文档库 最新最全的文档下载
当前位置:文档库 › 三菱换代射频放大模块

三菱换代射频放大模块

三菱换代射频放大模块

三菱换代射频放大模块

三菱换代射频放大模块

型号频率[MHZ]电压VDD 输入Pin(MW)输出Po(W)封装RA02M8087M806 - 8697.2502.5H54RA03M3540MD350 - 4007.2806.3H54RA03M4043MD400 - 4307.2806.3H54RA03M4547MD450 - 4707.2806.3H54RA03M8087M806 - 8707.2503.6H46SRA03M8894M889 - 9417.2503.6H46SRA03M9595M952 - 9548503H46SRA06H8285M820 - 85112.516H11SRA07M0608M68 - 887.2307H46SRA07H0608M68 - 8812.5307H46SRA07M1317M135 - 1757.2207H46SRA07M2127M215 - 2707.2207H46SRA07M3340M330 - 4007.2207H46SRA07M3843M378 - 4307.2507H46SRA07M4047M400 - 4707.2207H46SRA07M4452M440 - 5207.2207H46SRA07N3340M330 - 4009.6207H46SRA07N4047M400 - 4709.6207H46SRA07N4452M440 - 5209.6207H46SRA07H3340M330?- 40012.5207H46SRA07H4047M400 - 47012.5207H46SRA07H4452M440 - 52012.5207H46SRA08H1317M135 - 17512.5208H46SRA08N1317M135 - 1759.6208H46SRA13H1317M135 - 17512.55013H2SRA13H3340M330 - 40012.55013H2SRA13H4047M400 - 47012.55013H2SRA13H4452M440 - 52012.55013H2SRA13H8891MA889 - 91512.52013H2SRA13H8891MB889 - 91512.51013H11SRA18H1213G1240 - 130012.51018H2SRA20H8087M806 - 87012.55020H2SRA20H8994M896 - 94112.55020H2SRA30H0608M68 - 8812.55030H2SRA30H1317M135 - 17512.55030H2SRA30H1721M175 - 21512.55040H2SRA30H2127M210 - 27012.55030H2SRA30H3340M330 - 40012.55030H2SRA30H4045MR400 - 45012.55030H2RSRA30H4047M400 - 47012.55030H2SRA30H4452M440 -

WiFi射频电路设计

WiFi产品的电路设计 I. 前言 这是一篇针对性很强的技术文章。在这篇文章中,我只是分析研究了Wi-Fi产品的一般射频电路设计,而且主要分析的是Atheros 和Ralink的解决方案,对于其他厂 商的解决方案并没有进行研究。 这是一篇针对性很不强的技术文章。在这篇文章中,我研究,讨论了Wi-Fi产品中的射频电路设计,包括各个组成部分,如无线收发器,功率放大器,低噪声放大器,如果把这里的某一部分深入展开讨论,都可以写成一本很厚的书。 这篇文章具有一般性。虽然说这篇文章主要分析了Atheros和Ralink的方案,但是这两家厂商的解决方案很具有代表性,而且具有很高的市场占有率,因此,大部分Wi-Fi 产品也必然是具有一致或者类似的架构。经常浏览相关网站的人一定知道,在中国市场热卖的无线路由器,无线AP很多都是这两家的解决方案。 这篇文章具有一定的实用性。这篇文章的编写是基于我们公司的二十余种参考设计电路,充分吸收了参考设计的精华,并提取其一般性,同时,本文也重在分析实际的电路结构和选择器件时应该注意的问题,并没有进行深入的理论研究,所以,本 文具有一定的实用性。 这篇文章是我在自己的业余时间编写的(也可以说我用这种方式消磨时间),如果这篇文章能够为大家的工作带来一点帮助,那将是我最高兴的事。由于时间有限,编写者水平更加有限,错误之处在所难免,欢迎大家批评指正。 第1章. 射频设计框图 做技术的,讲解某个设计的原理时,都会从讲解框图开始,本人也不例外,先给大家展示一下Wi-Fi产品的一般射频设计框图。

图1-1 Wi-Fi产品的一般射频设计框图 如图1-1所示,一般Wi-Fi产品的射频部分由五大部分组成(这是我个人的见解,不同的工程师可能会有不同的想法),蓝色的虚线框内统一看成是功率放大器部分。无线收发器(Radio Transceiver)一般是一个设计的核心器件之一,除了与射频电路的关系比较密切以外,一般还会与CPU有关,在这里,我们只关注其与射频电路相关的一些内容。发送信号时,收发器本身会直接输出小功率的微弱的射频信号,送至功率放大器(Power Amplifier,PA)进行功率放大,然后通过收发切换器(Transmit/Receive Switch)经由天线(Antenna)辐射至空间。接收信号时,天线会感应到空间中的电磁信号,通过切换器之后送至低噪声放大器(Low Noise Amplifier,LNA)进行放大,这样,放大后的信号就可以直接送给收发器进行处理, 进行解调。 在后续的讲解中,我会将图1-1中的各个部分逐个展开,将每一个都暴露在大家眼前,也会详细讲解每一部分的设计,相信大家在认真仔细的阅读这篇文档之后,就可以对射频的各个组成部分有一个比较清晰的认识。 第2章. 无线收发器 我把无线收发器(在本章的以下内容中简称收发器)放在了第一个模块,主要原因就是因为,它一般会是一个设计的核心器件之一,有的时候还可能集成在CPU上,就会是一个设计中的最重要的芯片,同时,理所当然,收发器的重要性决定了它的外围电路必然很复杂,实际上也是如此。而且,如果没有参考设计,完全由我们自主设计的时候,这颗芯片也是我们应该放在第一优先的位置去考虑,这颗芯片从根本上决定着整个设计的无线性能。这样,这一部分的设计讲解起来会比较困难,可 是还是想最先讲解这里。 收发器通常会有很多的管脚,在如图2-1中,我只给出了射频电路设计时会关注的管脚,可以看到,有几个电源管脚,数字地,模拟地(PLL,VCO),射频输出,

单级放大电路知识点

一、三种常见共射放大电路静态分析见下表所示 上表是常见共射电路的静态工作点。对于实际电路不一定完全跟表中电路相同。求解时遵循以下几点可以求出。 1.思路:①画出该电路的直流通路图。 ②从电源经过基极绕到地列出电压方程(有些电路需经过电工知识进行简化,像分压式可用戴维南定理对R b1、R b2部分等效)求出I BQ 。 ③根据电流放大作用求出I CQ 。 ④从电源经过集电极到发射极到地列电压方程求出U CEQ 。 2.静态工作点的稳定 (1)固定偏置电路 没有稳定静态工作点作用,只能用在要求不高的电路中。 (2)分压式偏置电路 ①静态工作点稳定过程 ②工作点稳定对电路元件参数要求 A .要稳定效果好:V BQ 要一定,就要求I 1≈I 2 I BQ 。这样才能保证V BQ ≈ R b2 R b1+R b2 V G 。一般情况下 ??? ??I 1≈I 2=(5~10)I BQ 硅管 I 1≈I 2=(10~20)I BQ 锗管 B .稳定静态工作点效果:V EQ =I EQ R E 的上升使U BEQ 下降。当R e 越大,U BEQ 下降越快,调整灵敏度

越高,这样就有V EQ U BEQ ,一般有?????V BQ =(3~5)U BEQ 或(3~5)V 硅管 V BQ =(5~10)U BEQ 或(1~3)V 锗管。 (3)集—基反馈式 静态工作点稳定过程:V CQ =V G -(I CQ +I BQ )R c 二、三种常见共射放大电路动态分析见下表所示

几点说明: 1.r be 是三极管的输入电阻,属动态电阻,即交流阻抗,但其大小跟晶体管的静态电流大小有关,一般的估算公式为r be =r ′bb +(1+β)26mV I E mA =r ′bb +26mV I BQ mA 单位为欧姆(Ω)。 (2)r′bb 为三极管基极的等效 电阻,小功率一般约为300Ω,近似计算时,按给出值代入,不给出值时取300Ω代替。 2.输入电阻r i 和输出电阻r o 的物理意义。 r i 表征放大器输入端,相对于信号源而言是信号源的等效负载电阻。r i 越大,则向信号源索取的电流越小,信号源负担越轻。r o 表征放大器的输出端,相对于负载而言是负载的信号源,r o 即为信号源内阻,显然r o 越小,带负载的能力越强。 三、射极输出器 1、静态工作点 I BQ R b +I BQ (1+β)R e +U BEQ =V G , I CQ =βI BQ , U CEQ =V G -I EQ R e ≈V G -I CQ R e 2、动态分析 ①电压放大倍数:A u =(1+β)R L ′/[r be +(1+β)R L ′],其中R L ′=R e ∥R L ②输入电阻:r i =[r be +(1+β)R L ′]∥R b ③输出电阻:r o =∥R e ,其中R s ′=R b ∥R s 3、射极输出器的特性: 射极输出器是共集电极电路,又称射极跟随器(uo ≈ui ,且同相) 电压放大倍数略小于1,电压跟随特性好,输入阻抗高,输出阻抗低,具有一定的电流放大能力和功率放大能力。 射极输出器的反馈类型为电压串联负反馈,且反馈系数为1,属深度负反馈,Auf ≈1/F =1。 4、射极输出器的应用 在多级放大电路中,射极输出器可作为输入级,以减轻信号源的负担;也可用作输出级,提高带负载的能力;还可作为放大器的中间隔离级,减小后级对前级电路的影响;另外,还可以用作阻抗变换器。

几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标 1 低噪声放大器(LNA) LNA是一种特殊的放大器,主要用于射频接收机前端,将天线接收的信号以小的噪声和大的增益进行放大,对提高接收信号质量,降低噪声干扰,提高接收灵敏度有着极其重要的意义,它的性能好坏关系到整个通信系统的质量。 低噪声放大器的主要指标有:噪声系数(NF)、增益(Gain)、输入输出阻抗匹配程度(S11、S22、输入输出回波损耗或输入输出VSWR)、线性性能(三阶交调点和1dB压缩点)、反向隔离(S12)等。由于LNA位于邻近天线的最前端,它的性能好坏会直接影响接收机接收信号的质量。为了保证经天线接收的信号能在接收机的最后一级得到恢复,LNA需要在放大信号的同时产生尽可能低的噪声和失真。因此,在生产测试中,我们主要关注LNA的增益和噪声系数这两个参数。 2 射频功率放大器(PA) 射频功率放大器用于发射机的末级,它将已调制的频带信号放大到所需要的功率值,送到天线中发射,保证在一定区域内的接收机可以收到满意的信号电平,并且不干扰相邻信道的通信。不同的应用场合对发射功率的大小要求不一,如移动通信基站的发射功率可达上百瓦,卫星通信的发射功率可达上千瓦,而便携式无线通信设备却只需几十毫瓦到几百毫瓦。 射频功率放大器的主要指标有工作频段、输出功率、功率增益和增益平坦度、噪声系数、输入输出驻波比、输入输出三阶交调点、邻道功率比、效率等。与低噪声放大器相比,射频功率放大器除了要满足一定的增益、驻波比、带宽,还要有高的输出功率和转换效率及小的非线性失真。 3 射频滤波器 射频滤波器主要用于滤去不需要的信号保留有用信号,是具有选频特性的二端口器件,它对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。 根据不同的选频特性,滤波器可以分为低通、高通、带通和带阻滤波器,这是最基本的四种滤波器。图1归纳了四种滤波器的衰减系数与归一化角频率的关系。根据不同的实现方法,滤波器可分为使用无源器件(如电感、电容和传输线)实现的无源滤波器和使用有源器件(如晶体管和运算放大器)实现的有源滤波器。

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

单级放大电路

实验二 单级放大电路 一、实验目的 1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验仪器及器材 双踪示波器、低频函数信号发生器、低频交流毫伏表、数字万用表、模拟电路实验箱 三、实验原理 图2-1 共射极单管放大器 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B2和R B1 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算,U CC 为供电电源,此为+12V 。 CC B B B B U R R R U 2 11 +≈ (2-1) C E BE B E I R U U I ≈-= (2-2) )(E C C CC CE R R I U U +-= (2-3) 电压放大倍数 be L C V r R R A β -= (2-4)

输入电阻 be B B i r R R R 21= (2-5) 输出电阻 C R R ≈0 (2-6) 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号U i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=, 由U C 确定I C ),同时也能算出E C CE E B BE U U U U U U -=-=,。 2) 静态工作点的调试 放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a )所示,如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b )所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a)饱和失真 (b)截止失真 图2-2 静态工作点对U0波形失真的影响 改变电路参数U CC ,R C ,R B (R B1,R B2)都会引起静态工作点的变化,如图2-3所示,但通常多采用调节偏电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如须满足较大信号的要求,静态工作点最好尽量靠近交流负载线的中点。

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

结构设计规范-射频模块结构设计流程

武汉虹信通信技术有限责任公司 WRI_HX 0 修改记录 版本号 C/0 武汉虹信通信技术有限责任公司 管理文件 文件编号 HX/QI/0363 实施日期 2009.05.04 结构设计规范—射频模块结构设计流程 页次: 1/11 目 录 0、修改记录 1、 模块总体设计原则 2、 模块机电交互设计原则 3、模块结构设计原则之零件建模 4、模块结构设计原则 5、模块加工、包装 编制 吴卫华 审核 甘洪文 批准 余勋林

1 模块总体设计原则 1.1模块总体设计原则之TOP-DOWN设计 ?总纲领:自顶向下的设计原则,是整机布局设计的后续任务; ?现在做了哪些:列出设计原则,设计要点; ?哪些还不完善:范例还不完善,技术还在发展; ?后期怎么去做:完善范例,追踪技术发展方向。 1.1.1 在整机设计中考虑模块体量 ?长度和宽度由整机布局给出参考尺寸; ?厚度由PCB堆叠的层数确定,堆叠的PCB间如果有电源,信号或射频的硬连接, 此两PCB的板间距离由连接器的高度确定,合理选择较高器件的封装形式; ?模块长度、宽度、以及安装孔的距离尺寸取到模数尺寸,优选为0或5结尾,次选 为3和8结尾; ?模块的安装厚度(既安装孔处的厚度)按照虹信公司紧固件规范选用。 1.1.2 在整机设计中考虑接口方式 ?电源的接口方式,有直接的插座引出,有和监控合并后的多PIN座转接或盲插; ?监控的接口方式,有直接的DB9座引出,有和电源合并后的多PIN座转接或盲插;

?射频的接口方式,方向上分有垂直向上和水平方向,按与外部电缆连接分有螺口和 卡口,常用规格有SMA和SMB和N型,根据整机布局,整机的射频指标、频率 和功率等合理选取; ?其他接口方式,可以参考上述3点,合理选取。 1.1.3 在整机设计中考虑安装方式 ?模块的四个对角应有安装孔,大功率射频模块靠近放大管的部位需根据情况加一安 装孔; ?若模块安装在中蓝顶(或类似侧壁安装的情况),模块的安装孔平面不可相对模块 顶部下沉; ?规定M3,M4用在哪些地方(根据功率大小); ?固定PCB用的M2、M2.5如何选用,材质确定(蓝白锌和不锈钢)。 1.1.4在整机设计中考虑模块的外部散热条件 ?由于整机的体积功率密度的限制,以及模块排列的日益紧凑化,应有整机散热方案; ?射频模块由于布板和结构限制,从热源到热沉的传热通道存在哪些瓶颈; ?分配到模块的结壳热阻会影响到模块的尺寸和PCB布局方式; ?目前公司可行的方法是热测试和软件模拟,基本满足设计要求。 1.1.5 在整机设计中考虑模块运动检查 ?模块安装操作空间,插座接头操作安装空间; ?模块的外部接口需要连接其他单板和模块;有一直线方向的运动距离; ?射频电缆接头是否为直头或弯头或受指标限制必须为直头等因素决定接头的类型; ?供电和监控是带导向的盲插还是软跳线决定插头型号和方向,在《模块结构设计输 入文件表》中说明,见附件。

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

射频宽带放大器D题优选稿

射频宽带放大器D题集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

2013年全国大学生电子设计竞赛射频宽带放大器(D题) 【本科组】 2013年9月7日

摘要 本系统以程控增益调整放大器AD603为核心,外加宽带放大器OPA690的配合,实现了高增益可调的射频宽带放大器。系统主要由六个模块构成:前置放大电路、一阶RC高通滤波电路、可控增益放大电路、输出缓冲电路、直流稳压电源以及单片机显示控制模块。系统通过第一级OPA690两级级联电路放大 20dB,再通过单片机程控两级级联的AD603实现-20~60dB的动态增益变化,从而满足电压增益Av在0~60dB范围内可调的要求。整个系统放大器可放大1mV 有效值信号,增益可达80dB,通频带内增益起伏1dB,放大器在Av=60dB的时候,输出噪声电压峰-峰值为80mV,通过单片机控制可实现电压增益Av可预置并显示的功能。整个系统工作可靠、稳定,且成本低。 关键词:射频宽带放大;可控增益;AD603

目录

射频宽带放大器(D题) 【本科组】 1系统方案论证 1.1方案比较与选择 1.1.1前置放大电路 方案一:使用分立元件三极管、电阻、电容、电感等构成前置放大电路。该电路在元件参数设置不精准的情况下,误差较大,且电路结构复杂,设计困难,调试繁琐,故不采用。 方案二:使用仪表放大电路。仪表放大器具有低输入失调电压、高共模抑制比、可用单电阻实现增益大范围调节等优点,但是专用的仪表放大器价格通常比较昂贵,所以不予采用。 方案三:采用OPA690运放电路。OPA690为低噪声、低直流零点漂移运放,且结构简单,调试容易,电路稳定,效果较好。 综合以上三种方案,选择方案三。 1.1.2可控增益放大电路 方案一:利用高速运放加数字电位器构造可程控放大器,通过控制数字电位器阻值来控制放大器增益。但数字电位器建立时间最快也需几us,加之数字电位器3db截止频率一般在几百KHz,当输入信号为MHz数量级下阻值准确性会产生失真,使得程控变得困难,而且高速运放在低频下的响应远不能满足要求。因此,此方案可行性较差。 方案二:采用可编程放大器的思想,将输入交流信号作为高速DAC的基准电压,用DAC的电阻网络构成运放反馈网络的一部分,通过改变DAC数字控制量实现增益控制。理论上讲,只要DAC的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。 方案三:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC产生。单级集成可控增益放大器AD603具有-10dB到+30dBdB的增益控制范围,两级级

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

放大器参数说明

放大器参数说明 工作频率范围(F): 指放大器满足各级指标的工作频率范围。放大器实际的工作频率范 围可能会大于定义的工作频率范围。 功率增益(G): 指放大器输出功率和输入功率的比值,单位常用“dB”。 增益平坦度(ΔG): 指在一定温度下,在整个工作频率范围内,放大器增益变化的范围。 增益平坦度由下式表示(见图1): 图1 ΔG=±(Gmax-Gmin)/2dB ΔG:增益平坦度 G max:增益——频率扫频曲线的幅度最大值 三阶截点(IP3): 测量放大器的非线性特性,最简单的方法是测量1dB压缩点 功率电平P1dB。另一个颇为流行的方法是利用两个相距5到 10MHz的邻近信号,当频率为f1和f2的这两个信号加到一个 放大器时,该放大器的输出不仅包含了这两个信号,而且也 包含了频率为mf1+nf2的互调分量(IM),这里,称m+n为互 调分量的阶数。在中等饱和电平时,通常起支配作用的是最 接近基音频率的三阶分量(见图4)。 因为三阶项直到畸变十分严重的点都起着支配作用,所以常 用三阶截点(IP3)来表征互调畸变(见图3)。三阶截点是 描述放大器线性程度的一个重要指标。三阶截点功率的典型 值比P1dB高10-12dB。IP3可以通过测量IM3得到,计算公式为: IP3=P SCL+IM3/2;

G min:增益——频率扫频曲线的幅度最小值 噪声系数(NF): 噪声系数是指输入端信噪比与放大器输出端信噪比的比值,单位常用“dB”。 噪声系数由下式表示:NF=10lg(输入端信噪比/输出端信噪比) 在放大器的噪声系数比较低(例如NF<1)的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或 NF=T/T0+1 T0-绝对温度(290K) 噪声系数与噪声温度的换算表(见图2) 1分贝压缩点输出功率(P1dB): 放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。这种放大器称之为线性放大器,这两个功率之比就是功率增益G。随着输入功率的继续增大,放大器进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。(见图3)P SCL——单载波功率; 如三阶互调点已知,则基波与三阶互调抑制比与三阶互调点的杂散电平可由下式估计: 基波与三阶互调抑制比=2[IP3-(P IN+G)] 三阶互调杂散电平=3(P IN+G)-2IP3 输入/输出驻波比(VSWR): 微波放大器通常设计或用于50Ω阻抗的微波系统中,输入/ 输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。 用下式表示: VSWR = (1+|Γ|)/(1-|Γ|); 其中Γ= (Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z O:需要的系统阻抗 工作电压/电流: 指放大器工作时需要供给的电源电压和放大器工作时要求供给的电流值。 放大器增益窗的定义: 在本产品手册中,放大器的增益定义采用增益窗的定义方法(不含窄带功率放大器)。增益窗的定义方法是根据放大器允许的最大增益(Gmax),放大器允许的最小增益(Gmin),

相关文档