文档库 最新最全的文档下载
当前位置:文档库 › 风力发电课程设计(2020年10月整理).pdf

风力发电课程设计(2020年10月整理).pdf

风力发电课程设计(2020年10月整理).pdf
风力发电课程设计(2020年10月整理).pdf

榆林学院

专业综合实训

题目风力发电系统设计学生姓名任刚

学号 1305310111

院 ( 系 ) 能源工程学院专业能源与动力工程指导教师胡广涛

报告日期 2016年 12 月23日

风力发电系统设计 (1)

引言 (1)

1设计概述 (2)

1.1风力发电的意义 (2)

1.2明确风力发电系统设计的要求和条件 (2)

1.3风力发电系统设计方案的拟定 (3)

1.3.1风力发电机的类型及选择原则 (3)

1.3.2风电场类型 (3)

1.3.3安装地点 (4)

2风力发电系统结构组成设计 (4)

2.2风力发电系统设计参数 (5)

2.2.1风力发电机类型选择 (5)

2.2.2 风力机的功率 (6)

2.2.3控制方式 (6)

2.2.4最大功率追踪 (7)

3.1风力机设计计算 (7)

3.1.1叶片设计计算 (7)

3.1.2轮毂选型 (7)

3.1.3塔架设计计算 (8)

3.1.4齿轮箱的选择确定: (9)

3.1.5机舱设计 (9)

3.2控制系统选型设计 (9)

3.3变流器功率选择: (10)

3.4逆变器选型计算 (11)

3.5接触器的选择: (11)

3.6熔断器的选择: (12)

3.7传感器、继电器的选择: (12)

4设计体会 (12)

5主要参考文献 (13)

风力发电系统设计

引言

自然界的风,是由于大气运动而产生的自然形式。大气运动则是因为大气受到太阳的辐射,能量来源于大气吸收的部分太阳能,太阳到达地球辐射的20%会转变成风能。人类对于风能利用的历史久远,可以追溯到公元10世纪,波斯就出现了种水平转动的风磨,即为以风车为动力的磨坊。风能是种取之不尽、用之不竭的可再生能源之一。它的特点是生产运用过程安全清洁,成本花费较低,来源不受限制。风能也是种最具商业潜力,最具发展活力的绿色能源,运用于发电这一领域有很大的运用空间。

风电是目前技术最成熟、最具市场竞争力且极具发展潜力的可再生清洁能源,发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着及其重要的意义。

风力发电具有装机容量增长快,成本下降快,安全环保等优势。风力发电在为社会发展和经济增长提供稳定可靠的电力供应的同时,可以有效地缓解空气污染、水体污染和温室效应问题。在各类新能源开发利用中,风力发电技术相对于其他能源开发是比较成熟的,并且具有大规模场地开发和商业经济开发的条件。风力发电可以完全避免像石油、煤炭等化石燃料发电所产生的大量污染物和二氧化碳排放。

我国的风能资源分布:我国风能资源的地区区域差异大。沿海、内蒙古和甘肃北部、黑龙江南部和吉林东部三个区域风能最多;青藏高原中部和北部、西北、华北、东北三区域的北部,东南沿海的风能资源丰富;山区,例如南岭、武夷山地区,辽河、华北、长江中下游平原、西北高原地区,风能可待开发利用;云贵川陕西、豫西、鄂北、湘西、福建广东,盆地地形区等风能贫乏。我国风能资源的分布除了具有空间上的差异以外,在时间上也有很大的差异。东部沿海地区,夏季风势力强劲,风能资源主要集中在夏季。而北方以及西北内陆地区,冬季风势力强劲,所以这些地区风能资源主要集中在冬季。海上风电场是最近世界范围内广泛推广使用的大型有效利用风能资源的

形式,在1980年初在美国加利福尼亚首先兴起。在海陆线附近由于陆地、海洋吸热量差异大,表体温度差异大而产生丰富的风能资源,风力强大,可以大规模采取进行发电。不过在海陆线上建设风力发电厂还存在技术的难度,需要投入巨额资金装备和维护,所以在美国,德国,中国等这样的大国才进行投产建设。

1设计概述

1.1风力发电的意义

随着电力和能源改革逐步深入,在国家倡导节能减排的大背景下,风

力发电成为新能源开发利用的重要领域。在有风力资源的地区,建设小型

风力发电或风光互补独立电站(集中供电系统或户用系统)成为为小型负

荷供电一种新选择。研究中小型风力发电系统的设计显得十分必要。

1.2明确风力发电系统设计的要求和条件

在烟台地区设计一个装机容量100KW的风电场,一台风力发电机的功率为10KW,需要10台风机。

中小型风力发电机一般应在风力资源较丰富的地区使用。烟台地区气象设计参数:如表:2014

2003年烟台市,全市平均气温

~

由此可得,历年平均气温为7.

12℃年平均温度(℃):12.7最高温度(℃):38最低温度(℃):-12.8平均风速(m/s):5.0 通过查取风功率密度等级表,得知烟台地区风功率密度为200~2502

/

W m(高度为30米)、W m(高度为10米)、320~4002

/

400~5002

W m(高度为50米)

/

1.3风力发电系统设计方案的拟定

1.3.1风力发电机的类型及选择原则

风力发电机组是将风能转化为电能的装置,按其容量可大小以划分为小型风电机组(10KW以下),中型风电机组(1划分为水平轴0~100KW),大型风电机组(100KW以上);按其主轴与地面的相对位置,可以风力发电机组(主轴与地面平行),垂直轴风力发电机组(主轴与地面垂直)。

目前国内一些厂家研发生产采用永磁同步发电机的风机,由于永磁同步电机容易实现多极化,可省去或简化齿轮增速箱结构,其叶轮主轴与发电机可以直接祸合,不经齿轮增速而直接驱动发电机,因此这类风机又称为直驱(半直驱)式。直驱式风机由塔架、轮毂、桨叶、发电机、变频器、偏航系统、液压系统和电气控制等组成。直驱式风机均采用低速永磁同步发电机。

本设计考虑采用永磁同步发电机。

1.3.2风电场类型

并网型:接入电力系统运行,规模较大的风力发电场。

本设计选“并网型”风力发电,可以省去蓄电池等储能装置。选

用同步发电机间接并网方式,电压经历了交流—直流—交流的变化,避免了同步发电机直接并网可能出现失步的问题。

1.3.3安装地点

安装地点的确定主要就是风资源和具体安装位置选择。风能资源丰富,具有较稳定的风向,风力发电机尽可能的装在风向和风速比较稳定,季节变化比较小的地方,湍流小,自然灾害小。

根据设计的要求,主要设计内容拟包括风力发电机组控制系统中的偏航系统、齿轮箱系统、液压系统、温度控制等。最早最简单的风力发电机由叶轮和发电机两个部分组成,站立于一定高度的塔上。由于外界因素影响风很不稳定,这类风力发电机电压、频率差异很大且效率低下,没有实际运用价值。所以在原有的基础上,增加了偏航系统,齿轮箱,控制系统,停机系统等部件更加有效地使用风能。

2风力发电系统结构组成设计

2.1风力发电系统原理及结构组成

风力发电机是一种将风能转换为电能的能量转换装置,主要包括风力机和发电机。空气流动的能动作用在风力机风轮上,从未推动风轮旋转,将空气动力能转换风轮的机械能,通过传动装置,发电机将机械能转换为电能,输送给电力系统。

风力发电系统的组成:风轮(风能转化为机械能的核心部件)、发电机、传动机构、偏航系统、限速安全机构、制动装置、机舱和塔架等。

在现有技术基础上大致可以把一个普通的风电机分为四大部分:风轮组件,机舱组件,塔架组件以及控制部分。

2.2风力发电系统设计参数

2.2.1风力发电机类型选择

本设计选取水平轴螺旋桨式风力机。

水平轴风力机主要由风轮、塔架、对风装置、齿轮箱组成。

(1)风轮:由1~3个叶片组成,这是吸收风能的主要部件。当风轮旋转时,叶片受到离心力和气动力的作用,离心力对叶片是一个拉力,而气动力使叶片弯曲。当风速高于风力机的设计风速时,为防止叶片损坏,需对风轮进行控制,控制风轮有三种方法:a,使风轮偏离主方向;b,改变叶片角度;利用扰流器,产生阻力,以降低风轮转速。

(2)塔架:为了让风轮能在较高的风速中运行,需要塔架把风轮支撑起来。这时塔架需要承受两个主要的载荷:一个是风力机的重力,向下压在塔架上;另一个是阻力,使塔架向风的下游方向弯曲。选择塔架时要必须考虑其成本,根据实际情况而定。

(3)对风装置:自然界的风向及风速一直变化,为了得到较高的风能利用率,应使风能的旋转面经常对准风向为此需要对风装置。小型风力机的对风装置,利用尾舵控制对风。由尾翼带东水平轴旋转,是风轮总朝向风吹来的方向。

(4)齿轮箱:由于风轮的转速比较低,而且风力的大小经常变化着,这又使得转速不稳定。所以,在带动发电机之前,还必须附加一个齿轮箱,再加一个调速装置使得转速保持稳定,然后在连接到发电机上。齿轮箱的主要作用是将风轮在风力作用下所产生的动力传递

给发电机,通过齿轮副的增速作用使其得到相应的转速。在装机是应使其与轮毂相连。为了增加齿轮箱的制动能力,在齿轮箱的输入端或输出端设置刹车装置配合叶尖制动装置实现联合制动。

2.2.2 风力机的功率

风的动能和风速的平方成正比,功率是力和速度的乘积,也可用于风轮功率的计算。风力与速度平方成正比,所以风的功率与风度的三次方成正比。如果风速增加一倍,风的功率便会增加8倍。

风轮从风中吸收的功率如下:

3p P C A v ρ= 2A R π=

式中:P 为输出功率,

p C 为风轮机的功率系数,ρ为空气密度, ρ为空气密度, R 为风轮半径, v 为风速。

众所周知,如果接近风力机的空气全部动能都被风力机全部吸收,那么风轮后的空气就不动了,然而空气当然不能完全停止,所以风力机的效率总是小于1。

2.2.3控制方式

(1)偏航系统的控制方式:

偏航系统用于在风向变化时,可以保证风轮跟着转动,一般由风向传感器和伺服电机组合而成。

并网型风力发电机组采用主动偏航的齿轮驱动形式。

(2)变桨系统的控制方式: 所以,选用电机驱动。

2.2.4最大功率追踪

叶尖速比控制算法:

为了表示风轮机运行速度的快慢,通常采用叶尖速比来表征,计算公式如下: V

Rn V R

602πωλ== (2-3) 其中: λ—为叶尖速比,n —风轮机转速, ω—风轮机旋转角速度, R —风轮机半径, 最佳叶尖速比控制算法是保持风轮机的叶尖速比始终在最优值处,从而使风力发电机输出功率最大值。

3设备计算及选型

3.1风力机设计计算

3.1.1叶片设计计算

风轮半径:

R = (3-1) 式中:P ——一台风力机功率,W ρ——空气密度,取1.2353/kg m v ——风速,m/s P C ——功率系数

解得R=5.98m 风轮的转速:60v n D

λπ=

(3-2) 式中:λ—叶尖速比,取值6

解得:n =67.07r/min

3.1.2轮毂选型 风轮轮毂是连接叶片与风轮转轴的部件,用于传递风轮的力和力矩到后面的机构。轮毂通常由球墨铸铁制成。主要有三种结构:

(1)固定式轮毂:三叶片风轮大多采用固定式轮毂,制造成本

低,维护少,不存在磨损问题。

(2)叶片之间相对固定的铰链式轮毂,驱动力距变化很大产生很大噪音,风轮具有阻尼器的作用。

(3)各叶片自由的铰链式轮毂,风轮可保持恒速运转。

综合考虑本设计轮毂选用固定式。

3.1.3塔架设计计算

塔架高度:

塔架高度要满足风机叶片运转的要求,而且要考虑经济方面的因素,塔架一般高度为:

=++(3-3)

H h C R

式中:h—接近风轮叶片的地面障碍物的高度,m

C—风轮叶扫落到障碍物最高点的距离1.5~2m 解得:H=12m

塔架结构:

根据塔架最大承受的载荷及风能资源利用效率、成本的综合比较选择塔架的高度、材料及结构。

塔架设计参数如下:

3.1.4齿轮箱的选择确定:

由上述求得:m D 28.11= 所以:

2748.2528.514.322m R A =??==π (3-4)

其中:A -为扫风面积,2m ;R -为风轮半径,m ; 所以,风力机的有效功率为:3121AV C P p ρ= (3-5) W P 43.56771000748.25225.136.0211=????=

取齿轮箱效率为95.0,则:

齿轮箱的增速比为:43

.56771000010P P n n i == (3-6) min /2.20543.56775.116100000r n =?= 齿轮箱前段低速轴由风轮驱动,而输出端高速轴与发电机轴连接。

3.1.5机舱设计

机舱一般包容了将风轮获得的能量进行传递、转换的全部机械和电气部件。机舱多为铸铁结构,或采用带加强筋的板式焊接结构。设计机舱要求尽可能减小机舱质量而增加其刚度;兼顾舱内各部件安装、检修便利与机舱空间要紧凑,满足通风、散热、检查等维护需求,机舱对流动空气的阻力要小。

水平轴风力机常采用单级或多级定轴线直齿齿轮或行星齿轮增速器。

3.2控制系统选型设计

ZK460-W 12/10型控制器主要用于风电系统组成的供电网络,

控制器操作比较简单,性能可靠。风机可接最大容量为12kW

技术参数如表3—2所示:

整个控制器的主要组成部分有:液晶显示器、指示灯、显示仪表、内部接线、

内部操作开关和泄荷器等。

3.3变流器功率选择:

变流器将主发电机发出来的电能整流成直流电,在逆变成与电网匹配的交流电,电能谐波少,质量高。

变流器的功率通常为风电机组的额定功率的1/2~1/3,考虑到风电机组的可靠性,通常为风电机组额定功率的1/2。

由此得:

kw 52

1==P P 变

3.4逆变器选型计算

用于风力发电的逆变器输出交流电的频率为50Hz。

逆变开关电路是逆变器的核心,它通过半导体开关器件的导通与关断完成逆变的功能。完整的逆变电路由主逆变电路、输入电路、输出电路、控制电路、辅助电路和保护电路组成。

选用逆变器的型号为;GNW12K3G—CN(致远公司产)主要参数如表3—4所示:

3.5接触器的选择:

发电机的开关使用交流接触器。选用西门子的3TB系列接触器。

电机的过载保护需要使用继电器进行保护。选用继电器型号为LCD-84发电机差动型,它适应于大型交流发电机差动保护电路中。

3.6熔断器的选择:

熔断器保护作为电路过载保护最常用的一个手段运用于本文各个电路模块中。在发电机处可以选用型号为LMZD2-20的高压熔断器;偏航、变桨距以及温度控制模块选用RT18低压熔断器。

3.7传感器、继电器的选择:

风速风向传感器使用PH100SX型号[12]。温度传感器选用PT100风管式温度传感器。

4设计体会

通过这次风力发电设计,让我了解了风力发电系统发电的基本原理和系统组成,学到了很多风电场建设的相关知识。设计过程中掌握了风电系统的运行过程,对风力发电有了更进一步的深入了解。通过这次设计让我懂得了理论和实践相结合的重要性。虽然在设计的过程中出现了一些问题,发现了自己在这方面知识的欠缺,如在选型计算中,自己设计考虑的因素毕竟有限,得出的计算结果和选用的部件会有一定的误差。

其实这次的风力发电系统设计要计算的包括很多方面,但是由于对风力发电系统没有过实体的考察,很多比较材料系数,及结构组成、当地的风资源情况方面不是很清楚,所以不是做的很详细。我个人觉得课程设计相当于模拟训练,实战演习,我们每一位同学也转而变成了研究院里的一名设计师,承包了一项大工程,从实地考察到确定设

计方案,从设计计算到施工绘图每个过程我们都要认认真真,实事求是,本着负责谨慎的态度,使我们的设计合理实用,经济舒适。尽管如此,由于理论知识储备不足和实践经验的严重缺乏,设计中不可避免地出现了各种错误。还好我们有所认识,有所领悟,我们会在以后的工作中加以改正,补充不足。不管怎样,课程设计还算顺利,能够按时完成。

实践出真知。失败是成功之母。从错误中吸取经验和教训,保证以后不再犯类似错误。经验丰富了,知识也就成熟了。随着课程设计的不断深入,我也逐渐发现自己所学的专业知识不够用,对风力发电系统、控制系统、并网系统的了解并不透彻,总之有许多不足。通过这次设计,我确实提高了各方面的能力,增长了许多知识,积累了丰富的经验,对以后的工作有很大的帮助。

在此谢谢指导老师和同学们的悉心教导和帮助。

5主要参考文献

1.《风电场工程技术手册》,宫靖远主编,机械工业出版社

2.《风能技术》,[美] Tony Burton 等著,武鑫译,科学出版社

3.《中国风资源测量和评估实务》,高虎,刘薇,王艳等编著,化学工业出版社

4.《风能—可再生能源与环境》,[美]Vaughn Nelson著,李建林肖志东等译,人民邮电出版社

5.《风能技术与应用》,钱伯章编,科学出版社

6.《风能利用技术》,郭新生编著,化学工业出版社

7《风能利用技术》,化学工业出版社,郭新生主编

8《电力电子技术》,机械工业出版社,杨耕主编

9《风能与风力发电技术》,化学工业出版社,张志英主编10《风力发电》,中国电力出版社,王承熙主编

风力发电场课程设计报告

课程设计(综合实验)报告( 2014 -- 2015 年度第1学期) 名称:风力发电场 院系:可再生能源学院 班级:风能1101班 学号: 学生姓名: 指导教师:韩爽刘永前 设计周数:2周 成绩: 提交日期:2014 年1月23 日

目录 一、课程设计目的 (1) 二、课程设计任务 (1) 三、课程设计要求 (1) 四、课程设计内容 (1) (一)测风数据处理 (1) (二)导入文件准备 (2) (三)W AsP软件计算 (3) 1.New Projection建立以及场址地图导入 (3) 2.风图谱的计算 (3) 3.测风塔的选定 (4) 4.宏观选址与风资源预测 (6) 5.Wind farm的建立与微观选址 (6) 6.风电场年发电量预测 (7) (四)WindFarmer优化计算 (9) 1.建立文件向导 (9) 2.载入地图文件 (10) 3.载入风资源数据 (10) 4.在栅格区域确定计算边界 (11) 5.安插风机 (12) 6.载入风力发电机机型文件 (13) 7.优化计算 (13) 8.生成报告 (14) (五)计算结果分析对比 (20) 1.年发电量 (20) 2.布机图 (21) 3.分析 (22) 五、课程设计个人总结 (22)

一、课程设计目的 通过使用W AsP、WindFarmer等软件,掌握风电场风能资源评估、微观选址原理及方法。 二、课程设计任务 根据风场测风数据及地形图,分别使用W AsP和WindFarmer软件,进行风资源评估和微观选址。具体包括: 1.对给定的风场测风数据进行处理; 2.使用经过处理后的测风数据,进行风资源评估,得到风图谱; 3.依据微观选址的基本原则,进行优化布机; 4.对两套不同软件的计算结果进行对比分析; 5.撰写设计报告。 三、课程设计要求 1.掌握风资源评估和微观选址的基本原理和方法; 2.掌握上述软件的使用方法; 3.独立撰写设计报告。 四、课程设计内容 (一)测风数据处理 分别选取各组数据,查看平均风速,70米高度处平均风速分别为7.574m/s 和 6.535m/s,在其他各高度处读出的平均风速分别为7.475m/s、7.219m/s、 6.897m/s、6.223m/s。由此判断70米高度处数据有一组异常。选取该组数据,应 用表格数据栏里的筛选功能,只选取0.3m/s、0.4m/s两个值,发现其他组数据有相应变化的风速,而该组数据始终为0.3m/s、0.4m/s。 删除异常数据,利用Windographer软件打开剔除后的测风数据,在相关性一栏查看两组70米高度处的数据相关性,得到相关性公式,在表格中利用该公式计算出需要修正的数据。至此,异常数据处理完成。 图4.1.1 测风数据

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

风电考试题

一、简答题 ★1、哪一个力产生使叶轮转动的驱动力矩? 答:升力使叶片转动,产生动能。 ★2、说出用于定义一台风力发电机组的4个重要参数。 答:轮毂高度、叶轮直径或扫掠面积、额定功率、额定风速。 ★3、简述风力发电机组的组成。 答:大型风力发电机组一般由风轮、机舱、塔架和基础四个部分组成。 ★4、风力发电机组产品型号的组成部分主要有什么? 答:风力发电机产品型号的组成部分主要有:风轮直径和额定功率。 ★5、什么叫风速? 答:空间特定的风速为该点周围气体微团的移动速度。 ★6、什么叫平均风速? 答:给定时间内顺势风速的平均值,给定时间从几秒到数年不等。 ★7、什么叫额定风速? 答:风力发电机达到额定功率输出时规定的风速。 ★8、什么叫切入风速? 答:风力发电机开始发电时的最低风速。 ★9、什么叫水平轴风力发电机的轮毂高度? 答:从地面到风轮扫掠面中心的高度,叫水平轴风力发电机的轮毂高度。 ★10、什么是风力发电机的控制系统? 答:接受风力发电机信息和环境信息,调节风电机,使其保持在工作要求范围内的系统。 ★11、什么叫水平轴风力发电机? 答:风轮轴线基本上平行于风向的发电机。 13、什么叫风力发电机组的额定功率? 答:在工作条件下,风力发电机组的设计要达到的最大连续输出电功率。 ★14、什么叫风力发电机组的扫掠面积? 答:垂直于风矢量平面上的,风轮旋转时叶尖运动所产生园的扫掠面积。 ★15、什么叫风力发电机组的浆距角? 答:在指定的叶片径向位置(通常为100%叶片半径处)叶片玄线与风轮旋转面间的夹角。 ★16、在风力发电机组的机械刹车最常用的形式是哪几种? 答:在风力发电机组中,最常用的机械刹车形式为盘式、液压、常闭式制动器。 ★17、风轮的作用是什么? 答:风轮的作用是把风的动能转换成风轮的旋转机械能。 ★18、风电机组的齿轮箱常采用什么方式润滑? 答:风电机组的齿轮箱常采用飞溅润滑或强制润滑,一般以强制润滑为多见。 ★★21、风形成的主要因素是什么? 答:地球表面受热不均使得赤道区的空气变热上升,且在两极区冷空气下沉,引起大气层中空气压力不均衡;地球的旋转导致运动的大气层根据其位置向东方和西方偏移。 ★★22、风力发电的经济效益主要取决于哪些因素? 答:风力发电的经济效益主要取决于风能资源、电网连接、交通运输、地质条件、地形地貌和社会经济多方面复杂的因素。 26、简要说明并网风力发电机组的发电原理。 答:并网风力发电机组的原理是将缝中的动能转换成机械能,再将机械能转换成电能,以固定的电能频率输送到电网中的过程。

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

风力发电机组设计与制造课程设计报告

《风力发电机组设计与制造》 课程设计报告 院系:可再生能源学院 班级:风能0902班 姓名:陈建宏 学号 指导老师:田德、王永 提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数; 3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数;

4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机基本 参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种关键 零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。 4、进度计划

风力发电机用专业英语中文对照

风力机 wind turbine 风电场 wind power station wind farm 风力发电机组 wind turbine generator system WTGS 水平轴风力机 horizontal axis wind turbine 垂直轴风力机 vertical axis wind turbine 轮毂(风力机) hub (for wind turbine) 机舱 nacelle 支撑结构 support structure for wind turbine 关机 shutdown for wind turbine 正常关机 normal shutdown for wind turbine 紧急关机 emergency shutdown for wind turbine 空转 idling 绝对湿度 absolute humidity 加速试验 accelerated test 加速 accelerating 加速度幅值 acceleration amplitude 验收试验 acceptance test

精度(风力发电机组) accuracy(for WTGS) 确认 acknowledgement 声的基准风速 acoustic reference wind speed 临界功率 activation power(for wind turbines) 临界转速 activation rotational speed 有功电流 active current 有功功率 active power 主动偏航 active yawing 齿轮的变位 addendum modification on gears 地址 address 可调钳 adjustable pliers 调整板 adjusting plate 风轮空气动力特性 aerodynamic characteristics of rotor 气动弦线 aerodynamic chord of airfoil 老化试验 ageing tests 空气制动系 air braking system 空气湿度 air humidity 透气性 air permeability 翼型 airfoil 接闪器 air-termination system 告警 alarm 交流电流 alternating current 交流电机 alternating current machine 交流电压 alternating voltage 海拔 altitude 环境温度 ambient temperature 放大器 amplifier 幅值 amplitude

风力发电系统控制技术发展历程

摘要 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。在风力发电系统中需要解决的基本矛盾是如何在风速变化的情况下,获得较稳定的电压输出。既要考虑到风能的特点,又要考虑到用户的需要,达到实用、可靠、经济的运行效果,关键环节之一就是要有一个稳定、可靠、功能齐全的控制系统。 本文介绍了世界风力发电控制系统的发展历程和我国的研究现状以及对风力发电系统控制技术的前景分析。分析并得出风力发电系统中,控制系统是确保机组安全可靠运行、优化机组效率的关键。关键词:风力发电、控制系统技术、发展历程。

目录 第一章风力发电技术的前景 (1) 第二章风力发电系统控制技术的介绍 (3) 一风电控制系统简述 (4) 二风力发电控制技术的发展历程 (4) 三控制目的 (5) 结束语 (6) 参考文献 (7)

风力发电系统控制技术发展历程 第一章风力发电技术的前景 人类对于风能的开发利用也很早就开始了。但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。五十年代后期有过一个兴旺时期,吉林、辽宁、内蒙古、江苏、安徽和云南等省都研制过千瓦级以下的风车,但是没有做好巩固和发展成果的工作。七十年代后,随着国民经济的较快发展出现了能源供应紧张、环境污染严重等现象,另外由于科技意识日渐深入人心,可再生无污染的风能利用受到了足够的重视。在浙江、黑龙江、福建研制出了较大功率的机组;内蒙古的有关单位研制的小型风力发电机已有批量生产,用于解决地处偏远、居住分散的农牧民住户、蒙古包的生活用电和少量生产用电。八十年代以来,风力发电在我国得到了相应的发展。目前微型(<1KW)、小型(1-10 KW)风力发电机的技术日渐成熟,已经达到商品化程度。同时大型风力发电机组(600 KW)也研制成功,并已投入了运行。此外,从国外引进了大型风力发电机组建设了20余个风电场。总装机容量达到了近25MW。从统计资料来看,在我国风能利用与风力发电技术虽然有了一定的进展,与国外先进国家相比较仍然存在差距,尤其是在大型风力发电机组的开发与研制方面。 从统计资料来看,在我国风能利用与风力发电技术虽然有了一定

《风力发电技术》复习题

《风力发电技术》复习题 1、风能的大小与风速的成正比。(B) A、平方; B、立方; C、四次方; D、五次方。 2、风能是属于的转化形式。(A) A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 3、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。(D) A、平均功率; B、最大功率; C、最小功率; D、额定功率。 4、风力发电机开始发电时,轮毂高度处的最低风速叫。(D) A、额定风速; B、平均风速; C、切出风速; D、切入风速。 5、风能的大小与空气密度。(A) A、成正比; B、成反比; C、平方成正比; D、立方成正比。 6、按照年平均定义确定的平均风速叫。(C) A、平均风速; B、瞬时风速; C、年平均风速; D、月平均风速。 7、风力发电机达到额定功率输出时规定的风速叫。(B) A、平均风速; B、额定风速; C、最大风速; D、启动风速。 8、当风力发电机飞车或火灾无法控制时,应首先。(C) A、回报上级; B、组织抢险; C、撤离现场; D、回报场长。 9、风力发电机组开始发电时,轮毂高度处的最低风速叫。(B) A、启动风速; B、切入风速; C、切出风速; D、额定风速。 10、给定时间内瞬时风速的平均值叫做该时间段内的。(C) A、瞬时风速; B、月平均风速; C、平均风速; D、切出风速。 11、在变桨距风力发电机组中,液压系统主要作用之一是,实现其转速控制、功率控制。(A) A、控制变桨距机构; B、控制机械刹车机构; C、控制风轮转速; D、控制发电机转速。 12、风力发电机组规定的工作风速范围一般是。 (C) A、0~18m/s; B、0~25m/s; C、3~25m/s; D、6~30m/s。 13、在某一期间内,风力发电机组的实际发电量与理论发电量的比值,叫风力发电机组的。(A) A、容量系数; B、功率系数; C、可利用率; D、发电率。 14、风力发电机电源线上,并联电容器组的目的是。(C) A、减少无功功率; B、减少有功功率; C、提高功率因数; D、减少由有

风力发电课程设计

1.风力发电发展的现状 1.1世界风力发电的现状 近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。 到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。 欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。 有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。 1.2我过风力发电的发展现状 我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。 自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。 我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。 2 风力发电机 2.1恒速恒频的笼式感应发电机 恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。 恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。 2.2变速恒频的双馈感应式发电机 变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。 双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。 双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基 础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及 完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力 /m 的最方便最有价值的量;

《风电项目资料归档要求》

甘肃宏科工程监理咨询有限公司 风电项目资料归档要求 风电项目资料归档要求 一、总说明 通过我公司对风电场建设的监理经验结合以往对送变电项目的资料管理经验及质监站对资料的要求,在公司领导的指导下,新能源工作小组的组织相关人员编制了本要求,作为经验在我公司监理的风电场建设项目中建议推广使用。 本要求参考了电力行业规程对资料的要求、各大风电场建设单位对资料的要求、国家电网对资料的要求、各大风机厂商的一些检查验收标准,并在此基础上进行了总结,归纳和整理。 本要求编写时间仓促,掌握的资料带有一定的局限性,尚需不断完善。希望在风电场建设过程中,业主单位、施工单位及公司员工能够提出宝贵意见,特别是公司员工应注意收集这方面的资料及意见,并及时汇报新能源工作组,工作组将对本要求进行定期更新和及时的说明。二、归档要求 所有归档资料均应满足GB/T50326-20GG 《建设工程项目管理规范》、GB/T50328-20GG 《建设工程文件归档整理规范》及DL/T5191 一20GG《风力发电场项目建设工程验收规程》的要求。 1、监理及施工报审用表 用表监理单位、施工单位用表我们建议使用《标准化工作手册风电场建设工程分册》的监理分册(附件一)和施工分册(附件二)。在使用过程中,应根据升压站建设规模进行合理选择,可对部分表格进行取舍。 2、施工单位验评表式

风电场建设项目划分参考《风力发电场项目建设工程验收规程》。单位工程可按风力发电机组、升压站、线路、建筑、交通五大类进行划分,每个单位工程是由若干个分部工程组成的,它具有独立的、完整的功能。 2.1 土建验评部分 土建施工验评用表推荐使用《110kV —1000kV 变电(换流)站土建工程施工质量验收及评定规程》(Q/GDW183 —20GG )。 2.2 安装验评部分 2.2.1 升压站(开关站)电气安装仍使用20GG 年版《电气安装验评表式》。 2.2.2 风电机组安装工程竣工资料内容 2.2.2.1 单位工程的划分 风电机组安装单位工程是风电场单位工程的重要组成部分,风力发电机组安装是电力建设中的新内容也是风电建设的核心装置,目前尚未有相关规范、标准可执行或者借鉴。按照DL/T5191 一20GG《风力发电场项目建设工程验收规程》的规定,每一台风电机组为一个单位工程,包括风力发电机组基础分部工程、风力发电机组安装分部工程、风力发电机组监控系统分部工程、塔架安装分部工程、电缆安装分部工程、箱式变电站安装分部工程、风雷接地装置分部工程、风力发电机组验收、调试、试运行分部工程共八个分部工程。考虑到单台风机的验收、调试及试运行时间比较分散,为有利于单台风机的并网发电更早为业主创造效益,认为其作为风机单位工程的一个分部更加合适。风机调试及试运行从目前风电场建设情况来看,应由风机厂家提供验收报告、调试报告和试运行报告。风力发电机组单位工程项目划分表及单位、分部、分项工程验评表见附件三(不包括风力发电机组基础分部工程部分)。 鉴于目前风机部分设备的多样性,验评表中内容应视具体风机类型进行增加。为增强验评表的通用性,验评标准较多采用了“ 按设计规定”的表

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电技术题库

风力发电技术题库-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、填空题 整体认识 1、750风力发电机组采用(水平)轴、三叶片、(上)风向、定桨距(失速)调节、(异步)发电机并网的总体设计方案 2、单级异步发电机与齿轮箱之间采用了(膜片式)联轴器连接,该联轴器既具有(扭矩传递)功能,又具有(扭矩过载)保护作用 3、750机组设置了齿轮润滑油(加热装置),外接(强迫油冷却)装置、发电机(加热)除湿装置、散热系统等。 4、机组的软并网装置可将电流限定在额定值的(1.5)倍之内;机组的无功补偿装置可保证功率因数在额定功率点达到(0.99)以上。 5、整个机组由计算机控制,数据自动(采集处理)、自动运行并可远程监控。 6、750机组安全系统独立于(控制系统),包括相互独立、(失效保护)的叶尖气动刹车和两组机械刹车。 7、750机组的切入风速(4.0)m/s,额定风速(15)m/s,切出风速10分钟均值(25 )m/s 。 8、齿轮箱的弹性支撑承担着齿轮箱的全部重量。由于弹性支撑是主轴的一个(浮动)支点,也承担着主轴的部分重量。 9、S48/750机组叶轮转速是(22.3)rpm ,叶片端线速度(56) m/s 。 10、齿轮箱的齿轮传动比率是(67.9),润滑形式(压力强制润滑)。

异步发电机 1、原动机拖动异步电机, 使其转子转速n 高于旋转磁场的(同步转速),即使转差率s< 0, 就变成异步发电机运行。 2、风力发电机选用(H)级的绝缘材料。 3、异步发电机本身不能提供激磁电流,必须从电网吸取(无功励磁)功率以建立磁场 4、三相异步发电机的基本结构与三相异步电动机(相同)。 5、异步发电机输向电网的电流频率和它自身的转差率(无关)。 6、发电机基本参数 额定功率(750 ) kW 额定电压(690) V 额定电流(690) A 额定转速(1520) rpm 额定滑差(1.33) % 绝缘等级(H) 8、750kW风力发电机为卧式、(强迫)通风、三相铜条(鼠笼异步)发电机。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的围按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

相关文档
相关文档 最新文档