文档库 最新最全的文档下载
当前位置:文档库 › 南京理工大学616数学分析2010

南京理工大学616数学分析2010

南京理工大学616数学分析2010
南京理工大学616数学分析2010

深圳大学 《矩阵分析》教学大纲

《矩阵分析》教学大纲 英文名称:Matrix Analysis 一、课程目的与要求 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。本课程要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 二、学时/学分:60学时/3学分 三、课程内容及学时安排 (1) 线性空间与线性变换 10学时 理解线性空间的概念,掌握基变换与坐标变换的公式; 掌握子空间与维数定理,了解线性空间同构的含义; 理解线性变换的概念,掌握线性变换的矩阵表示。(不变子空间不作要求)(2) 内积空间 8学时 理解内积空间的概念,掌握正交基及子空间的正交关系; 了解内积空间的同构的含义,掌握判断正交变换的判定方法; 理解酋空间的概念,会判定一个空间是否为酋空间的方法,掌握酋空间与实内积空间的异同; 掌握正规矩阵的概念及判定定理和性质,理解厄米特二次型的含义。 (3) 矩阵的相似标准形与若干分解形式18学时 掌握矩阵相似对角化的判别方法;会求矩阵的约当标准形; 掌握哈密顿—开莱定理,会求矩阵的最小多项式; 会求史密斯标准形; 掌握正规矩阵及其酉对角化。 掌握多项式矩阵的互质性与既约性的判别方法,会求有理分式矩阵的标准形及其仿分式分解; 了解舒尔定理及矩阵的满秩分解、QR分解、奇异值分解及谱分解。 (4) 赋范线性空间10学时 了解赋范线性空间的及范数导出的度量,了解Lebsaque积分与L p空间; 掌握矩阵的各种范数定义、谱半径及其性质。, (5) 矩阵函数及其应用6学时 理解向量范数、矩阵范数及向量和矩阵的极限的概念; 掌握矩阵幂级数收敛的判定方法,会求矩阵函数; 会求矩阵的微分与积分; 了解矩阵函数在线性系统理论中的应用。 (6) 广义逆矩阵6学时 了解矩阵的Moore-Penrose广义逆及其性质 (7) 复习 2学时

南京理工大学分析测试中心仪器设备展示

南京理工大学分析测试中心仪器设备展示 X射线光电子能谱仪(XPS)简介 1.仪器名称:全自动聚焦扫描微区光电子能仪(XPS) 2.产品型号:PHI QuanteraⅡ 3.品牌:日美纳米表面分析仪器公司 4.产地:日本 5.主要技术指标 系统到达真空<5×10-10 torr; Ag样品XPS光电子能量分辨率Ag 3d 5/2 峰半高宽FWHM < 0.50 eV ; PET 样品XPS光电子能量分辨率C 1s的O=C-O峰半高宽FWHM < 0.85 eV ; 最小X射线斑束<9.0μm 在x方向;<9.0μm 在y方向; XPS灵敏度> 15kcps <10.0 μm 能量分辨率<0.60 eV 离子枪最大电流>5.0 μA @ 5 kV ; 6.仪器使用范围 电子能谱仪可以对固体样品的表面元素组成进行定性和定量分析,还可以对样品表面原子的化学态及分子结构进行分析研究。利用氩离子深度剖析技术和角分辨XPS技术,可以获得样品表面不同深度的组成变化情况。利用小束斑X射线,可以对样品表面进行微区分析和元素及化学态成像分析。利用原位处理反应池,可在不同温度及压力下对样品进行不同气氛的处理,以获得实际使用气氛对样品表面组成及状态变化的动态影响信息。 适用于高分子材料、催化、电化学、半导体、金属、合金以及生物医学材料等。

管理员:白华萍 X射线衍射仪(XRD) 一仪器型号:D8 ADVANCE 二制造厂商:德国布鲁克公司 三主要技术指标: 测量精度:角度重现性±0.0001°; 测角仪半径≥200mm,测角圆直径可连续改变; 最小步长0.0001°; 角度范围(2θ):-110~168°; 最大扫描速度或最高定位速度:1500°/分; 温度范围:室温~900℃; 环境压力:1mbar-10bar; 最大输出:18KW; 稳定性:±0.01%; 管电压:20~60kV(1kV/1step); 管电流:10~300mA 四功能及应用范围: 仪器功能:X射线衍射仪对单晶、多晶和非晶样品进行结构参数分析,如物相鉴定和定量分析、室温至高温段的物相分析、晶胞参数测定(晶体结构分析)、多晶X-射线衍射的指标化以及晶粒尺寸和结晶度的测定等。可精确地测定物质的晶体结构,如:物相定性与定量分析,衍射谱的指标化及点阵参数。 应用范围:对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质表征和质量控制不可缺少的方法。XRD能分析晶体材料诸如产业废弃物、矿物、催化剂、功能材料等的相组成分析,大部分晶体物质的定量、半定量分析;晶体物质晶粒大小的计算;晶体物质结晶度的计算等。 使用范围:金属材料:半导体材料、合金、超导材料、粉末冶金材料;无机材料:陶瓷

南京理工大学数学分析考研试卷

南京理工大学2001 一、 计算下列数值(每题7分,共21分) 1.n 0a b << 2.22x x e dx +∞--∞ ?,已知12??Γ= ??? 3.()()333335()S x y dydz y x z dzdx z x dxdy +++++??,其中S 为球面 222x y z a ++= 的外侧 二、(10分)设()1,2,n n a b n <=,证明:lim lim n n n n a b →∞→∞ ≤ 三、(10分)证明:2sin lim cos cos cos 222n n t t t t t →∞??????= ??? ?? ???? ? 四、(10分)讨论幂级数()0 1n n x x ∞=-∑在闭区间()[0,]1a a <及[0,1]上的一致收敛性 五、(12分)设()f x 为[)0,∞上非负递减函数,且积分0()f x dx ∞ ?收敛,证明:()lim 0n xf x →∞ = 六、(10分)设()f x 是闭区间[,] a b 上的连续函数,证明: ()(),max n x a b f x ∈= 七、(10分)设()g x 为(0,)+∞上连续可导函数,向量值函数()(0)F g r r r →=≠ 其中(),,,,r r x y z == 证明:第二型曲线积分 0L F d s →?=?这里L 为3R 中任一不经过原点的光滑闭曲线 八、(8分)设函数()f x 在[,]a b 上一阶连续可导,且()0f a =,证明:0M ?>,使得()()()()22b b a a f x dx M f x dx '≤? ? 九、(7分)设()f x 是[0,2]π上的连续函数,证明:

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律

结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 .

(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为 可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即. 1.3.3运算性质(假设运算都是可行的)

《矩阵分析》考试题A 2016

华南理工大学研究生课程考试题(A) 《矩阵分析》2016年12月 姓名院(系)学号成绩 注意事项:1.考试形式:闭卷(√)开卷() 2.考生类别:博士研究生()硕士研究生(√)专业学位研究生() 3.本试卷共四大题,满分100分,考试时间为150分钟。 一、单项选择题(每小题3分,共15分): 1、设,,是的两个不相同的真子空间,则下列不能构成子空间的是。(A);(B);(C);(D)。 2、设,为阶酉矩阵,则下列矩阵为酉矩阵的是。 (A);(B);(C);(D)。 3、设矩阵的秩为,则下列说法正确的是。 (A)的所有阶子式不等于0;(B)的所有阶子式等于0; (C)的阶子式不全为0;(D)的阶子式不全为0。 4、下列命题不正确的是。 (A)行数相同的两个矩阵一定存在最大右公因子; (B)列数相同的两个矩阵一定存在最大右公因子。 (C)特征多项式的根一定是最小多项式的根; (D)最小多项式的根一定是特征多项式的根; 5、设,则。 (A)1;(B);(C);(D)。 二、填空题(每小题3分,共15分): 1、设,,和,,是的

两个基,则从第一个基到第二个基的的过渡矩阵为 。 2、实线性空间的映射称为内积运算,如果满足下列条件: 。 3、奇异值分解定理内容为 。 4、设,则。 5、设,则。 三、计算题(每小题14分,共56分): 1、设,,;,, ,。求和的一个基。

2、求欧氏空间的一个标准正交基(从基,,,出发),内积定义为 。

3、求的若当标准形和可逆矩阵, 并计算。

4、1)写出的求解公式。 2)已知,计算。

四、证明题(第一小题8分,第二小题6分,共14分): 1、设,是维线性空间,证明都。 2、设方阵满足,且,证明。

几种矩阵完备算法的研究与实现_矩阵分析仿真大作业

几种矩阵完备算法的研究与实现 ——《矩阵分析》课程仿真作业报告* 刘鹏飞 电?系2016210858 摘要 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵恢复可以通过 求解?个与核范数有关的凸优化问题来实现。由此诞?了许多矩阵恢复的算 法,?如FPC算法等。FPC算法虽然实现简单,但其迭代速度较慢。在此基 础上,APG算法经过改进,能够提升迭代速度。但最?化核范数并不是求解 矩阵完备问题的唯??法,其中OptSpace算法构造了?个在流形上的优化问 题,相?于前两种算法能够以更?的精度恢复出原始矩阵。本?主要总结了 FPC、APG和OptSpace三种算法的步骤。特别地,对于OptSpace算法,本 ?提出了求解其中两个?优化问题的具体算法。最后,本?通过仿真实验和理 论分析?较了三种算法的特点,并给出了OptSpace算法的精度?于APG算 法的解释。 关键词:矩阵完备,核范数,FPC,APG,OptSpace 1介绍 1.1矩阵完备及其算法综述 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵完备可以描述成这样?个问题:对于?个m×n的矩阵M,其秩为r,我们只有对M中的部分采样,记*报告中所涉及到的仿真代码可在https://https://www.wendangku.net/doc/9c1886811.html,/s/1jHRcY8m下载 1

这些采样位置组成的集合为?,那么是否有可能从已知的部分元素中恢复出整个矩阵M。假如M为低秩矩阵,并且已知的元素?够多并且?够均匀地分布在整个矩阵中,那么我们可以通过解如下优化问题来恢复出原始矩阵[1]: min rank(W) s.t.W ij=M ij,(i,j)∈?(1-1)但是,问题(1-1)是?个NP难的?凸问题。在?定条件下,问题(1-1)可以转化成?个最?化核范数的问题。对于矩阵W m×n,W的核范数定义为其奇异值之和,即 ∥W∥?=min(m,n) ∑ k=1 σk(W)(1-2) 其中,σk(W)表?W第k?的奇异值。问题(1-1)可以转化成: min∥W∥? s.t.W ij=M ij,(i,j)∈?(1-3)对于(1-3)中带等式约束的问题,进?步地,可以将它凸松弛成?个?约束的 优化问题[2][3][4]: min 1 2 ∥A(W)?b∥22+μ∥W∥?(1-4) 其中,b是由矩阵中采样位置对应的元素组成的p×1维向量,p=|?|(|·|表?集合的势);A:R m×n?→R p是?个线性映射,A(W)=(W ij)|(i,j)∈?;μ是?个可以调整的参数。 对于(1-4)中的?约束问题,?献[2][3]分别提出了Fixed Point Continuation (FPC)和Singular Value Thresholding(SVT)的算法。本?认为,这两种算法虽然出发点不同,但其实质都是梯度下降法,没有本质的差别,在算法实现上也基本?样。因此,本?只研究其中?种,即FPC算法。FPC算法虽然实现简单,但其迭代速度慢,效率不?。在此基础上,?献[4]做出了改进,提出?种Accelerated Proximal Gradient Singular Value Thresholding(APG)算法(该算法是在SVT算法上改进的,本?认为FPC和SVT实质上是?种算法,故不做区别),能够?幅度地提?收敛速度。 前?提到的?种算法,都是从(1-1)中的最?化秩的问题出发,经过?步步凸松弛得到的。与上述基本思路不同,?献[5]提出了OptSpace算法,它实质上是通过解另?种优化问题来实现矩阵完备: min F(W)= ∑ (i;j)∈? ∥M ij?W ij∥2 s.t.rank(W)=r(1-5)

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。 五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形

4、矩阵分解(4学时) 4.1矩阵的满秩分解 4.2矩阵的正交三角分解(UR、QR分解) 4.3矩阵的奇异值分解 4.4矩阵的极分解 4.5矩阵的谱分解 5、范数、序列、级数(4学时) 5.1向量范数 5.2矩阵范数 5.3诱导范数(算子范数) 5.4矩阵序列与极限 5.5矩阵幂级数 6、矩阵函数(4学时) 6.1矩阵多项式、最小多项式 6.2矩阵函数及其Jordan表示 6.3矩阵函数的多项式表示 6.4矩阵函数的幂级数表示 6.5矩阵指数函数与矩阵三角函数 7、函数矩阵与矩阵微分方程(2学时) 7.1 函数矩阵对纯量的导数与积分 7.2 函数向量的线性相关性 7.3 矩阵微分方程 (t) ()() dX A t X t dt = 7.4 线性向量微分方程 (t) ()()() dx A t x t f t dt =+ 8、矩阵的广义逆(3学时) 8.1 广义逆矩阵 8.2 伪逆矩阵 8.3 广义逆与线性方程组 课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线

北京理工大学出版社矩阵分析习题解答

2005级电路与系统矩阵分析作业 3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 []n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。 (1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。 (1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H = ),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A A H A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时, 由上可知 c n 是酉空间。証毕。 (2)解: ∑∑==n j n i j ij i H y a x A |||),(|β αβα ∑∑= =n j n i j ij i x a x ),(||||ααα,∑∑= =n j n i j ij i y a y ),(||||βββ 由Cauchy-Schwarz 不等式有: ∑∑∑∑∑∑≤ n j n i j ij i n j n i n j n i j ij i j ij i y a y x a x y a x * 3-3(1)已知.A =???? ??????502613803 ---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1) 3 得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=0 00000 2 01于是ε1= (0,1,0)T 是A 的特征向量。选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ???? ??????100001010 则U 1*A U 1= ?? ?? ??????---52083063 1 取A 1= ??????--5283,|λE- A 1| = (λ+1)2 λ= -1是A 1的特征值。 当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,5 1)T 是A 的特征向量,选择与α1 正交的向量组成酉阵U 2 = ????? ? ??? ???525 1515 2 -,U 2*A 1U 2 = 51??????-2112??????--5283??????-2112 =?? ????---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1 ))((---++iS T E iS T E 是酉矩阵,。 证明:令1)(),(---=++=iS T E C iS T E B ,BC iS T E iS T E A =--++=))((,==A BC A A * *)( 1**1**))(()())((----++++--=iS T E iS T E iS T E iS T E A B C ,又S ,T 分别是实对称矩阵和反实 对称矩阵,即有T T S S -==**,,则有,)()())((* *1**iS T E iS T E iS T E A B C ++++--=- 111))()(()()(-----++--++=--iS T E iS T E iS T E iS T E iS T E ,因为))((iS T E iS T E ++--

南京理工大学硕士研究生矩阵分析与计算试题答案

20XX 年南京理工大学硕士研究生 《矩阵分析与计算》考试(A 卷)参考答案 注意:所有试题答案都写在答题纸上,写在试卷上无效 一、(12分)设矩阵0.60.50.10.3A ??=????,计算21,,F A A A A ∞。 解:10.8, 1.1,F A A A ∞=== …………. 9 分 0.370.330.330.34T A A ??=???? m a x ()0.6853T A A λ≈, …………. 2 分 从而20.8278A == …………. 1 分 二、(15分)求矩阵141130001A -????=--?????? 的初等因子及Jordan 标准形。 解:初等因子 21,(1)λλ-+ …………. 10 分 Jordan 矩阵1111J ????=-????-?? …………. 5 分 三、(20分)已知1011011,11121A b ????????==???????????? (1)求A 的满秩分解;(2)求A +;(3)用广义逆矩阵方法判断线性方程组Ax b =是否有解;(4)求Ax b =的极小范数解或极小范数最小二乘解,并指出所求的是哪种解. 解:(1)101010101111A FG ??????==?????????? …………. 6 分

(2) 54114519112A +-????=-?????? …………. 6 分 (3) []21123 T b A b A += ≠,方程组无解; …………. 4 分 (4)极小范数最小二乘解为[]021129 T b x A +== …………. 4 分 四、(10分)利用盖尔圆隔离定理证明205141011210A i ????=?????? 有三互异特征值。 解:取(1,1,3)D diag =,则1B DAD -=的三个行盖尔园隔离,因此矩阵有3个互异特征值. ………….10 分 五、(10分)用LU 分解求解方程组 1234102040101312431301035x x x x ??????????????????=???????????????? ?? 解: 1020110200101011011243121210 10301012??????????????????=?????????????????? …………. 5 分 求解得到(2,2,1,1)T x = …………. 5分 六、(10分)利用幂法计算矩阵 1319????-?? 的按模最大特征值及对应特征向量。(取初始向量(1,1)T ,结果保留4位有效数字) 解: max 8.6055λ≈, 特征向量(0.3945,1)T ………… 10分

欧阳光中《数学分析》笔记和考研真题详解(极限论及实数理论的补充)【圣才出品】

欧阳光中《数学分析》笔记和考研真题详解 第11章极限论及实数理论的补充 11.1复习笔记 一、Cauchy收敛准则及迭代法 1.基本数列 (1)基本数列的定义 若,即对每个,都能找到一个自然数N,对一切n,m≥N成 立不等式 称{x n}为(Cauchy)基本数列. (2)引理1 若{x n}收敛,则{x n}必是基本数列. 2.数列极限的Cauchy收敛准则 (1)引理2 基本数列必有界. (2)Cauchy收敛准则 是基本数列. 3.实数系的完备性 由实数所组成的基本数列{x n}必存在实数极限,这个性质称为实数系的完备性. 注意:有理数域不具有完备性.

4.函数极限的Cauchy收敛准则 Cauchy收敛准则的两种叙述 (1)设f在点a某个去心邻域有定义,则极限存在且为有限 (2)ε-σ定义设f在点a某个去心邻域有定义,,当 时, 5.压缩映射原理 (1)不动点的定义 设是定义在[a,b]上的一个函数,方程的解称为的不动点. (2)不动点的存在性 ①不动点存在的必要条件 取,递推式为,设一切,如果 是连续函数且存在且为有限,则在式子两边令,可得.从而知 是的一个不动点. ②不动点存在的充分条件 a.压缩映射的定义 如果存在一个常数k,满足,使得对一切成立不等式 则称是[a,b]上的一个压缩映射,显然,压缩映射必连续. b.压缩映射原理 设是[a,b]上的压缩映射且由递推公式定义的[a, b],n=0,1,2,…,则在[a,b]上存在惟一的不动点,且.

(3)不动点的惟一性 设是[a,b]上的压缩映射且,则在[a,b]上存在惟一的不 动点. 6.牛顿迭代法 (1)牛顿迭代公式 设y=f(x)于[a,b]上可微,f'(x)≠0且f(a)f(b)<0,则f(x)在[a,b]上存在一实根,记为.同时,设x 是根的一个近似值,x n下一步的近似值x n+1,则 这个求近似值的迭代公式称为牛顿迭代公式. (2)压缩映射原理的推论 若 ①f(x)于[a,b]两次可微且f'(x)≠0; ②存在一个数,对一切,成立 ③存在,使得一切 则f(x)在[a,b]上存在惟一实根,且 二、上极限和下极限 1.上(下)极限的定义 若数列{x }的极限不存在且存在子列,其中a是有限数或或 }的一个极限点.数列{x n}的最大(最小)极 (不包括不定号无穷大),则称为a数列{x 限点如果存在,则称为该数列的上(下)极限,并记为

欧阳光中《数学分析》(上)配套题库-名校考研真题(极限论及实数理论的补充)【圣才出品】

第11章极限论及实数理论的补充 1.设为[0,1]上的一个连续函数列,若对任意的是有界数列.用闭区间套定理证明存在[0,1]的一个长度不为0的子区间及常数C,使得 [南京理工大学2006研] 证明:反证法假设在任何(非空)子区间上都不一致有界,则存在及使得又因连续,根据保号性,在含x 1的某个闭子区间上,恒有 在上仍不一致有界,所以存在及,使得.根据连续保号性,存在闭子区间使得上恒有如此继续下去,便得一串闭 区间 在上恒有.利用闭区间套定理知,存在从而 所以在处无界,与已知条件矛盾,结论得证. 2.用有限覆盖定理证明有界性定理:闭区间上的连续函数必有界.[天津工业大学2006研] 证明:设函数f(x)在闭区间[a,b]上连续,要证明f(x)在[a,b]上有界. 由连续函数的局部有界性,对每一点都存在邻域及正数使得 考虑开区间集

显然H是[a,b]的一个无限开覆盖.由有限覆盖定理,存在H的一个有限子集 覆盖了[a,b],且存在正数 使得对一切 有 令则对任意的,x必属于某个从而,这就证得f(x)在[a,b]上有界. 3.设f(x)在[a,b]上递增,证明:存在使得.[西南师范大学研] 证明:用确界原理证明.若f(a)=a或f(b)=b,结论成立.下面假设f(a)>a,f(b)<b,证 .因为,故E非空且有上界b,从而必有上确界,可记 证.对任意的有而f(x)在[a,b]上递增,故.又故有.即f(x 0)为E的一个上界,从而.另一方面,由于f(x)在[a,b]上递增,于是有 由此得出,即.而,故又有,合之即有成立. 4.证明有界闭区间[a,b]上的连续函数f(x)一定有界.[北京交通大学研] 证明:令在[a,x]上有界,因为f(x)在a点连续,所以存在使f(x)在上有界,即由此知又因为E显然有上界b,

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵就是一个按照长方阵列排列得复数或实数集合、矩阵就是高等代数学中得常见工具,也常见于统计分析等应用数学学科中、在物理学中,矩阵于电路学、力学、光学与量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵得运算就是数值分析领域得重要问题。将矩阵分解为简单矩阵得组合可以在理论与实际应用上简化矩阵得运算。在电力系统方面,矩阵知识已有广泛深入得应用,本文将在介绍矩阵基本运算与运算规则得基础上,简要介绍其在电力系统新能源领域建模方面得应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统得紧密结合。 1矩阵得运算及其运算规则 1。1矩阵得加法与减法 1、1、1运算规则 设矩阵,,?则 ?简言之,两个矩阵相加减,即它们相同位置得元素相加减!?注意:只有对于两个行数、列数分别相等得矩阵(即同型矩阵),加减法运算才有意义,即加减运算就是可行得. 1。1、2运算性质 满足交换律与结合律

交换律;?结合律. 1.2矩阵与数得乘法 ?1。2、1运算规则?数乘矩阵A,就就是将数乘矩阵A中得每一个元素,记为或.?特别地,称称为得负矩阵。 1。2、2运算性质?满足结合律与分配律?结合律:(λμ)A=λ(μA);(λ+μ)A=λA+μA.?分配律:λ(A+B)=λA+λB. 1、2、3典型举例?已知两个矩阵 满足矩阵方程,求未知矩阵、?解由已知条件知 1、3矩阵与矩阵得乘法 ?1。3.1运算规则?设,,则A与B得乘积就是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C得第行第列得元素由A得第行元素与B得第列元素对应相乘,再取乘积之与、 1、3、2典型例题

矩阵分析与计算教学大纲

编号:070111A16 课程名称:矩阵分析与计算 英文名称:Matrix Analysis and Computation 一、课内学时: 32 学分: 2 二、适用专业:理工科硕士生,经济学硕士生 三、预修课程:线性代数,微积分 四、教学目的:任何涉及数学的领域(包括工程学,最优 化,经济学,控制论,电子学,网络等等)都需要矩阵的知识。本课程介绍矩阵分析及计算的基本概念和基本方法,力求花较少的时间,使学生了解到较多的实用的概念和方法,做到知识面广,使学生有能力处理在各自学科研究中出现的矩阵基本问题。 五、教学方式:课堂授课 六、大纲内容(包括实验内容)及学时分配、对学生的要 求:(注:“*”表示重点,“#”表示难点,“★”表示涉及学科前沿,“●”表示研究性内容) 1、矩阵的标准型(6学时) 1.1矩阵的相似对角形 1.2矩阵的Smith标准形,不变因子,初等因子# 1.3Jordan 标准型*

1.4Hamilton-Cayley定理 1.5酉空间,酉矩阵 1.6酉相似标准型 2、向量范数,矩阵范数(6学时) 2.1 向量范数 2.2 矩阵范数* 2.3 矩阵范数与向量范数的相容性 2.4 矩阵的谱半径及应用 2.5 矩阵的条件数及应用 3、矩阵分解(3学时) 3.1 三角分解 3.4 矩阵的满秩分解* 3.5 矩阵的奇异值分解# 4、矩阵特征值的估计与计算(3学时) 3.1 盖尔圆定理 3.2 特征值的隔离* 3.3 幂迭代法与逆幂迭代法 5、广义逆矩阵(3学时) 5.1 Penrose 方程 5.2 {1}-逆的计算及性质 5.3 Moore.Penrose逆的计算及性质* 6、矩阵函数(3学时)

矩阵分析与计算(博)样题

计算题 一.(1) 设() =A ,①求A 的Jordan 标准形J 。可参照 P 16例1.3进行求解。 ②求矩阵函数At e 、A sin 。可参照P 127例6.5进行求解。 (2) 设λ矩阵() =)(λA ,求)(λA 的Smith 标准形和不变因子。可参照 P 10例1.1进行求解。 二.已知函数矩阵At sin 或At e ,求矩阵A .类似题如P 131例6.8。 三.设(), =A (1) 求1A ,2A ,∞A ; (2) 若给以扰动X X A A R A ,001.022 33,并设使≤δ∈δ?分别为方程组AX =b 与(A +δA )X =b 的唯一解,试估计22X X X -的范围,这里0,3≠∈b R b 。用 P 59定理2.18,类似题如P 60例2.21。 四.(1)运用盖尔圆定理隔离矩阵() =A 的特征值。可参照P 92例 4.3。 (2)写出规范化的幂迭代法公式(P 93(4.3)),并求矩阵() =A 的按模最大的特征值及特征向量(计算4步)。类似题如P 94例4.4或课件上的例4.4。 五.已知()() ==b A ,,

(1)用满秩分解法求A的Penrose Moore-广义逆+A。 (2)用广义逆矩阵方法判断线性方程组b AX=是否有解。 (3)求线性方程组b AX=的极小范数解或极小范数最小二乘解。可参照P110例5.4、P117定理5.12及P155例8.1。 六.(1)用列主元法计算线性方程组b AX=的解。类似题如P145例7.2; (2)用Doolittle分解法计算线性方程组b AX=的解。类似题如P64例3.1及P147例7.3。 七.写出解线性方程组b AX=的Jacobi和Gauss-Seidel迭代格式,并讨论其收敛性。可参照P164例9.1、9.2及P167例9.3。 八.写出共轭梯度法公式(P ),用共轭梯度法计算线性方程组 174 AX=的解。类似题如P174例9.5。 b 九.用Givens变换化向量x与 e共线。类似题如P73例3.5。 1 证明题 一.(1)、P25定理1.13的证明。(2)、P31推论1.13的证明。二.(1)、P43定理2.2的证明。(2)、P55定理2.15的证明。三.(1)、P67定理3.3的证明。(2)、P72定理3.6的证明。四.(1)、P106定理5.4的证明。(2)、P172定理9.12的证明。

南京理工大学工程硕士高等工程数学题081数值分析部分

数值分析(计算方法)部分 一. (8分)求一个次数不高于3的多项式)(x f ,使它满足: ,3)1(,4)0(==f f 0)1(,8)2(/==f f ,并求差商]3,1,1,3[--f 的值。 解:先用f(0)=4,f(1)=3,f(2)=8求N 2(x) 商差表:0 4 1 3 -1 2 8 5 3 ∴ N 2(x)=4+(-1)(x-0)+3(x-0)(x-1)=4-4x+3x 2 ∵ f(x)次数≤3 ∴ 可设f(x)= N 2(x)+k(x-0)(x-1)(x-2) (k 为待定常数) f(x)=4-4x+3x 2+k(x 3-3x 2+2x) ∴ f ’(x)=6x-4+k(3x 2-6x+2) f ’(1)=6-4+k(3-6+2)=2-k=0 ∴ k=2 ∴ f(x)= 4-4x+3x 2+2(x 3-3x 2+2x)=2x 3-3x 2+4 ∴ (3)f ()23! f[3,1,1,3]2 3!3!ξ?--=== 二.(10分)用迭代法求解方程: 0201022 3=-++x x x 的所有实数根(要求判断根的个数及范围,构造收敛的迭代格式,并且求出精确到5 10-的近似根)。 解:设f(x)=x 3+2x 2+10x-20 ∵ f ’(x)=3x 2+4x+10=2x 2+(x+2)2+6>0 (x (,)?∈-∞+∞) ∴ f(x)在(-∞,+∞)上单调递增 ∴ 方程最多有一个实根 ∵ f(1)=-7<0,f(2)=16>0 ∴ 方程有且仅有一个实根x *,并且x *∈(1,2) 选用Neuton 迭代法 32 k k k k k 1k k 2k k k f (x )x 2x 10x 20x x x f '(x )3x 4x 10 +++-=-=-++ (k=0,1,2,……) 它在单根x * 附近至少平方收敛 计算,选取x 0=1.5 x 1=1.373626,x 2=1.368815,x 3=1.368808 ∵ |x 3-x 2|=0.000007<10-5 ∴ 1.36881为精确到10-5的近似根

矩阵分析与计算(博)样题(16.6)

计算题 一.设() =A ,求A 的Jordan 标准形J 及最小多项式)(λm 。 可参照 P 16例1.3、P 27例1.13 进行求解。 二.(1)已知函数矩阵At sin 或At e ,求矩阵A .类似题如P 131例6.8。 (2)对(1)中的矩阵A ,求微分方程组() ?????=+= )0()(x t f Ax dt dx 的解。可用P 136公式(6.13),参 照P 136例6.12 进行求解。 三.(1)设(), =A 求14 1max Ax x =。类似题如P 50例2.11。 (2)讨论下列矩阵幂级数的敛散性。可参照P 56例2.17。 四.(1)运用盖尔圆定理判断矩阵() =A 有不同的实特征值。可参照P 92例4.3。 (2)写出规范化的幂迭代法公式(P 93(4.3)),并求矩阵() =A 的按模最大的特征值及特征向量(计算4步)。类似题如P 94例4.4或课件上的例4.4。 五.已知() =A , (1) 求A 的满秩分解。 (2) 求A 的Penrose Moore -广义逆+A 。可参照P 85例3.9、P 110例5.4。 六.用列主元法计算线性方程组b AX =的解。类似题如P 145例7.2。 七.写出解线性方程组b AX =的Jacobi 和Gauss-Seidel 迭代格式,并讨论其收敛性。可参照P 164例9.1、9.2及P 167例9.3。 八.写出共轭梯度法公式(P 174),用共轭梯度法计算线性方程组b AX =的解。类似题如P 174例9.5。 九.用Givens 变换化向量x 与1e 共线。类似题如P 73例3.5。 证明题 一.P 34定理1.22的证明。 二.P 43定理2.2的证明。 三.P 111定理5.7的证明。 四.P 86定理3.17的证明。 五.P 172定理9.13的证明。

2015南理工矩阵分析与计算试卷解答及评分

2015年矩阵分析与计算试卷解答及评分标准 一、(10分)设340120251A ?? ??=--????---?? ,求A 的不变因子、 初等因子,并写出A 的Jordan 标准形。 解:行列式因子D 1=1;D 12=+1;D 13=1,所以D 2=1;D 3=(2)(+1)2,所以 不变因子d 1=d 2=1;d 3=(l-2)(l+1)2 (6分);初等因子为(l-2),(l+1)2 (8分) A 的Jordan 标准形为200011001A J ?? ??=-?? ??-?? (10分) 二、(10分)利用盖尔圆定理及特征值隔离法证明: 矩阵2111917218A -?? ??=?? ???? 有三个互异实特征值。 解:(1)写出A 的行或列盖尔圆, 但彼此不孤立。 (4分); (2)取D =diag(1,1,2), 则A 与B=D 1 AD 特征值相同,B 的三个行盖尔圆分别为 |2|3,|9|3,|18| 4.5,z z z -≤-≤-≤ B 的三个盖尔圆彼此孤立,(8分),故各盖 尔圆内有且仅有1个特征值,而B 是实矩阵,而各盖尔圆均关于实轴对称,故特征值均是实的。(10分) 三、(10分)用选列主元的Doolittle 分解求解方程组 3215211 3.51213x ???? ????=???? ???????? 。 解:系数矩阵A 的选列主元的Doolittle 分解为 1003211 003210012111/31004/32/30101212/31/41001/2LU ????????????????=≡???????? ????????-???????? 。 (6 分) 原方程组等价于 1[5 3 3.5]T LUx Pb b ==≡。 解Ly =b 1,得y=[5, 4/3, 1/2]’,…(8分); 再解Ux =y, 得x =[1 1/2 1]’…….(10分). 四、(11分)(1)设矩阵A 按模最大的特征值唯一,请写出近似其按模最大特征

矩阵分析课后习题解答(整理版)

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

相关文档
相关文档 最新文档