文档库 最新最全的文档下载
当前位置:文档库 › 第五章 遗传算法与组合优化

第五章 遗传算法与组合优化

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

基于遗传算法的多式联运组合优化

第四章基于遗传算法的集装箱多式联运运输组合优化模型 的求解 4.1 遗传算法简介 4.1.1 遗传算法 遗传算法(Genetic Algorithm,GA)是在20世纪六七十年代由美国密歇根大学的Holland J.H.教授及其学生和同事在研究人工自适应系统中发展起来的一种随机搜索方法,通过进一步的研究逐渐形成了一个完整的理论和方法体系取名为基本遗传算法(Simple Genetic Algorithm)。在接下来几年的研究过程中Holland在研究自然和人工系统的自适应行为的过程中采用了这个算法,并在他的著作《自然系统和人工系统的适配》中对基本遗传算法的理论和方法进行了系统的阐述与描写,同时提出了在遗传算法的理论研究和发展中具有极为重要的作用的模式理论,它的编码技术和遗传操作成为了遗传算法被广泛并成功的应用的基础,经过许多学者多年来的研究,遗传算法逐渐成熟起来,到现在已经成为了一个非常大的体系,广泛的应用于组合优化、系统优化、过程控制、经济预测、模式识别以及智能控制等多个领域。De Jong于1975年在他的博士论文中设计了一系列针对于各种函数优化问题的遗传算法的执行策略,详细分析了各项性能的评价指标。在此基础上,美国伊利诺大学的Goldberg于1989年系统全面的阐述了遗传算法理论,并通过例证对遗传算法的多领域应用进行了分析,为现代遗传算法的研究和发展奠定了基础。 遗传算法是一种模仿基于自然选择的生物进化过程的随机方法,它以类似于基因的编码作为种群的个体,首先,随机的产生初始种群的个体,从这个群体开始进行搜索,根据类似于生物适应能力的适应度函数值的大小,按照不同问题各自的特点,在当前的种群中运用适当的选择策略选择适应能力大的个体,其中所选择出来的个体经过遗传操作、交叉操作以及变异操作产生下一代种群个体。如此反复,像生物的进化过程一样逐代进化,直到满足期望的终止条件为止。

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

智能优化算法报告

应用遗传算法求解十滴水游戏 ————智能优化算法课程报告 黄青虬 2014年12月31日 1十滴水游戏简介 如图一所示,十滴水游戏是在一个6×6的棋盘上,通过填补水滴来引爆原有的水滴,直到棋盘上所有水滴消失。 棋盘上每个格子可以放0、1、2、3、4滴水,当格子上有4滴水时,再往上面滴一滴水,则该水滴会爆,即格子上的水滴变为0,同时向四周各溅出一滴水,溅出的水如果遇到其他水滴就会并入,如果并入后水滴数又大于4了,则会有新一轮的引爆。 点击格子则在其上面滴一滴水。 水滴是有限制的,如图一,右上角会有一个水缸显示当前你还可以用的水滴数。每引爆三滴水可以让水缸增加一滴水。 图1:十滴水游戏 从游戏规则可以看出,十滴水游戏的状态空间是非常巨大的(36k),对于解的步数比较长的的局面(比如每个点上的水滴数均为1的局面),想通过搜索求解几乎是不可能的。所以要通过智能优化算法来求解近似最优解。 以下分析用遗传算法求解每个点上的水滴数均为1的局面。

2遗传算法概念在十滴水游戏中的具体实例 染色体:一个点,代表在该格子上舔一滴水。 个体:一个长度为h的染色体(点)数组,代表添水序列,即一个解。 种群:一个规模为n的个体数组。 适应度: fit(s)={ 36?4+ ∑6 i=1 ∑6 j=1 ?drop[i][j],if无法清空 36?4+(50?l)2?10,if清空 (1) 其中l表示个体清空局面所需要的染色体数。 选择:根据个体的适应度,算出该个体被选出的概率,然后在种群中选出个体进行交配个 体i被选出的概率为: P s(i)= fit(i)∑n k=1 fit(k) 从这个公式可以看出,适应度越大的被选出的概率越大,所以可以实现优胜劣汰。 交叉:根据概率P c,两个个体交换部分染色体。 变异:根据概率P m,该个体变异一个染色体。 最大迭代代数:循环迭代次数M。 3参数选取 算法中可以调整的参数有以下几个: 个体的染色体长度h,种群规模n,交叉概率P c,变异概率P m,最大迭代代数M 经过试验,发现50步以上基本就可以解决任何一个局面,所以选取h=50。发现迭代次数在150以上基本就收敛了,所以选取M=200。 种群规模n,交叉概率P c,变异概率P m通过线性扫描实验选取最佳值,实验结果如下: 图2:P c扫描结果 从P c的扫描结果可以看出,对于此问题,P c取0.4左右比较合适。这与一般的遗传算法的经验值是接近的。 实验中选取P c=0.4。

遗传算法

遗传算法 开放分类:编程、程序、数学、计算机、算法 目录 ? 遗传算法定义 ? 遗传算法特点 ? 遗传算法的应用 ? 遗传算法的现状 ? 遗传算法的一般算法 ? 遗传算法实例 遗传算法定义 [编辑本段] 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 遗传算法特点 [编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。 2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 3、遗传算法使用多个点的搜索信息,具有隐含并行性。 4、遗传算法使用概率搜索技术,而非确定性规则。 遗传算法的应用 [编辑本段] 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响

遗传算法与优化问题

遗传算法与优化问题 (摘自:华东师范大学数学系;https://www.wendangku.net/doc/9d2514738.html,/) 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).

(1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过

5遗传算法与组合优化

第五章 遗传算法与组合优化 5.1 背包问题(knapsack problem ) 5.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件 ∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

遗传算法的优化计算

function Val=de_code(x) % 全局变量声明 global S P_train T_train P_test T_test mint maxt global p t r s s1 s2 % 数据提取 x=x(:,1:S); [m,n]=find(x==1); p_train=zeros(size(n,2),size(T_train,2)); p_test=zeros(size(n,2),size(T_test,2)); for i=1:length(n) p_train(i,:)=P_train(n(i),:); p_test(i,:)=P_test(n(i),:); end t_train=T_train; p=p_train; t=t_train; % 遗传算法优化BP网络权值和阈值 r=size(p,1); s2=size(t,1); s=r*s1+s1*s2+s1+s2; aa=ones(s,1)*[-1,1]; popu=20; % 种群规模 initPpp=initializega(popu,aa,'gabpEval'); % 初始化种群 gen=100; % 遗传代数 % 调用GAOT工具箱,其中目标函数定义为gabpEval x=ga(aa,'gabpEval',[],initPpp,[1e-6 1 0],'maxGenTerm',gen,... 'normGeomSelect',0.09,'arithXover',2,'nonUnifMutation',[2 gen 3]); % 创建BP网络 net=newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm'); % 将优化得到的权值和阈值赋值给BP网络 [W1,B1,W2,B2]=gadecod(x); net.IW{1,1}=W1; net.LW{2,1}=W2; net.b{1}=B1; net.b{2}=B2; % 设置训练参数 net.trainParam.epochs=1000; net.trainParam.show=10; net.trainParam.goal=0.1; net.trainParam.lr=0.1; net.trainParam.showwindow=0;

几种智能优化方法

1.遗传算法 遗传算法(Genetic Algorithms, GA)是由美国密歇根大学的John H.Holland教授及其学生于20世纪60年代末到70年代初提出的。在1975年出版的《自然与人工系统的自适应性》一书中,Holland系统地阐述了遗传算法的基本原理和方法,提出了对遗传算法的理论发展极为重要的模板理论。 遗传算法基本思想: 遗传算法是根据问题的目标函数构造一个适值函数,对于有多个解构成的种群进行评估、遗传运算、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。具体描述如下。 1)产生初始种群 遗传算法是一种基于群体寻优的方法,算法运行时是以一个种群在搜索空间进行搜索。一般是采用随机方法产生一个初始种群。也可以采用其他方法构造一个初始种群。 2)根据问题的目标函数构造适值函数 在遗传算法中使用适值函数来表征种群中每个个体对其生存环境的适应能力,每个个体具有一定的适应值。适应值是种群中个体生存机会的唯一确定值。适值函数直接决定着群体的进化行为。适值函数基本上依据优化的目标函数来确定。为了能够直接将适值函数与群体中的个体优劣相联系,在遗传算法中适应值规定为非负,并且在任何情况下总是希望越大越好。 3)根据适应值的好坏不断选择和繁殖 在遗传算法中自然选择规律的体现就是以适应值的大小决定的概率分布来进行计算选择。个体的适应值越大,该个体被遗传到下一代的概率越大;反之,个体适应值越小,该个体被遗传到下一代的概率越小。被选择的个体两两进行繁殖,繁殖产生的个体组成新的种群。这样的选择和繁殖的过程不断重复。 4)若干代后得到适应值最好的个体即为最优解 在若干代后,得到适应值最好的个体所对应的解即被认为是问题的最优解。 遗传算法构成要素: a)种群和种群大小 种群是有染色体构成的。每个个体就是一个染色体,每个染色体对应着问题的一个解。种群中个体的数量称为种群大小或种群规模。种群规模通常采用一个不变的常数。一般来说种群规模越大越好,但是种群规模增大也将导致运算时间的增大。在一些特殊情况下,群体规模也可能采用与遗传代数相关的变量,以获取更好的优化效果。 b)编码方法(Encoding Scheme) 编码方法也称为基因的表达方法。在遗传算法中,种群中每个个体,即染色体是由基因构成的。所以染色体与要优化的问题的解如何进行对应,就需要通过基因来进行表示,即染色体进行正确的编码(一般用二进制编码)。正确地对染色体进行编码来表示问题的解是遗传算法的基础工作,也是最重要的工作。 c)遗传算子(Genetic Operator) 遗传算子包括交叉(Crossover)和(Mutation)。遗传算子模拟了每一代中创造后代的繁殖过程,是遗传算法的精髓。 交叉是最重要的遗传算子,它同时对两个染色体进行操作,组合二者的特性产生新的后代。交叉最简单的方式是在双亲的染色体上随机地选择一个断点,将断点的右段相互交换,从而形成两个新的后代。这种方式对于二进制编码最适合。遗传算法的性能很大程度上取决于采用的交叉运算的方式。 交叉率定义为各代中交叉产生后代数与种群中个体数的比。显然,较高的交叉率将达到更大的解空间,从而减小停止在非最优解上的机会;但交叉率过高,会因过多搜索不必要的

Matlab环境下的遗传算法程序设计及优化问题求解

本栏目责任编辑:谢媛媛 开发研究与设计技术 遗传算法(GA)是借鉴生物界自然选择和群体进化机制而形成的一种全局寻优算法,其本质上是一种基于概率的随机搜索算法。与其它的优化算法相比较,遗传算法具有以下优点:(1)通用性;(2)并行性;(3)简单性和可操作性;(4)稳定性和全局性。 1遗传算法概述 在遗传算法中,首先将空间问题中的决策变量通过一定的编码表示成遗传空间的一个个体,它是一个基因型串结构数据;然后将目标函数转换成适应度值,用来评价每个个体的优劣,并将其作为遗传操作的依据。遗传操作包括三个算子:选择、重组和变异。选择是从当前群体中选择适应值高的个体以生成交配池的过程,交配池是当前代与下一代之间的中间群体。选择算子的作用是用来提高群体的平均适应度值。重组算子的作用是将原有的优良基因遗传给下一代个体,并生成包含更复杂基因的新个体,它先从交配池中的个体随机配对,然后将两两配对的个体按一定方式相互交换部分基因。变异算子是对个体的某一个或几位按某一较小的概率进行反转其二进制字符,模拟自然界的基因突变现象。 遗传算法的基本程序实现流程如下: (1)先确定待优化的参数大致范围,然后对搜索空间进行编码;(2)随机产生包含各个个体的初始种群; (3)将种群中各个个体解码成对应的参数值,用解码后的参数求代价函数和适应度函数,运用适应度函数评估检测各个个体适应度; (4)对收敛条件进行判断,如果已经找到最佳个体,则停止,否则继续进行遗传操作; (5)进行选择操作,让适应度大的个体在种群中占有较大的比例,一些适应度较小的个体将会被淘汰; (6)随机交叉,两个个体按一定的交叉概率进行交叉操作,并产生两个新的子个体; (7)按照一定的变异概率变异,使个体的某个或某些位的性质发生改变; (8)重复步骤(3)至(7),直至参数收敛达到预定的指标。使用遗传算法需要确定的运行参数有:编码串长度、交叉和变异概率、种群规模。编码串长度由问题的所要求的精度来决定。交叉概率控制着交叉操作的频率,交叉操作是遗传算法中产生新 个体的主要方法,所以交叉概率通常应取较大值,但如果交叉概率太大的话又可能反过来会破坏群体的优良模式,一般取0.4- 0.99。变异概率也是影响新个体产生的一个因素,如果变异概率 太小,则产生新个体较少;如果变异概率太大,则又会使遗传算法变成随机搜索,为保证个体变异后与其父体不会产生太大的差异,通常取变异概率为0.0001-0.1以保证种群发展的稳定性。种群规模太大时,计算量会很大,使遗传算法的运行效率降低,种群规模太小时,可以提高遗传算法的运行速度,但却种群的多样性却降低了,有可能找不出最优解,通常取种群数目20-100。从理论上讲,不存在一组适用于所有问题的最佳参数值,随着问题参数的变化,有效问参数的差异往往是十分显著的。 2用Matlab语言来实现遗传算法 Matlab是一个高性能的计算软件,配备有功能强大的数学函 数支持库,适用范围大,编程效率高,语句简单,功能齐备,是世界上顶级的计算与仿真程序软件。利用Matlab来编写遗传算法程序简单而且易于操作。 2.1编码 编码就是把一个问题的可行解从其解空间转换到遗传算法能够处理的搜索空间的转化方法,编码形式决定了重组算子的操作。遗传算法是对编码后的个体作选择与交叉运算,然后通过这些反复运算达到优化目标。遗传算法首要的问题是通过编码将决策变量表示成串结构数据。我们常用的是二进制编码,即用二进制数构成的符号串来表示每个个体。通常根据搜索精度(sca_var)、决策变量上界(range(2))的和下界(range(1))来确定各个二进制字符串的长度(bit_n), 搜索精度为sca_var=(range(2)-range(1))./ (2^bit_n—1),然后再随机产生一个的初始种群(be_gen),其规模为popusize。下面用encoding函数来实现编码和产生初始的种群: function[be_gen,bit_n]=encoding(sca_var,range(1),range(2),popusize) bit_n=ceil(log2((range(2)-range(1))./sca_var));be_gen=randint(popusize,sum(bit_n));2.2译码 决策变量经过编码之后,各个个体构成的种群be_gen要通过解码才能转换成原问题空间的决策变量构成的种群vgen,这样才 收稿日期:2006-01-05 作者简介:梁科(1981-),硕士研究生,研究方向:智能计算与优化方法;夏定纯(1963-),教授,研究方向:人工智能,计算机在线检测。 Matlab 环境下的遗传算法程序设计及优化问题求解 梁科,夏定纯 (武汉科技学院计算机科学学院,湖北武汉430073) 摘要:本文介绍了遗传算法的流程及几个算子,给出了在matlab语言环境下实现编码、译码、选择、重组和变异各算子的编程方法,最后用一个实例来说明遗传算法在寻找全局最优解中的应用。 关键词:遗传算法;matlab;程序设计中图分类号:TP312 文献标识码:A 文章编号:1009-3044(2007)04-11049-03 GeneticAlgorithmProgrammingByMatlabAndOptimizingProblemSolving LIANGKe,XIADing-chun (DepartmentofComputerscience,WuhanUniversityofScience&Engineering,Wuhan430073,China) Abstract:Theseveralfactorsofgeneticalgorithmhavebeenpresentedinthispaper,andtheprogrammingofencoding、decoding、choice、crossoverandmutationofmatlabhavebeengiven,finally,afunctionoptimizingproblemhasbeenpresentedtodemonstratedtheapplicationaboutglobaloptimizingofgeneticalgorithm. Keywords:GA;matlab;programming 1049

相关文档
相关文档 最新文档