文档库 最新最全的文档下载
当前位置:文档库 › 聚甲醛的结构特征与热降解机理探究

聚甲醛的结构特征与热降解机理探究

聚甲醛的结构特征与热降解机理探究
聚甲醛的结构特征与热降解机理探究

聚甲醛的结构特征与热降解机理探究

【摘要】聚甲醛降解行为的研究推动着聚甲醛稳定化技术的不断发展,而要改善聚甲醛的稳定性,一是改变其分子结构,即采用封端和共聚的方法除去不稳定的端基,阻止聚甲醛分子开链式解聚。然而实践证明,仅依靠结构改性,还无法满足实际生产和加工要求;二是采用添加稳定剂的方法,这种方法既能提高聚甲醛产品的稳定性,又不致对其他性能和成本影响太大,而且易于加工,因而被广泛地应用于工业化生产。

【关键词】聚甲醛;结构特征;热解特征;稳定性;氧化降解;经济性;可靠性

0引言

聚甲醛(简称POM)是一种分子主链含有氧化亚甲基(-CH2O-)重复单元的线型高结晶性聚合物。聚甲醛材料具备优异的物理机械性能,其机械强度和刚度高,自润滑性和耐磨性好,尺寸稳定性好,特别是具有极其优异的耐疲劳特性、耐蠕变性以及耐化学药品性等特点,是所有塑料材料中力学性能最接近金属的品种之一,因而被广泛地应用于机械制造、汽车工业、电子电器、精密仪器等多种领域。随着塑料工业的高速发展,全世界聚甲醛产品的消费和需求量迅猛增长,聚甲醛已成为一种极其重要的热塑性工程塑料。

1聚甲醛的主要性能指标

1.1力学性能

聚甲醛具有优异的力学性能,特别是刚性,强度,其他如冲击强度,硬度也很好。与共聚甲醛相比,均聚甲醛的机械性能略优10%-20%,这主要是其结晶度略高10%左右的缘故。与金属相比,聚甲醛又有特殊性,其极性强度受温度等外界条件影响大,应力作用速度、时间以及加工条件都对其有影响。拉伸速度加快,就愈显示硬而脆,反之则软而弱。一般而言,随温度升高,聚甲醛的伸长率增加,各种机械性能降低。此外,聚甲醛具有优异的抗蠕变和耐摩擦性能,其摩擦系数小,动静摩擦系数接近,耐水、油及大多数有机溶剂,强度好,回弹性高,但耐热性差。添加润滑剂可以提高临界PV值,一般聚甲醛与钢匹配使用,摩擦系数小,磨损量低。

1.2热性能

共聚甲醛熔点在160℃左右,均聚甲醛较高,在175℃左右,具体数据可翻阅相关文献。

1.3电性能

聚甲醛具有优良的电性能,其介电损耗小,击穿电压高,绝缘电阻也较高,但其高频电性能不是很好,随温度升高,介电常数和介电损耗因子急剧增大。作为电器长期使用温度上限为105℃。

1.4耐老化性能

聚甲醛的耐候性较差,经大气老化后,力学性能有所降低,外观上一般表面先出现裂痕,然后裂痕不断加宽和加深。机械性能也受到影响,一般伸长率减小,脆性增加,冲击韧性降低。总的来说,共聚物的耐候性优于均聚物。

共聚甲醛的短期耐热性较好,熔融加工5次后,除颜色显著变深以外,其余性能无明显变化。但聚甲醛的长期热稳定性较差,通常都要经过封端和稳定化处理。此外,聚甲醛经高能射线辐照后,分子链断裂,使其机械性能下降。

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 =+ 5. 对应变张量,请写出其八面体线变与八面体切应变 的表达式。 =; =。

6.1864 年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为。 7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。

聚甲醛学名聚氧亚甲基(简称POM)

聚甲醛 求助编辑 聚甲醛结构式 聚甲醛(英文:polyformaldehyde)热塑性结晶聚合物。被誉为“超钢”或者“赛钢”,又称聚氧亚甲基。结构为,英文缩写为POM。通常甲醛聚合所得之聚合物,聚合度不高,且易受热解聚。 目录 编辑本段

性能数值 聚甲醛制品1 比重 1.43 熔点175°C 伸强度(屈服) 70MPa 伸长率(屈服) 15% (断裂) 15% 冲击强度(无缺口) 108KJ/m2 (带缺口) 7.6KJ/m2 均聚甲醛的合成一般以甲醛的水溶液在酸的存在下缩合聚合。得到聚合度为100以上的a-聚甲醛,然后将其加热分解成甲醛气体,经精制和脱水后,通常利用部分预聚合的方法纯化单体,然后通入含少量引发剂的干燥溶剂中进行聚合。因为水的存在,使分子量显著降低。引发剂可用路易斯酸或碱等。但大多用叔胺进行负离子加成聚合,反应如下:聚甲醛的端基为半缩醛(—CH2OH),当温度高于100℃ 时,端基易断裂,一般需经端基处理使之稳定化。稳定化处理后可耐热到230 ℃。多聚甲醛可在 170~200 ℃的温度下加工,如注射、挤出、吹塑等。主要用作工程塑料,用于汽车、机械部件等。 典型应用范围 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 注塑模工艺条件: 干燥处理:如果材料储存在干燥环境中,通常不需要干燥处理。

熔化温度:均聚物材料为190~230℃;共聚物材料为190~210℃。 模具温度:80~105℃。为了减小成型后收缩率可选用高一些的模具温度。 注射压力:700~1200bar。 注射速度:中等或偏高的注射速度。 流道和浇口:可以使用任何类型的浇口。如果使用隧道形浇口,则最好使用较短的类型。对于均聚物材料建议使用热注嘴流道。对于共聚物材料既可使用内部的热流道也可使用外部热流道。 化学和物理特性 POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击特性。POM既有均聚物材料也有共聚物材料。均聚物材料具有很好的延展强度、抗疲劳强度,但不易于加工。共聚物材料有很好的热稳定性、化学稳定性并且易于加工。无论均聚物材料还是共聚物材料,都是结晶性材料并且不易吸收水分。POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。对于各种不同的增强型材料有不同的收缩率。 编辑本段主要用途 聚甲醛(pom)是一种性能优良的工程塑料,在国外有“夺钢”、“ 聚甲醛制品2 超钢”之称。pom具有类似金属的硬度、强度和钢性,在很宽的温度和湿度范围内都具有很好的自润滑性、良好的耐疲劳性,并富于弹性,此外它还有较好的耐化学品性。pom以低于其他许多工程塑料的成本,正在替代一些传统上被金属所占领的市场,如替代锌、黄铜、铝和钢制作许多部件,自问世以来,pom已经广泛应用于电子电气、机械、仪表、日用轻工、汽车、建材、农业等领域。在很多新领域的应用,如医疗技术、运动器械等方面,pom也表现出较好的增长态势。 应用消费持续增长 pom用在那些对润滑性、耐磨损性、刚性和尺寸稳定性要求比较严格的滑动和滚动的机械部件上,性能尤为优越,因此主要用于工业机械、汽车、电子电气、管件和灌溉用品等方面。近年我国pom市场增长迅速,2002年

POM聚甲醛知识大全

POM聚甲醛知识大全 1 POM(聚甲醛) 聚甲醛学名聚氧化聚甲醛(简称POM),又称赛钢、特钢。它是以甲醛等为原料聚合所得。POM-H(聚甲醛均聚物),POM-C(聚甲醛共聚物)是高密度、高结晶度的热塑性工程塑料。具有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。聚甲醛是一种无侧链高密度结晶性聚合物,具有优异的综合性能。 聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,可在-40- 100°C温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油,耐过氧化物性能。很不耐酸,不耐强碱和不耐紫外线的辐射。(加入UV剂,能大大提高其耐紫外线等级) 1物理性质 POM塑胶 聚甲醛塑料是继尼龙之后发展的又一优良树脂品种,具有优良的综合性能。 聚甲醛有着良好的耐溶剂、耐油类、耐弱酸、弱碱等性能。聚甲醛有着很高的硬度和钢性,具有高度抗蠕变和应力松弛能力,优良的耐磨性,自润滑性,耐疲劳性 聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物,具有优异的综合性能。聚甲醛的拉伸强度可达70MPa,可在104℃下长期使用,脆化温度为-40℃,吸水性较小。但聚甲醛的热稳定性较差,耐候性较差,长期在大气中曝晒会老化。 聚甲醛的力学性能相当好,它具有较高的强度的弹性模量,摩擦系数小,耐磨性能好。聚甲醛还具有高度抗蠕变和应力松弛的能力。 聚甲醛尺寸稳定性好,吸水率很小,所以吸水率对其力学性能的影响可以不予考虑。聚甲醛有较好的介电性能,在很宽的频率和温度范围内,它的介电常数和介质损耗角正切值变化很小。 聚甲醛的耐热性较差,在成型温度下易降解放出皿醛,一般在造粒时加入稳定剂。若不受力,聚甲醛可在140℃下短期使用,其长期使用温度为85℃。 聚甲醛耐气候性较差,经大气老化后,一般性能均有所下降。但它的化学稳定性非常优越,特别是对有机溶剂,其尺寸变化和力学性能的降低都很少。但对强酸和强氧化剂如硝酸、硫酸等耐蚀性很差。 聚甲醛的拉伸强度达70MPa,吸水性小,尺寸稳定,有光泽,这些性能都比尼龙好,聚甲醛为高度结晶的树脂,在热塑性树脂中是最坚韧的。具抗热强度,弯曲强度,耐疲劳性强度均高,耐磨性和电性能优良。 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 POM物性表:密度 1.39g/cm3,吸水率1.2%,连续使用温度20-110℃,屈服抗拉强度63MPa,缺口冲击韧度6Kj/㎡,洛氏硬度135MPa,邵氏硬度85MPa,弹性模量2600MPa,软化温度150℃,热变形温度HDT155℃,热线膨胀系数1.1,热导率W/(m×K)031,摩擦系数1.35 2优点 1、具高机械强度和刚性; 2、最高的疲劳强度; 3、环境抵抗性、耐有机溶剂性佳; 4、耐反覆冲击性强; 5、广泛的使用温度范围(-40℃~120℃); 6、良好的电气性质; 7、复原性良好; 8、具自已润滑性、耐磨性良好; 9、尺寸安定性优。用途:电子电器:洗衣机,果汁机定时器等组件; 汽车:车把,电动窗等零件;机械零件,齿轮,把手,螺杆,玩具等; 分类:玻纤/碳纤增强POM,防火POM,抗紫外线耐候POM,加铁氟龙POM,防静电/导电

POM材料特性 聚甲醛POM

POM材料特性聚甲醛POM-概述: POM(聚甲醛树脂)定义:聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物。按其分子链中化学结构的不同,可分为均聚甲醛和共聚甲醛两种。两者的重要区别是:均聚甲醛密度、结晶度、熔点都高,但热稳定性差,加工温度范围窄(约10℃),对酸碱稳定性略低;而共聚甲醛密度、结晶度、熔点、强度都较低,但热稳定性好,不易分解,加工温度范围宽(约50℃),对酸碱稳定性较好。是具有优异的综合性能的工程塑料。有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。俗称赛钢或夺钢,为第三大通用塑料。适于制作减磨耐磨零件,传动零件,以及化工,仪表等零件。 POM材料特性聚甲醛POM-一般性能: 聚甲醛是一种表面光滑、有光泽的硬而致密的材料,淡黄或白色,薄壁部分呈半透明。燃烧特性为容易燃烧,离火后继续燃烧,火焰上端呈黄色,下端呈蓝色,发生熔融滴落,有强烈的刺激性甲醛味、鱼腥臭。聚甲醛为白色粉末,一般不透明,着色性好,比重1.41-1.43克/立方厘米,成型收缩率1.2-3.0%,成型温度170-200℃,干燥条件80-90℃2小时。POM 的长期耐热性能不高,但短期可达到160℃,其中均聚POM短期耐热比共聚POM高10℃以上,但长期耐热共聚POM反而比均聚POM高10℃左右。可在-40℃~100℃温度范围内长期使用。POM极易分解,分解温度为240度。分解时有刺激性和腐蚀性气体发生。故模具钢材宜选用耐腐蚀性的材料制作。 POM材料特性聚甲醛POM-力学性能: POM强度、刚度高,弹性好,减磨耐磨性好。其力学性能优异,比强度可达50.5MPa,比刚度可达2650MPa,与金属十分接近。POM的力学性能随温度变化小,共聚POM比均聚POM的变化稍大一点。POM的冲击强度较高,但常规冲击不及ABS和PC;POM对缺口敏感,有缺口可使冲击强度下降90%之多。POM的疲劳强度十分突出,10交变载荷作用后,疲劳强度可达35MPa,而PA和PC仅为28MPa。POM的蠕变性与PA相似,在20℃、21MPa、3000h时仅为 2.3%,而且受温度的影响很小。POM的摩擦因数小,耐磨性好(POM>PA66>PA6>ABS>HPVC>PS>PC),极限PV值很大,自润滑性好。POM制品对磨时,高载荷作用时易产生类似尖叫的噪声。 POM材料特性聚甲醛POM-改性: ⒈增强POM 主要增强材料为玻璃纤维、玻璃球或碳纤维等,并且玻璃纤维最常用,增强后的力学性能可提高2~3倍,热变形温度提高50℃以上。⒉高润滑POM 在POM中加入石墨、F4、二硫化钼、润滑油及低分子量PE等,可提高其润滑性能。例如,在POM中加入5份F4,可降低摩擦因数60%,耐磨性提高1~2倍。再如,在POM中加入液体润滑油,可大幅度提高耐磨性和极限PV值。为提高由油的分散效果,需加入炭黑、氢氧化铝硫酸钡、乙丙橡胶等吸油载体。加入5%油POM的摩擦性提高72%,极限PV值可达3.9MPa•m/s (纯POM为0.213MPa•m/s),为其他工程塑料的3~20倍。 以上

聚甲醛简介

聚甲醛 一、简介 聚甲醛(POM)是一种新兴的具有广泛用途和广阔发展前景的一种材料。外观是半透明或不透明粉料或粒料,与象牙相似。POM是5大通用工程塑料之一,广泛用于电子电气、汽车、轻工、机械、化工、建材以及军事等领域,由于它在各方面所表现出来的优良性能,它的应用已几乎涉及各种行业领域,特别是对许多新兴产业它是一种十分适用的材料 二、性能 聚甲醛树脂在较大的温度范围内具有较高的弹性模数、硬度、刚性和机械性能,可在104℃以下长期使用,脆化温度-40℃,吸水性极小。摩擦系数低,动磨擦系数与静磨擦系数相同,自润滑耐磨损性能优异。机械性能与金属类似,且比重小,广泛应用于替代钢铁、铜、锌、铝等金属材料和其它塑料,有“塑料中的金属”之称。 三、聚甲醛的应用 1、电子器械:录像带转轴,彩电频道预选器,照相机零件,洗衣机定时器,各类仪器仪表的传动齿轮等。 2、汽车工业:汽车板弹簧销套、千斤顶螺母、摇窗机、刮水板、空调控制器、油箱盖、指示器开关、齿轮、数字轮等。 3、机械工业:纺织机械零件、采煤机械、推土机轴瓦、火车轴瓦头、食品和饮料传送链片、电动工具零件。 4、轻工业:拉链、圆珠笔、活动笔零件、打火机、化妆品气压喷嘴、煤气减压阀、箱包搭扣、剃须刀电机、饼干模具等 5、其他领域:各种类型喷雾器筒、螺母等 四、市场前景 从政策方面看,在十一五规划中明确指出重点发展特种功能材料、高性能结构材料、复合材料、环保节能材料等产业群,建立和完善新材料创新体系。聚甲醛属于一种新型材料,耗能小,节能环保,正符合目前发展潮流,国家政策给予积极鼓励的政策,将会促进我国聚甲醛行业的发展。十二五期间国家对工程塑料市场发展提出明确发展方向,通过科技创新,提高工程塑料技术水平,增强竞争力,促使由塑料大国向塑料强国转变成为工程塑料市场发展的目标。 五、存在问题 1、我国聚甲醛工业发展与国外先进水平相差甚远,聚甲醛属于高技术产品,目前国内所需聚甲醛尚需大量进口。虽然我国很早就开始研制聚甲醛,但是经过几十年的发展,技术水平没有重大突破。与国外公司相比,规模太小。2010年,我国聚甲醛的表观需求量为31.4万吨,其中进口量达到22.3万吨进口依存度高达70%以上。

热解动力学计算

4.1.2 污泥干燥动力学分析 若把污泥干燥视为湿污泥的热分解,分解产物为干燥污泥和水分,反应式为: )C((气固)+→B A (4.1) 失重率或干燥率α,其物理意义为污泥在任一时刻已失水分质量与总失水质量的百分比,其表达式为: ∞ ∞??= --= W W W W W W 00α (4.2) 0W —初始质量; W —T 0C(t)时的质量; ∞W —最终质量; W ?—T 0C(t)时的失重量; ∞?W —最大失重量; 分解速率为: )(αα Kf dt d = (4.3) 根据Arrhenius 公式[33]: RT E Ae K /-= (4.4) 可得: ) ()/exp(/ααf RT E A dt d -= (4.5) 式中:A —频率因子; E —活化能; R —气体常数;

T —绝对温度; t —反应时间; α—样品转化率。 在恒定的程序升温速率下,升温速率dt dT /=β ) ()/exp()/(/αβαf RT E A dT d -= (4.6) 定义 ? =α ααα0 ) ()()(f d G (4.7) Coats 和Redfern 根据式(4.6)和式(4.7)可推导出下式 ?-= T dT RT E A G 0 )/exp()(β α (4.8) 则 RT E E RT E AR T G - ??????-=??? ???)21(ln )(ln 2βα (4.9) 由于 02∝E RT ,所以当??? ???2)(ln T G α~T 1拟合关系接近于线性时,斜率即为R E - ,截距)ln(E AR β。固体反应一共有45种积分形式,把污泥干燥数据代入)(αG 形式,找出最适合的表达式(??????2)(ln T G α~T 1 拟合为线性关系),将这一)(αG 函 数式用于分析污泥干燥,从而研究污泥干燥的表观动力学。 污泥干燥研究过程以升温速率为3℃/min 为例来说明。经过拟合筛选,表4.1所示的七个动力学机理函数较接近污泥干燥的动力学函数

填料填充改性聚甲醛复合材料研究进展_张广发汇总

工程塑料应用 ENGINEERING PLASTICS APPLICATION 第41卷,第2期2013年2月 V ol.41,No.2Feb. 2013 116 doi:10.3969/j.issn.1001-3539.2013.02.025 填料填充改性聚甲醛复合材料研究进展 张广发,赵利军,苏军,段宝松,赵志阳 (开封龙宇化工有限公司,河南开封475200 摘要:综述了近年来不同无机纤维、无机粒子、有机填料与无机填料混合物及金属及其氧化物对聚甲醛(POM 复合材料改性的研究进展。介绍了填料在POM 复合材料改性中的作用,对填料填充改性POM 复合材料的发展趋势进行了展望。 关键词:聚甲醛;改性;填料;研究进展 中图分类号:TQ326.51 文献标识码:A 文章编号:1001-3539(201302-0116-04 Research Development of Polyoxymethylene Composites Modi ? ed by Adding Filler Zhang Guangfa ,Zhao Lijun ,Su Jun ,Duan Baosong ,Zhao Zhiyang (Kaifeng Longyu Chemical Co.Ltd.,Kaifeng 475200,China Abstract :Research development of polyoxymethylene(POM composites modified by adding inorganic fiber ,inorganic particle ,organic /inorganic filler mixture ,metal and

国内外聚甲醛技术特点比较

国内外聚甲醛技术特点比较 一、聚甲醛产品用途概述 聚酰胺(PA)、聚碳酸酯(PC)、聚甲醛(POM)、聚酯(PBT)和聚苯醚(PPO)被合称为五大工程塑料。工程塑料和通用塑料相比,在机械性能、耐热性、耐久性、耐腐蚀性等方面能达到更高的要求,而且加工更为方便,可替代金属等材料,因而在汽车、通讯设备、建筑材料、家用电器乃至航空航天等方面有着广阔的用途,受国家一系列拉动内需政策和下游汽车、家电等销售不断攀升影响,PC、PBT、PA、POM、PPO工程塑料已成为塑料工业中最为活跃的领域。工程塑料已占轿车总重量的20%。 1.聚甲醛是以上五大工程塑料中仅次于PA和PC居第三位,聚甲醛具有较高的弹性模量、刚性和硬度,且摩擦系数小,耐磨耗,尺寸稳定性好。POM常用来代替铜、锌、锡、铅等有色金属,有“夺钢”、“超钢”之称。 与聚甲醛同其他工程塑料(PA、PC、PBT)相比,它具有优良的耐疲劳性能和耐磨耗性,较小的蠕变性能被广泛地应用于汽车、军工、电器、建材和日用行业。 2. 电器行业 由于聚甲醛介电强度和绝缘电阻较高,具有耐电弧性等性能,使之被广泛的应用于电子电器领域。聚甲醛在办公设备用于电话、无线电、录音机、录像机、电视机、计算机和传真机的零部件、计时器零件,录音机磁带座。在家用电器行业用来制造电源插头、电源开关、按钮、继电器、洗衣机滑轮、空调曲柄轴、微波炉门摇杆、电饭锅开关安装板、电冰箱、电扳手外壳、电动羊毛剪外壳、煤钻外壳和开关手柄等。 3.汽车行业 聚甲醛在汽车工业中的应用量较大,用来制造汽车泵、汽化器、输油管、动力阀、万向节轴承、刹车衬套、车窗升降器、安全带扣、门把手、门锁、滑块、负荷指示器外齿轮、钢板弹簧减震衬套、推力杆球座、散热器水管阀门、散热器箱盖、冷却液的备用箱、水阀体、燃料油箱盖、水本叶轮、气化器壳体、油门踏板等零件。 4.国防军工 用来制造自行式迫击炮、坦克装甲车辆中聚甲醛用于制造水散热器、排水管、散热风扇、坦克操纵转动开关、转动轴轴套等。5.建材和日用行业水龙头、窗框、洗漱盆、水箱、门帘滑轮、水表、壳体和水管接头等。聚甲醛还可用于消防水龙头、滑雪板、溜旱冰鞋、渔具滑轮、木梳、衣服拉链、密封圈等。 6.聚甲醛的改性 聚甲醛改性技术近几年有很大发展,聚甲醛改性可以使聚甲醛性能大幅度提高,进一步拓宽聚甲醛的应用领域,提高了聚甲醛的应用价值

聚甲醛参数

POM-聚甲醛的加工特性和工艺参数 ?POM熔体的流变性呈非牛顿型,其熔体的粘度对温度不敏感;对注塑而言,要增加流动性能,可以从增加注塑速率减小喷嘴尺寸等方面入手。 ?POM的结晶度大,熔程窄,成型收缩大(可达3.5%)。对注塑厚制品而言,要注意保压和补料,以免造成收缩孔太大而报废。 ?POM的热稳定性差,温度过高或时间过长,均会引起分解;特别是温度超过250℃,分解速度会加快,并溢出强烈刺激眼睛的甲醛气体,严重时制 品会产生气泡或变色,严重者会引起爆炸。因此,必须严格控制温度和停 留时间;另外,还需加入抗氧化剂和双氰胺甲醛吸收剂。 ?POM的冷凝速度快,制品易产生表面缺陷如折皱、斑纹及熔接痕等,为此应用提高注塑速度和提高模具温度等方法解决。 ?POM制品易产生内应力,后收缩也较大,应进行后处理。后处理的条件为:厚度6mm以下,温度100℃,时间0.25~1h;厚度6mm以上,温度120~130℃,时间4~6h。 ?POM的吸水率不高,但干燥处理可提高制品的表面光泽度。干燥条件为:温度110~120℃,时间3~5h。 POM-聚甲醛的成型加工方法 聚甲醛(POM)分为共聚POM和均聚POM两种。两者在耐热性、结晶性等方面存在明显的差异,因此各自的成型条件对其性能的影响也有较大的不同。 均聚POM,成型条件对性能的影响是: ?模具温度的影响较大,主要表现为随模具温度的提高,POM的结晶更趋于完整,使其拉伸强度和冲击强度提高,而断裂伸长率下降。 ?料筒温度设置在适当范围时,一般对性能影响不大,但如果料筒温度过高或在料筒中滞留时间过长时,会使POM热分解而引起其断裂伸长率的降 低。 ?注塑压力、注射时间及冷却时间对POM的冲击强度有一定的影响,但与其它性能无关。 共聚POM,成型条件对性能的影响是: ?模具温度的影响较大,也表现为随模具温度的提高,其拉伸强度和冲击强度提高。 ?注塑压力、注射时间及冷却时间对所有性能均无影响。

塑性变形的力学原理

塑性变形的力学原理 element of mechanics of plasticity 从认定塑性变形体为均质连续体出发,依据宏观的实验结果,研究变形体内的应力、应变以及它们和变形温度、速度等条件之间的关系(见金属塑性变形)。 应力-应变曲线在材料试验中,常用圆棒受拉,短柱受压,薄壁管受扭转,以测定负载和变形的关系;然后分别算出单位面积上的负载(称为应力,常用ζ表示)和单位长度的变形(称为应变,常用ε表示)。材料的ζ和ε间的对应关系称为应力-应变曲线(ζ-ε曲线)。最常用的试验是试样受拉时,由原始长 度l0增加到l,常称比值为工程应变或应变,而称自然对数值l n (l/l )为对数应 变或真应变。若在外力P的作用下,受拉试样由原始截面积A 减小到每一瞬间的 值A,则称比值P/A 为习惯应力,P/A为真应力。常见的延性金属的应力-应变曲线,按有无明显的屈服点,分为两类(见金属力学性能的表征)。 对于小变形量,用工程应力-应变曲线即可;而对于大变形量,需用真应力-应变曲线。在一次受拉试验中,我们可以得到材料的特征性的ζ-ε曲线,此外,还可以得到材料的屈服应力(ζs)、断裂应力(ζb)、截面收缩率(ψ%)、延伸率即伸长率(δ%)和弹性模量(E)等特性指标。 常用ζs作为材料塑性变形时的抗力,ψ%和δ%为其承受塑性变形的能力(塑性指标)。但对塑性加工而言,由于变形量大、变形条件复杂,所以上述指标值不能直接应用,而只能表示某个可以单独测定的条件(如温度、变形速率等)对变形抗力和塑性指标的影响。因此我们常用ζ0来表示材料在简单应力状态条件下的变形抗力,用ζ表示在某个复杂条件下的变形抗力;在高变形速率的实验 中,由于ζ s 和ζ b 难于分别测定,所以有时也用ζb的变化来代表变形抗力的变 化。 塑性加工总是在复杂的应力状态条件下实现的。早在1911年卡门(T.von Karman)就用实验证明在高流体静压力下,通常认为是“脆性的”花岗岩可以有相当大的塑性变形。但是从一个简单的试验结果出发来定量地描述各种加工条件下的塑性指标,是很困难的;因而必须用接近于加工条件的方式进行实测,测得的数值称为塑性加工性指标(见金属塑性加工)。我们用塑性变形条件来计算应力状态条件对于变形抗力的影响。 复杂应力下的塑性变形有两个论题:如何用最简化的数学语言叙述复杂应力状态?在这样的背景下如何叙述进入塑性变形状态的条件? 应力状态条件取均质连续体内一点(或不考虑力分布的单元体)作受力分析的对象,则可证明存在着一组唯一的三维直角坐标系,不论外部的作用力如何分布,在此系内沿坐标面在单元体上的切应力为零。此坐标系称为主坐标系,垂直于坐标面的正应力称为主应力,常用ζ1、ζ2、ζ3表示。这样,任何复杂的

POM成分

POM成分 POM成分聚甲醛POM-概述: POM(聚甲醛树脂)定义:聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物。按其分子链中化学结构的不同,可分为均聚甲醛和共聚甲醛两种。两者的重要区别是:均聚甲醛密度、结晶度、熔点都高,但热稳定性差,加工温度范围窄(约10℃),对酸碱稳定性略低;而共聚甲醛密度、结晶度、熔点、强度都较低,但热稳定性好,不易分解,加工温度范围宽(约50℃),对酸碱稳定性较好。是具有优异的综合性能的工程塑料。有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。俗称赛钢或夺钢,为第三大通用塑料。适于制作减磨耐磨零件,传动零件,以及化工,仪表等零件。 POM成分聚甲醛POM-一般性能: 聚甲醛是一种表面光滑、有光泽的硬而致密的材料,淡黄或白色,薄壁部分呈半透明。燃烧特性为容易燃烧,离火后继续燃烧,火焰上端呈黄色,下端呈蓝色,发生熔融滴落,有强烈的刺激性甲醛味、鱼腥臭。聚甲醛为白色粉末,一般不透明,着色性好,比重1.41-1.43克/立方厘米,成型收缩率1.2-3.0%,成型温度170-200℃,干燥条件80-90℃2小时。POM 的长期耐热性能不高,但短期可达到160℃,其中均聚POM短期耐热比共聚POM高10℃以上,但长期耐热共聚POM反而比均聚POM高10℃左右。可在-40℃~100℃温度范围内长期使用。POM极易分解,分解温度为240度。分解时有刺激性和腐蚀性气体发生。故模具钢材宜选用耐腐蚀性的材料制作。 POM成分聚甲醛POM-力学性能: POM强度、刚度高,弹性好,减磨耐磨性好。其力学性能优异,比强度可达50.5MPa,比刚度可达2650MPa,与金属十分接近。POM的力学性能随温度变化小,共聚POM比均聚POM的变化稍大一点。POM的冲击强度较高,但常规冲击不及ABS和PC;POM对缺口敏感,有缺口可使冲击强度下降90%之多。POM的疲劳强度十分突出,10交变载荷作用后,疲劳强度可达35MPa,而PA和PC仅为28MPa。POM的蠕变性与PA相似,在20℃、21MPa、3000h时仅为 2.3%,而且受温度的影响很小。POM的摩擦因数小,耐磨性好(POM>PA66>PA6>ABS>HPVC>PS>PC),极限PV值很大,自润滑性好。POM制品对磨时,高载荷作用时易产生类似尖叫的噪声。 POM成分聚甲醛POM-改性: ⒈增强POM 主要增强材料为玻璃纤维、玻璃球或碳纤维等,并且玻璃纤维最常用,增强后的力学性能可提高2~3倍,热变形温度提高50℃以上。⒉高润滑POM 在POM中加入石墨、F4、二硫化钼、润滑油及低分子量PE等,可提高其润滑性能。例如,在POM中加入5份F4,可降低摩擦因数60%,耐磨性提高1~2倍。再如,在POM中加入液体润滑油,可大幅度提高耐磨性和极限PV值。为提高由油的分散效果,需加入炭黑、氢氧化铝硫酸钡、乙丙橡胶等吸油载体。加入5%油POM的摩擦性提高72%,极限PV值可达3.9MPa•m/s(纯POM为0.213MPa•m/s),为其他工程塑料的3~20倍。

高岭土热分解动力学

第 卷第 期 张爱华等:高岭土的热分解动力学 · 1 · 审稿专家[1]的主要意见: 该文介绍了采用热分析方法研究高岭石热分解过程的动力学特征.研究思路清晰,方法合理,公式应用正确,依据明确,具有一定的可读性.但理论推导的结果均存在一定偏差,如果作者能通过对多个地区高岭石进行比较研究,将更能说明问题. 审稿专家[2]的主要意见: 该文介绍了采用热分析方法研究高岭石热分解过程的动力学特征.研究思路清晰,方法合理,公式应用正确,依据明确,具有一定的可读性.但理论推导的结果均存在一定偏差,如果作者能通过对多个地区高岭石进行比较研究,将更能说明问题. 高岭土热分解动力学 张爱华,何明中,秦芳芳,严慧 (中国地质大学材料科学与化学工程学院,武汉 430074) 摘 要:采用综合热分析仪在动态空气气氛条件下研究了高岭土的热分解过程,利用热重分析数据对高岭土的热分解过程进行了动力学分析。用迭代的等转化率方法获取了准确的活化能,将得到的活化能应用到Malek 方法中推测其反应机理,并进一步求得了指前因子A 。结果发现:在400~700 ℃高岭土脱去羟基,生成了结晶度较差的偏高岭土,该过程遵循的化学反应模型,其微分和积分表达式分别为n f )1()(αα-=,n G n ---=-1)1(1)(1αα其 中n =2.1,表观活化能为182.428 kJ/mol ,指前因子A 的范围为:(4.566~4.635) ×1011 s -1。 关键词:高岭土;热分解;动力学;迭代法;Malek 法 中图分类号:TQ170.1 文献标识码:A 文章编号:0454-5648(2009)12 K INETICS FOR T HERMAL D ECOMPOSITION OF K AOLINITE ZHANG Aihua, HE Mingz fang, YAN Hui (Faculty of Material Science and Chemical Engineering, China University of Geosciences, Wuhan 430074, China) Abstract: The thermal decomposition processes of kaolinite have been studied in dynamic air using simultaneous thermal analysis instrument. Thermogravimetricdata was used to carry out the kinetic analysis. Firstly, the exact activation energy was calculated by the interative method; Secondly, using the activation energy in Malek method to confer the reaction mechanism; Lastly, using the above data to get the pre-exponential factor A . The hydroxylation of kaolinite in the temperature range 400–700 ℃ followed the model of chemical reaction. The function were ()()n f αα-=1,()n G n ---= -111)(1ααwhere n =2.1, the apparent activation energy was 182.428 kJ/mol, the range of the A was from 4.566×1011 to 4.635×1011 s -1. Key words: kaolinite; thermal decomposition; kinetic; iterative method; Malek method 高岭土是一种天然矿物,在我国有着丰富的储量,现已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。油漆涂料和造纸是国内优质煅烧高岭土的最主要的消费领域。[1] 因此,对高岭土的热分解过程进行动力学分析是十分重要和迫切的。通过动力学分析可以得到高岭土热分解的活化能,指前因子和反应机理函数,从而为生产实践提供指导。但是目前国内对高岭土的热分解过程进行动力学分析的很少,同时在 反应级数方面与国外报道的也有所不同。[2-5] 实验利用迭代的等转化率方法和Malek 方法研究了广东茂名产高岭土的热分解过程,计算出了热分解过程的动力学参数。 1 动力学数据的处理方法 1.1 迭代的等转化率法求取活化能E a 根据等温动力学理论,固体分解反应的动力学 方程可表示为: 第 卷 第 期2009年月 硅 酸 盐 学 报 JOURNAL OF THE CHINESE CERAMIC SOCIETY V ol. ,No. , 2009

聚甲醛用途及及市场

聚甲醛用途及及市场 2市场分析和价格预测 2.1产品用途概述 聚甲醛(Polyoxymethylene)是没有分支的高密度、高结晶性的线性聚合物。聚甲醛分子链由碳氧键组成,聚甲醛的碳氧键比碳碳键短,内聚能密度高,聚集紧密,结晶度较高,具有优异的刚性和机械强度。一根直径3mm的细丝可承受约104N的拉力,其抗张强度和模量已接近钢材。 根据聚甲醛具有良好的机械性能、耐磨性、耐有机溶剂性等突出优点,聚甲醛可部分替代铜、锌、铝、钢等金属广泛用于汽车、机械制造、精密仪器、办公家用电器、军工等行业。 聚甲醛具有硬度大、耐磨、耐疲劳、;中击强度高、尺寸稳定性好、有自润滑特点,因而被大量用于制造各种齿轮、滚轮、轴承、输送带、弹簧、凸轮、螺栓及各种泵体、壳体、叶轮摩擦轴承等机械设备的结构零部件。用聚四氟乙烯乳液改性的高润滑聚甲醛制造的机床导板具有优良的刚性和耐疲劳性,能克服纯聚四氟乙烯易被磨耗和易蠕变的缺点,而且与金属摩擦的静、动摩擦系数基本相同,显示出了突出的自润滑特性。 聚甲醛分为两大类:一是三聚甲醛或甲醛的均聚体,称为均聚甲醛;二是三聚甲醛与少量戊环的共聚体,称为共聚甲醛。从两种产品性能上看,均聚甲醛的结晶度略高,其物理性能稍优于共聚甲醛,但其热稳定性、耐酸碱腐蚀性明显不如共聚甲醛,因此均POM加工温度范围窄;而且共聚甲醛加工成型的条件不象均聚甲醛那样苛刻,加工过程热分解释放出来的甲醛气体少,可回收再利用。因此今后均聚甲醛发展势头将逐渐减弱,而共聚甲醛将成为今后的发展方向。目前共POM生产能力约占聚甲醛生产能力的80%。 2000年后,聚甲醛加工技术也有很大发展.电镀技术、涂装着色等装饰技术及浸透印刷技术等均获得成功。微波超拉伸加工技术使聚甲醛具有钢材的强度和模量,可用作承力材料和增强材料。美国POM的最大市场是消费品、管件及配件;日本最大市场是运输:西欧最大市场是工业用品和消费品。目前,国

材料成型基本原理(刘全坤)第二版。课后答案

第二篇:材料成型力学原理 第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移 系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发 生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显著的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么?

聚甲醛性能及用途

聚甲醛的性能及用途 [摘要] 简述聚甲醛的物理和化学性能及其在各方面的用途。 [关键字] 聚甲醛性能性能参数用途 1.聚甲醛 聚甲醛(英文:polyformaldehyde)热塑性结晶聚合物。被誉为“超钢”或“赛钢”,又称聚氧亚甲基。其结构为 通常甲醛聚合所得之聚合物,聚合度不高,且易受热解聚。1955年前后杜邦公司由甲醛聚合得到甲醛的均聚物。聚甲醛很易结晶,结晶度70%以上。均聚甲醛的熔融温度为180℃左右。聚甲醛学名聚氧化聚甲醛(简称POM)。聚甲醛是一种没有没有侧链,高密度,高结晶性的线性聚合物,具有优异的综合性能。聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,不透明,可在-40- 100°C温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油,耐过氧化物性能。很不耐酸,不耐强碱和不耐月光紫外线的辐射。聚甲醛的拉伸强度达70MPa,吸水性小,尺寸稳定,有光泽,这些性能都比尼龙好,聚甲醛为高度结晶的树脂,在热塑性树脂中是最坚韧的。具抗热强度,弯曲强度,耐疲劳性强度均高,耐磨性和电性能优良。 聚甲醛可用挤出成型、注射成型、吹塑成型进行加工。为了提高耐电弧性和刚性,用玻璃纤维增强,为改善摩擦特性而添加氟树脂的材料,含油聚甲醛、防静电聚甲醛,各种各样品级聚甲醛在广大领域内大有用途。 2.性能

2.1 POM物理和化学特性 POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击特性。POM既有均聚物材料也有共聚物材料。均聚物材料具有很好的延展强度、抗疲劳强度,但不易于加工。共聚物材料有很好的热稳定性、化学稳定性并且易于加工。无论均聚物材料还是共聚物材料,都是结晶性材料并且不易吸收水分。POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。对于各种不同的增强型材料有不同的收缩率。 POM有良好的耐化学药品性,在常温下耐几乎所有的有机溶剂,在高温下只溶解于氯代酚类。POM能耐醛、酯、醚、烃、弱酸、弱碱等的浸蚀,但如果遇强酸和强氧化剂,如硝酸、硫酸等,特别是在高温下,会受到浸蚀。POM的耐汽油和润滑性能良好,但由于汽油的品种不同,汽油中含芳香烃的量愈多,则由于吸收而引起的泡胀的影响越长,对润滑油即使在140℃时,也几乎无影响,但如果润滑油中含有抗氧化剂、清洁剂等,最好不要超过65℃。POM受紫外线影响较大,长时间受其影响会表面粉化、龟裂和脆性,通常应加入紫外线吸收剂以改善它的耐气候性。POM燃烧时不能自熄,并且有强烈的甲醛味。 聚甲醛的主要形成方法是采用注射成型的方法。均聚甲醛的注射成型温度是190∽220℃,模具温度是120℃.相应的共聚物的成型温度是180∽210℃,模具温度为80℃或稍低。 2.2 性能参数: 由上图可知:①耐疲劳强度高。

相关文档