹性体增韧、晶须增韧等手段。 2.热固性树脂改性CE 2.1环氧(EP)树脂改性CE CE可与EP发生共聚反应,生成氰脲环、异氰酸酯环、唑烷环及三嗪环等,一般认为他们的共聚存在三个阶段:氰酸酯首先三聚为芳香基聚氰酸酯,而后与环氧基反应,烷基化而成的直链基聚氰酸酯可以异构化为聚异氰酸酯,聚异氰酸酯进一步与环氧基反应生成恶唑啉烷酮;EP发生聚醚化反应,因此CE/EP改性体系既能形成大量的三嗪环,又能与EP共固化而形成交联网络,在保留CE固有优点的同时提高了材料的力学性能。以最常用的双酚A型氰酸酯而言,其与EP的反应过程如下式所示。 Sunil K 等分别用不同官能度的三种EP:Epon 828、DEN 431(一种三官能度的诺夫拉克树脂)、MY 720(一种四官能度氨基缩水甘油醚)和AroCy L1O型CE在催化剂作用下共聚,研究了体系的吸湿性。与普通环氧相比,CF/EP共聚体系具有高Tg、低吸湿性、低介质损耗和低粘度、低毒性的优点。发现AroCy L10/ Epon828树脂体系吸湿性最小,AroCy L10/ MY 720体系吸湿性最大,随着环氧基官能度由2增加至4,吸湿率由1.76%增大至3.77%。

树脂基复合材料的应用与发展

树脂基复合材料的应用与发展 姓名 (材料与冶金学院,金属材料工程10-1班,1012345678) 摘要:树脂基复合材料是以树脂为基体,纤维或其织物为增强体的复合材料。 是航空航天研究中一种不可缺少的复合材料。本文通过对树脂基复合材料的各方面的介绍,浅谈自己对树脂基复合材料的些许了解以及本人的一些看法和建议,旨在呼吁大家了解树脂基复合材料,以便有益于其在未来的研究和发展。 关键字:树脂基复合材料、应用、发展。 正文: 1 树脂基复合材料的基本概念 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。是具有所含材料的优点和特点的一种混合物,应用广泛,功能强大。树脂基复合材料是复合材料中的一种基体材料,其所涉及范围之广大,功能作用之强大,世人有目共睹。由于树脂基复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展 2 树脂基复合材料的成型方法 树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。现且以手糊成型、RTM成型、喷射成型为例作简单介绍。 2.1 手糊成型 目前我国还是以手糊成型为主,手糊成型在树脂基复合材料成型中约占80%。其工艺过程是依次在模具表面上施加脱模剂、胶衣、一层粘度为0.3-0.4PaS 的中等活性液体热固性树脂(须待胶衣凝结后)、一层纤维增强材料,纤维增强材料有表面毡、无捻粗纱布(方格布)等几种。以手持辊子或刷子使树脂浸渍纤维增强材料,并驱除气泡,压实基层。铺层操作反复多次,直到达到制品的设计厚度。树脂因聚合反应,常温固化,可加热加速固化。 2.1.1 手糊成型工艺的优点 a)不受尺寸,形状的限制; b)设备简单,投资少; c)工艺简单;

树脂基复合材料的性能特点5页

树脂基复合材料的性能特点 树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:(1)各向异性(短切纤维复合材料等显各向同性); (2)不均质(或结构组织质地的不连续性); (3)呈粘弹性行为; (4)纤维(或树脂)体积含量不同,材料的物理性能差异; (5)影响质量因素多,材料性能多呈分散性。 树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。 复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。 混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。 树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。

树脂基复合材料

树脂基复合材料的研究进展 摘要: 树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。关键字:树脂基复合材料,材料性能,应用领域 一、前言 复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。 树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。(2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。 以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并逐渐成为主要应用领域,且研究投入越来越大。树脂基复合材料除在航空航天、国防科技领域应用外,其他行业领域的应用也十分广泛。 二、综述树脂基复合材料的应用 目前常用的树脂基复合材料有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。随着复合材料工业的迅速发展,树脂基复合材料以其优越的性能和特点将应用于各个领域。以下将简介树脂基复合材料的应用。 2.1热固性树脂基复合材料的应用 复合材料的树脂基体,目前以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F-4、F-11等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米

相关文档