文档库 最新最全的文档下载
当前位置:文档库 › (完整版)元素周期表的发展史

(完整版)元素周期表的发展史

(完整版)元素周期表的发展史
(完整版)元素周期表的发展史

元素周期表的发展史

化学发展到18世纪,由于化学元素的不断发现,种类越来越多,反应的性质越来越复杂.化学家开始对它们进行了整理、分类的研究,以寻求系统的元素分类体系.

首先在1789年,法国化学家拉瓦锡在他的专著《化学纲要》一书中,列出了世界上第一张元素表.他把已知的33种元素分成了气体元素、非金属、金属、能成盐之土质等四类.但他把一些物,如光、石灰、镁土都列入元素. 26年后,英国的威廉·普劳特提出:1、所有元素的原子量均为氢原子量的整数倍;2、氢是原始物质或“第一物质”, 他试图把所有元素都与氢联系起来作为结构单元。

到1829年,德国的化学家贝莱纳首先敏锐地察觉到已知元素所表露的这种内在关系的端倪:某三种化学性质相近的元素,如氯,溴,碘,不仅在颜色、化学活性等方面可以看出有定性规律变化,而且其原子量之间也有一定理的关系,即:中间元素的原子量为另两种元素原子量的算术平均值。这种情况,他一共找到了五组,他将其称之为"三元素族",即:

锂3 钠11 钾19

钙20 锶88 钡137

氯17 溴35 碘127

硫16 硒79 碲128

锰55 铬52 铁56

在化学家贝莱纳之后,法国的地质学家尚古多(Chancourtois,A.E.B.1820-1886)于1862年绘出了“螺旋图”.他将已知的62个元素按原子量的大小次序排列成一条围绕圆筒的螺线,性质相近的元素出现在一条坚线上. 他最先提出元素性质和原子量之间有关系, 并初步提出了元素性质的周期性。螺旋图是向揭示周期律迈出了有力的第一步, 但缺乏精确性。1864年英国人欧德林用46种元素排出了《元素表》。同年德国人迈尔依原子量大小排出《六元素》表。该表对元素进行了分族, 有了周期的雏型。之后在1865年,英国的化学家纽兰兹(Newlands,J.A.R.1837-1898)排出一个“八音律”.他把已知的性质有周期性重复,每第八个元素与第一个元素性质相似,就好象音乐中八音度的第八个音符有相似的重复一样. 八音律揭示了元素化学性质的重要特征, 但未能揭示出事物内在的规律性。

化学家绝不满意元素漫无秩序的状态。从《三素组》到《八音律》, 逐步对元素知识进行归纳和总结, 试图从中找出视律性的东西, 为发现周期律开辟了道路。由于科学资料积累, 元素数目增多, 终于在十九世纪后半期迈尔和门捷列夫同时发现了元素周期律。

在1867年俄国人门捷列夫对当时已发现的63种元素进行归纳、比较, 结果发现:元素及其化合物的性质是原子量的周期函数的关系, 这就是元素周期律。依据周期律排出了周期表, 根据周期表, 他修改了铍、铯原子量, 预言了三种新元素, 后来陆续被发现, 从而验证了门氏周期律的正确性, 迅速被化学家所接受。在周期律的指导下, 先后发现了稼、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹等十一种元素同时还预言了稀有气体的存在, 并于1898年以后, 陆续发现了氖、氢、氙等元素, 因而在周期表中增加ⅧA族。到1944年自然界存在的92种元素全部被发现。

其实早在1860年门捷列夫在为著作《化学原理》一书考虑写作计划时,就深为无机化学的缺乏系统性所困扰.于是,他开始搜集每一个已知元素的性质资料和有关数据,把前人在实践中所得成果,凡能找到的都收集在一起.人类关于元素问题的长期实践和认识活动,为他提供了丰富的材料.他在研究前人所得成果的基础上,发现一些元素除有特性之外还有共性.例如,已知卤素元素的氟、氯、溴、碘,都具有相似的性质;碱金属元素锂、钠、钾暴露在空气

中时,都很快就被氧化,因此都是只能以化合物形式存在于自然界中;有的金属例铜、银、金都能长久保持在空气中而不被腐蚀,正因为如此它们被称为贵金属.

于是,门捷列夫开始试着排列这些元素.他把每个元素都建立了一张长方形纸板卡片.在每一块长方形纸板上写上了元素符号、原子量、元素性质及其化合物.然后把它们钉在实验室的墙上排了又排.经过了一系列的排队以后,他发现了元素化学性质的规律性.因此,当有人将门捷列夫对元素周期律的发现看得很简单,轻松地说他是用玩扑克牌的方法得到这一伟大发现的,门捷列夫却认真地回答说,从他立志从事这项探索工作起,一直花了大约20年的功夫,才终于在1869年发表了元素周期律.他把化学元素从杂乱无章的迷宫中分门别类地理出了一个头绪.此外,因为他具有很大的勇气和信心,不怕名家指责,不怕嘲讽,勇于实践,敢于宣传自己的观点,终于得到了广泛的承认.

如果说, 原子一一分子论的建立是对化学的一次总结, 那么周期律的发现, 使元素成了一个严整的自然体系, 化学变成一门系统的科学, 它是化学史上的一个重要里程碑它讨原子结构、有机化学、原子能、地球化学、生物化学、冶金、新元素的发现与合成都有深远的影响。为了纪念门氏的伟大发现, 科学家把101号元素命名为钔。恩格斯曾给以高度评价:“门捷列夫不自觉地应用黑格尔的量转化为质的规律, 完成了科学上的一个勋业。”

但由于时代的局限性, 门氏不可能认识到周期律更本质的规律。因此可以说门氏只是原子体系的哥白尼, 而原子体系的伽利略和牛顿, 自有后来人。

十九世纪末, 二十世纪初, 由于原子量的精确测定, 确知碲的原子量大碘, 氩大于钾, 钴大于镍等。基于这个事实, 并照顾到元素性质的相似性,1902年捷克化学家布拉乌勒尔设计的周期表中有几处颠倒了原子量的排列。1905年瑞士化学家维尔纳设计的专表也有这种现象, 这是对门氏周期律的直接挑战。面对矛盾, 当时科学家无法解释。随着阴极射线、电子、射线、放射性等的发现,1899--1900年英人卢瑟福提出原子有核模型, 揭示了原子的复杂结构。1913年荷兰人范德布洛克指出元素在周期表中排列序数等于该元素原子具有的电子

数。这一假说开始把元素在周期表中排列序数和原子结构联系起来。这个假定动摇了门氏和他的同辈以及先辈们的周期律的固有概念。

1913--1914年间, 英国青年物理学家莫斯莱对X射线技术进行了研究,从而验证了范德布洛克的假说, 揭示了元素周期律的本质:元素的化学性质是它们原子序数的周期性函数。原来在诸原子中有决定意义的东西不是原子量, 而是原子的核电荷以及核外电子数。1916年德国化学家柯塞尔就立即把原子序数放进周期表中, 代替了门氏的原子量。1920年英人查德维克证实了摩斯莱的工作。这样, 一系列物理学中的新发现, 使元素周期律获得了新定义:元素的物理性质和化学性质, 以及由元素形成的各种化合物的性质, 皆与元素原子核电荷的数量成周期性关系。

按照核电荷递增顺序排列各元素, 使前面出现的矛盾迎刃而解。随着现代原子结构理论的建立, 周期律理论得到发展。1913年玛丽·居里提出原子核结构设想。1913年卢瑟福和查德维克发现质子。1932年查德维克发现中子。质子和中子发现后, 苏联科学家伊万年柯, 德国物理学家海森堡等人立即提出原子核由质子和中子组成的理论。1913年英国化学家索迪提出“同位素”概念.1919年阿斯登用质谱仪精确的确是了原子量.1913年丹麦物理学家玻尔用他的原子结构模型成功的解释了氢元素的线光谱。1923--1924年法国年青物理学家德布罗依提出“物质波”概念, 1926年德国物理学家薛定谔提出了解决微观粒子运动方程, 对核外电子运功状态和能级的计算提供了依据。

遵循周期律, 把众多的元素(106种)组织在一起所形成的系统, 称做化学元素周期系。周期系的具体形式是各式各样的周期表。如塔式表、三分族元素周期表环形、螺旋形、扇形、蜗牛形, 对角形、带形、立体支架形、阶梯形、罗盘形、园筒式等五花八门, 各具特色。但其中最常用的是短表和长表。近年来, 由于人工合成元素增多, 长表的优越性日益显露出来, 短表已经完成了历史使命, 更多的应用让位于长表。长表的重要特点之一是能够很好的把元素分成元素群, 便于按群体性质来掌握化学元素的总体知识。表中明显的划分出活泼金属、非金属、过渡元素、低熔合金、镧系、锕系元素区。根据电子构型可分成S区、p区、d区、f区四组。便于人们从结构观点去分析比较。

我的思考:元素周期表是世界化学历史上重要的一部分,对世界的科技进步也起到了一定作用。作为学生的我们,要向那些伟大的科学家们学习,学习他们的有恒心,有毅力的美

好品质。在化学史上,我们应该以他们为榜样,努力学习科学文化知识,不断充实自己,多观察,多动手实践,这样我们在学习生活中才能有所成就。

附:各种形式的化学元素周期表

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇·门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的

章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”…… 冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变化着。门捷列夫激动得双手不断颤抖着。“这就是说,元素的性质与它们的原子量呈周期性

元素周期表51号元素是什么意思

51号元素 (网络用语) 51号元素,网络流行语,是一个段子,段子里两位年轻人吵架,女孩对男孩说:“你全家包括你都是元素周期表51号元素!” 词语来源 元素周期表是化学的基础元素表,它的第51号元素是:锑。符号是:Sb。这样看的话,女孩的意思就非常明朗了 、原子序号:1;中文名:氢;读音:qīng;元素符号:H;英文名:Hydrogen 原子序号:2;中文名:氦;读音:hài;元素符号:He;英文名:Helium 3、原子序号:3;中文名:锂;读音:lǐ;元素符号:Li;英文名:Lithium 4、原子序号:4;中文名:铍;读音:pí;元素符号:Be;英文名:Beryllium 5、原子序号:5;中文名:硼;读音:péng;元素符号:B;英文名:Boron 6、原子序号:6;中文名:碳;读音:tàn;元素符号:C;英文名:Carbon 7、原子序号:7;中文名:氮;读音:dàn;元素符号:N;英文名:Nitrogen 8、原子序号:8;中文名:氧;读音:yǎng;元素符号:O;英文名:Oxygen 9、原子序号:9;中文名:氟;读音:fú;元素符号:F;英文名:Fluorine 10、原子序号:10;中文名:氖;读音:nǎi;元素符号:Ne;英文名:Neon 11、原子序号:11;中文名:钠;读音:nà;元素符号:Na;英文名:Sodium 12、原子序号:12;中文名:镁;读音:měi;元素符号:Mg;英文名:Magnesium 13、原子序号:13;中文名:铝;读音:lǚ;元素符号:Al;英文名:Aluminium

15、原子序号:15;中文名:磷;读音:lín;元素符号:P;英文名:Phosphorus 16、原子序号:16;中文名:硫;读音:liú;元素符号:S;英文名:Sulphur 17、原子序号:17;中文名:氯;读音:lǜ;元素符号:Cl;英文名:Chlorine 18、原子序号:18;中文名:氩;读音:yà;元素符号:Ar;英文名:Argon 19、原子序号:19;中文名:钾;读音:jiǎ;元素符号:K;英文名:Potassium 20、原子序号:20;中文名:钙;读音:gài;元素符号:Ca;英文名:Calcium 21、原子序号:21;中文名:钪;读音:kàng;元素符号:Sc;英文名:Scandium 22、原子序号:22;中文名:钛;读音:tài;元素符号:Ti;英文名:Titanium 23、原子序号:23;中文名:钒;读音:fán;元素符号:V;英文名:Vanadium 24、原子序号:24;中文名:铬;读音:gè;元素符号:Cr;英文名:Chromium 25、原子序号:25;中文名:锰;读音:měng;元素符号:Mn;英文名:Manganese 26、原子序号:26;中文名:铁;读音:tiě;元素符号:Fe;英文名:Iron 27、原子序号:27;中文名:钴;读音:gǔ;元素符号:Co;英文名:Cobalt 28、原子序号:28;中文名:镍;读音:niè;元素符号:Ni;英文名:Nickel 29、原子序号:29;中文名:铜;读音:tóng;元素符号:Cu;英文名:Copper 30、原子序号:30;中文名:锌;读音:xīn;元素符号:Zn;英文名:Zinc 31、原子序号:31;中文名:镓;读音:jiā;元素符号:Ga;英文名:Gallium 32、原子序号:32;中文名:锗;读音:zhě;元素符号:Ge;英文名:Germanium 33、原子序号:33;中文名:砷;读音:shēn;元素符号:As;英文名:Arsenic

门捷列夫的化学元素周期表与卡片分析法

中国职工科技报/2007年/4月/20日/第004版 科普家园 门捷列夫的化学元素周期表与卡片分析法 王振宇 卡片时于研究文学艺术和社会科学很重要,对于研究自然科学特别是发明创造也同样重要。运用卡片分析法取得重大成果的最著名的事例。就是俄国化学家门捷列夫发现化学元素周期率。1869年,为了研究已发现的60多种元素之间的关系,研究元素的质量和化学性质的关系,门捷列夫将搜集来的各种元素的名称写在纸上,并记下它们的原子量和基本性质,把相似的元素和相近的原子量排列在一起:他又从最小的原子量开始选取元素,并把它们按原子量的顺序排列,经过分析研究,终于发现了元素的性质存在着周期性,从而发现了化学元素周期律,并根据周期率编制了第一张化学元素周期表。 从以上事例可以看出,卡片分析法的基础是要有卡片。卡片大小自便,扑克牌大小也可,稍大也可,能在上面记录信息即可。卡片上面都记录什么呢?以下方面可供参考:突然涌现的想法:由谈话、读书、观察等产生的设想或注意到的问题;图书、杂志、人名、地址、电话号码;被记述或证实的信息;从智力激励法等创造性开发会议中产生的新设想:有关行动计划。的基本设想:使数据系统化的各种形式:发现数据存在的场所、收集的来源以及技法;数据的种类:意想不到的偶然事件;从大脑中一闪即过的有创意的新设想,等等。 卡片分析法是一种发挥综合思维作用的方法,通过将所得到的记录有有关信息或设想的卡片。进行分析,进行整理排列,以寻找各部分之间的有机联系,从整体上把握事物,最后形成比较系统的新设想。该法作为分析整理资料获得启发的有效途径,可用于解决问题的各个阶段中。在分析中要把对象的各个部分、各个方面和种种因素联系起来考虑。综合不是主观地、任意地把对象的各部分捏合在一起,也不是各个部分的机械相加,不是各种因素的简单堆砌,而是按照对象各部分间的有机联系,从总体上把握事物的一种方法。它不是抽象地、从外部现象的联结上来认识事物,而是抓住事物的本质,即抓住事物在总体上相互联结而又矛盾的特殊性,研究这一矛盾怎样制约着事物丰富多彩的属性,怎样在事物的运动中展现出整体的特征。 卡片分析法具有以下一些特点:首先,这是一种在比较分类的基础上,由综合进行创新的方法比较和分类是运用此法时要做的基本工作,然而,真正有创意的工作在于时各类资料的综合:其次,运用这种方法时,不只是对卡片的理性分析和综合,还需要综合地发挥运用者的各种心理因素,如感受、感情、直观、意志等,因为对卡片的分析整理直接受到这些圆素的影响:第三,此法借助于卡片分析事理发现其内在联系,具有直观、方便、灵活的特点。既可单人应用,也可集体进行,应用范围广,几乎适用于各领域的创造性活动。 卡片分析法在各种研究和发明创造过程中,有着特殊的作用。将待处理的信息卡片化,具有克服人脑思维限度的功能,从而成为整理分析资料获得启发的有效方法。人的思维能力虽然是无限的,但一个人在思维中同时操作的思维元素数是很有限的,实验证明,一般人当同时思维操作的信息元素超过10个时,要在脑内同时操作加工这些信息显得很困难。而通过卡片,把各种信息或设想转移到脑外,变成能稳定地呈现在眼前的外存信息,这样既可把在头脑中借助记忆进行的思维操作转为脑外自理卡片,来减轻思维负担,又可使注意力集中,从而提高了思维效率。 (四十五) 第1页共1页

阅读材料:门捷列夫与元素周期表

门捷列夫与元素周期表 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 门捷列夫生平简介 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原于学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他

的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地叙述了元素间的某些联系,但由于他们没有把所有元素作为整体来概括,所以没有找到元素的正确分类原则。年轻的学者门捷列夫也毫无畏惧地冲进了这个领域,开始了艰难的探索工作。 他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。 为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。一八五九年,他去德国海德尔堡进行科学深造。两年中,他集中精力研究了物理化学,使他探索元素间内在联系的基础更扎实了。一八六二年,他对巴库油田进行了考察,对液体进行了深入研究,重测了一些元素的原子量,使他对元素的特性有了深刻的了解。一八六七年,他借应邀参加在法国举行的世界工业展览俄罗斯陈列馆工作的机会,参观和考察了法国、德国、比利时的许多化工厂、实验室,大开眼界,丰富了知识。这些实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。

门捷列夫与元素周期表

门捷列夫与元素周期表 在十九世纪初期,人们已经发现了不少元素。在这些元素的状态和性质方面,有些极为相似,有些则完全不同,有些元素在某些性质方面很相似,但 在另一些方面却又差别很大。化学家们很自然地产生了一种寻求 元素相之间内在联系从而把元素作一科学分类的要求。科学家们 在这方面作了不少的工作,曾发表了部分元素间相互联系的论 述。 1829年德国段柏莱纳根据元素性质的相似性,提出“三素 组”的分类法,并指出每组中间元素的原子量大约等于两端的元 素原子量的平均值。但他当时只排了五个三素组,还有许多元素 没找到其间相互联系的规律。 1864年德国迈耶按元素的原子量顺序把元素分成六组,使化学性质相似的元素排在同一纵行里。但也没有指出原子量跟所有元素之间究竟有什么联系。 1865年英国纽兰兹把当时所知道的元素按原子量增加的顺序排列,发现每个元素它的位置前后的第七个元素有相似的性质。他称这个规律叫“八音律”。他的缺点在于机械地看待原子量,把一些元素(Mn、Fe等)放在不适当的位置上而把表排满,没有考虑发现新元素的可能性。 直到1868年,迈耶发表了著名的原子体积周期性图解。都末找出元素间最根本的内在联系,但却一步步地向真理逼近,为发现元素周期律开辟了道路。 与迈耶尔相似,以先行者提供的借鉴为基础,门捷列夫通过自己顽强的努力,于1869年2月编成了他的第一张元素周期表。1869年3月18日,俄国化学会举行学术报告会,门捷列夫因病未能出席,他委托他的同事、彼得堡大学化学教授门许特金代他宣读他的论文《元素性质和原子量的关系》。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性变化。 (2)化学性质相似的元素,或者是原子量相近(如Pt,Ir,Os),或者是依次递增相同的数量(如K,Rb,Cs)。 (3)各族元素的原子价(化合价)一致。 (4)分布在自然界的元素都具有数值不大的原子量值,具有这样的原子量值的一切元素都表现出特有的性质,因此可以称它们是典型的元素。 (5)原子量的大小决定元素的特征。 (6)应该预料到许多未知元素将被发现,例如排在铝和硅后面的、性质类似铝和硅的、原子量位于65~75之间的两种元素。 (7)当我们知道了某些元素的同类元素的原子量后,有时可借此修正该元素的原子量。 (8)一些类似的元素能根据其原子量的大小被发现出来。 正如门捷列夫所指出的,周期律的全部规律性都表述在这些原理中。其中最主要的是元素的物理和化学性质随着原子量的递增而做着周期性的变化。他的卓见没有立即被接受。他的老师、俄国化学家齐宁甚至训诫他是不务正业。在这种压力下,门捷列夫没有象纽兰兹那样伤心地放弃对新理论的研究,他不顾名家的指责和嘲笑,继续为周期律的揭示而奋斗。经过两年的努力,1871年他发表了关于周期律的新论文。文中他果断地修正了前一个元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他象迈耶尔那样,将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中为尚未发现的元素留下的4个空格,在新表中则变成了6个。 门捷列夫深信他所发现的周期律是正确的。他以周期律为依据,大胆指出某些元素的原子量是不准确的,应重新测定。例如当时公认金的原子量为169.2,按此,在周期表中,金应排在锇、铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫根据金的性质认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:锇为190.9,铱为193.1,铂为195.2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、钼、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六

高清元素周期表拼音版

高清元素周期表拼音版 The Standardization Office was revised on the afternoon of December 13, 2020

周期一:1氢qīng 2氦hài 周期二:3锂lǐ 4铍pí 5硼péng 6碳tàn 7氮dàn 8氧yǎng 9氟fǔ 10氖nǎi 周期三:11钠nà 12镁měi 13铝lǚ 14硅guí 15磷lín 16硫liú 17氯lǜ 18氩yà 周期四:19钾jiǎ 20钙gài 21钪kàng 22钛tài 23钒fán 24铬gè 25锰měng 26铁tiě 27钴gǔ 28镍niè 29铜tóng 30锌xīn 31镓jiā 32锗zhě 33砷shēn 34硒xī 35溴xiù 36氪kè 周期五:37铷rú 38锶sī 39钇yǐ 40锆gào 41铌ní 42钼mù 43锝dé 44钌liǎo 45铑lǎo 46钯bǎ 47银yín 48镉g é 49铟yīn 50锡xī 51锑tī 52碲dì 53碘diǎn 54氙xiān 周期六:55铯sè 56钡bèi 57-71镧系lán 72铪hā 73钽tǎn 74钨wū 75铼lái 76锇é 77铱yī 78铂bó 79金jīn 80汞gǒng 81铊tā 82铅qiān 83铋bì 84钋pō 85砹ài 86氡dōng 周期七:87钫fāng 88镭léi 89-103锕系ā 104钅卢lú 105钅杜dù 106钅喜xǐ 107钅波bō 108钅黑hēi 109钅麦mài 镧系:57镧áln 58铈shí 59镨pǔ 60钕nǚ 61钷pǒ 62钐shān 63铕yǒu 64钆gá 65铽tè 66镝dí 67钬huǒ68铒ěr 69铥diū 70镱yì 71镥lǔ 锕系:89锕ā 90钍tǔ 91镤pú 92铀 yóu 93镎ná 94钚bù 95镅měi 96锔 jū 97锫péi 98锎kāi 99锿āi 100镄 fèi 101钔mén 102锘nuò 103铹láo

门捷列夫的发现与现代的元素周期表的不同

现代的化学元素周期律是19世纪俄国人门捷列夫发现的。他将当时已知的63种元素以表的形式排列,把有相似化学性质的元素放在同一直行,这就是元素周期表的雏形。 门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。 (2)原子量的大小决定元素的特征。 (3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65 一75之间的元素。 (4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。这就是门捷列夫提出的周期律的最初内容。 门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。文中他果断地修正了1869年发表的元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。由此可见,门捷列夫的研究有了重要的进展。 经受实践的验证 实践是检验真理的唯一标准。门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07。再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。事实验证了周期律的正确性。 根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。他的预言与尔后实践的结果取得了惊人的一致。1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的

门捷列夫元素周期表介绍

门捷列夫元素周期表介绍 德米特里;伊万诺维奇;门捷列夫,19世纪俄国科学家,发现化学元素的周期性,依照原子量,制作出世界上第一张元素周期表,并据以预见了一些尚未发现的元素。下面是为你搜集门捷列夫元素周期表的相关内容,希望对你有帮助! 门捷列夫元素周期表门捷列夫元素周期表是现代化学学科的依据,也是很多化学家进行实验和化学研究最好的帮手,可以说元素周期表真正把化学这门学科发扬光大了,门捷列夫本人也给世界的自然科学发展带来了太大的贡献,其实元素周期表是门捷列夫在一个偶然的环境下发现的: 他将当时已知的几种元素的原子量写在一张纸上,企图查找之间的共同点,然后把它们反复排列组合进行各种猜测,最后发现了原子是按照元素周期规律排列的,就是因为这个元素周期规律才制定了元素周期表。 在门捷列夫元素周期表中门捷列夫就告诉以后的科学家,如果把元素按照原子量的大小排列起来的话,那么就会出现很明显的周期性,这就是元素周期表的来源,也是制定元素周期表最大的依据。 再后来一个个新发现的化学元素证实了门捷列夫元素周期表的真实性,也证明了门捷列夫这种排列组合方式的正确性,后世的科学家根据元素周期表找寻新的化学元素就变得非常容易。可以说如果没

有门捷列夫世界化学的发展至少要倒退很多年。 门捷列夫的成就门捷列夫的成就之一还是元素周期表,毕竟它的发现对于化学的发展是做出了很多贡献的,他将那些令人头疼的元素以一定的规律驯服在一张表上,给人们后面的学习、研究都带来了方便,而且还预测了一些没被发现的元素。他对元素之间存在的规律的总结,为后来新元素的发现提供了方向性的指导。这些贡献和成就是不可以被忽视的,所以这必然要作为第一点来说。 门捷列夫的成就之二,其实还是与化学有关,毕竟他一生的主攻方向就是化学。所以他不仅仅是发现了那些规律,其实他在无机化学、物理化学等方面也有所涉及,而且都取得了一定的成就,只是被第一个成就的光芒盖住了,所以对它的介绍就比较少。 门捷列夫的成就之三,他是个多才之人,在实验研究这一点上涉及的东西很广泛。除了和化学有关的东西之外,他对其它的一些定律也很有研究,例如,气体、气象、度量衡等等方面。 门捷列夫简介门捷列夫全名是德米特里门捷列夫,俄国著名的化学家,他于1834年出生于俄国的西伯利亚,在具体一点就是托波尔斯克市, 他于1848年的时候,进入彼得堡专科学校进行学习。后来又于1850进入彼得堡的师范学院进行学习,主要学习的是化学。他在1855年拥有了教师资格,同时还获得了一个金质奖章。毕业后的他成为了敖德萨中学的一名教师,一般来说应该是教授化学的老师。 他在毕业之后没有因为有了工作就放弃了学习,他一直都在准备

元素周期表的发现

一、元素周期表发现史 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原子学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地

元素周期表51号元素

1、第51号元素是什么 原子序数51: 元素符号:Sb; 元素名称:锑(tī); 原子量121.75。它是一种有金属光泽的类金属,在自然界中主要存在于硫化物矿物辉锑矿(Sb2S3)中。目前已知锑化合物在古代就用作化妆品,金属锑在古代也有记载,但那时却被误认为是铅。大约17世纪时,人们知道了锑是一种化学元素。 2、锑的理化性质 1.物理性质

2.化学性质 1.锑是氮族元素(15族),电负性为 2.05。根据元素周期律,它的电负性比锡和铋大,比碲和砷小。锑在室温下的空气中是稳定的,但加热时能与氧气反应生成三氧化二锑。锑在一般条件下不与酸反应。 2.目前已知锑有四种同素异形体——一种稳定的金属锑和三种亚稳态锑(爆炸性锑、黑锑、黄锑)。 3.金属锑是一种易碎的银白色有光泽的金属。把熔融的锑缓慢冷却,金属锑就会结成三方晶系的晶体,其与砷的灰色同素异形体异质同晶。 4.罕见的爆炸性锑可由电解三氯化锑制得,用尖锐的器具刮擦它就会发生放热的化学反应,放出白烟并生成金属锑。 3、锑的应用有哪些 60%的锑用于生产阻燃剂,而20%的锑用于制造电池中的合金材料、滑动轴承和焊接剂。 1.阻燃剂 锑的最主要用途是它的氧化物三氧化二锑用于制造耐火材料。除了含

卤素的聚合物阻燃剂以外,它几乎总是与卤化物阻燃剂一起使用。三氧化二锑形成锑的卤化物的过程可以减缓燃烧,即为它具有阻燃效应的原因。这些化合物与氢原子、氧原子和羟基自由基反应,最终使火熄灭。商业中这些阻燃剂应用于儿童服装、玩具、飞机和汽车座套。它也用于玻璃纤维复合材料(俗称玻璃钢)工业中聚酯树脂的添加剂,例如轻型飞机的发动机盖。树脂遇火燃烧但火被扑灭后它的燃烧就会自行停止。 2.合金 锑能与铅形成用途广泛的合金,这种合金硬度与机械强度相比锑都有所提高。大部分使用铅的场合都加入数量不等的锑来制成合金。在铅酸电池中,这种添加剂改变电极性质,并能减少放电时副产物氢气的生成。锑也用于减摩合金(例如巴比特合金),子弹、铅弹、网线外套、铅字合金(例如Linotype排字机)、焊料(一些无铅焊接剂含有5%的锑)、铅锡锑合金、以及硬化制作管风琴的含锡较少的合金。

初三化学元素周期表(完整版)

初三化学元素周期表 原子序数元素符号元素名称相对原子质量元素名称读音 1 H 氢 1.0079 (qīng) 2 He 氦 4.0026 (hài) 3 Li 锂 6.941 (lǐ) 4 Be 铍 9.0122 (pí) 5 B 硼 10.811 (péng) 6 C 碳 12.011 (tàn) 7 N 氮 14.007 (dàn) 8 O 氧 15.999 (yǎng) 9 F 氟 18.998 (fú) 10 Ne 氖 20.17 (nǎi) 11 Na 钠 22.9898 (nà) 12 Mg 镁 24.305 (měi) 13 Al 铝 26.982 (lǚ) 14 Si 硅 28.085 (guī) 15 P 磷 30.974 (lín) 16 S 硫 32.06 (liú) 17 Cl 氯 35.453 (lǜ) 18 Ar 氩 39.94 (yà) 19 K 钾 39.098 (jiǎ) 20 Ca 钙 40.08 (gài) 21 Sc 钪 44.956 (kàng) 22 Ti 钛 47.9 (tài) 23 V 钒 50.94 (fán) 24 Cr 铬 51.996 (ga) 25 Mn 锰 54.938 (měng) 26 Fe 铁 55.84 (tiě) 27 Co 钴 58.9332 (gǔ) 28 Ni 镍 58.69 (nia) 29 Cu 铜 63.54 (t?ng) 30 Zn 锌 65.38 (xīn) 31 Ga 镓 69.72 (jiā) 32 Ge 锗 72.5 (zhě) 33 As 砷 74.922 (shēn) 34 Se 硒 78.9 (xī) 35 Br 溴 79.904 (xiù) 36 Kr 氪 83.8 (ka) 37 Rb 铷 85.467 (rú) 38 Sr 锶 87.62 (sī) 39 Y 钇 88.906 (yǐ) 40 Zr 锆 91.22 (gào)

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事 宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇〃门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”……冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变

元素周期表51号元素

元素周期表51号元素 锑(antimony)是金属元素,元素符号Sb,原子序数为51,是一种银白色有光泽硬而脆的金属,有鳞片状晶体结构,在潮湿空气中逐渐失去光泽,强热则燃烧成白色锑的氧化物。它易溶于王水,溶于浓硫酸。相对密度6.68,熔点630℃,沸点1635℃,原子半径为1.28?,电负性2.2,在自然界中主要存在于硫化物矿物辉锑矿(Sb2S3)中。 锑化合物是含氯及含溴阻燃剂的重要添加剂,中国是世界上最大的锑及其化合物生产国,而其中大部分又都产自湖南省冷水江市的锡矿山。物理性质: 锑是一种带有银色光泽的灰色金属,其莫氏硬度为3。因此,纯锑不能用于制造硬的物件:中国的贵州省曾在1931年发行锑制的硬币,但因为锑很容易磨损,在流通过程损失严重。 化学性质: 锑是氮族元素(15族),电负性为2.05。根据元素周期律,它的电负性比锡和铋大,比碲和砷小。锑在室温下的空气中是稳定的,但加热时能与氧气反应生成三氧化二锑。锑在一般条件下不与酸反应。 目前已知锑有四种同素异形体——一种稳定的金属锑和三种亚稳态锑(爆炸性锑、黑锑、黄锑)。金属锑是一种易碎的银白色有光泽的金属。把熔融的锑缓慢冷却,金属锑就会结成三方晶系的晶体,其与

砷的灰色同素异形体异质同晶。罕见的爆炸性锑可由电解三氯化锑制得,用尖锐的器具刮擦它就会发生放热的化学反应,放出白烟并生成金属锑。如果在研钵中用研杵将它磨碎,就会发生剧烈的爆炸。黑锑是由金属锑的蒸汽急剧冷却形成的,它的晶体结构与红磷和黑砷相同,在氧气中易被氧化甚至自燃。当温度降到100℃时,它逐渐转变成稳定的晶型。黄锑是最不稳定的一种,只能由锑化氢在-90℃下氧化而得。在这种温度和环境光线的作用下,亚稳态的同素异形体会转化成更稳定的黑锑。 金属锑的结构为层状结构(空间群:R3m No. 166),而每层都包含相连的褶皱六元环结构。最近的和次近的锑原子形成变形八面体,在相同双层中的三个锑原子比其他三个相距略近一些。这种距离上的相对近使得金属锑的密度达到6.697g/cm,但层与层之间的成键很弱也造成它很软且易碎。

高中化学有趣的化学专题门捷列夫和第一张元素周期表.pdf

1829年德国化学家德贝莱(J.Dobereiner)发现当时已知的44种元素中有15种元素可分成5组,每组的三个元素性质相似,而且中间元素的相对原子质量约为较轻和较重的两个元素相对原子质量之和的一半。例如,钙、锶、钡性质相似,锶的相对原子质量大约是钙和钡的相对原子质量之和的一半。氯、溴、碘,锂、钠、钾等组元素的情况类似,由此提出了“三素组”的概念,为发现元素性质的规律性打下了基础。 1859年,24岁的俄国彼得堡大学年轻讲师门捷列夫来到德国海德堡大学本生的实验室进修。当年,本生和基尔霍夫发明了光谱仪,用光谱发现了一些新元素,掀起一股发现新元素热。次年,门捷列夫出席了在化学史上具有里程碑意义的德国卡尔斯鲁厄化学大会。门捷列夫回忆道:“我的周期律的决定性时刻在1860年,我……在会上我聆听了意大利化学家康尼查罗的演讲……正是当时,元素的性质随原子量(相对原子质量)递增而呈现周期性变化的基本思想冲击了我。”此后,门捷列夫为使他的思想信念转化为科学理论,作出了10年艰苦卓绝的努力,系统地研究了元素的性质,按照相对原子质量的大小,将元素排成序,终于发现了元素周期律——元素的性质随相对原子质量的递增发生周期性的递变。 在门捷列夫时代,没有任何原子结构的知识,已知元素只有63种,元素大家族的信息并不完整,而且当时公认的许多元素的相对原子质量和化合价是错误的,确定元素在周期系中的次序——原子序数是十分困难的。门捷列夫通过对比元素的性质和相对原子质量的大小,重新测定了一些元素的相对原子质量,先后调整了17种元素的序列。例如,门捷列夫利用他人的成果,确认应将铍的相对原子质量从14纠正为9,使元素按相对原子质量递增的序位从H—Li—B—C—N—Be—O—F纠正为H—Li—Be—B—C—N—O—F.经过诸如此类的调整元素顺序,元素性质的周期性递变规律才呈现出来:从锂到氟,金属性渐次下降,非金属性渐次增强,从典型金属递变为典型非金属;序列中元素的化合价的渐变规律也得以显露:从锂到氮,正化合价从+1递增到+5;从碳到氟,负化合价从-4下降为-1.门捷列夫敏感地认识到当时已知的63种元素远非整个元素大家族,大胆地预言了11种尚未发现的元素,为它们在相对原子质量序列中留下空位,预言了它们的性质,并于1869年发表了第一张元素周期表。 值得一提的是,敢于宣布自己发现了一条普遍规律,创造一个理论,是需要很大勇气的。早在1864年,德国化学家迈耶尔(L Meyer)在他的《现代化学理论》一书中已明确指出:“在原子量的数值上存在一种规律性,这是毫无疑义的。”而且他在该书中画了一张跟门捷列夫第一张周期表十分相似的元素表格;他还于1870年发表了一张比1869年门捷列夫发表的周期表更完整的元素周期表。1880年,迈耶尔坦言道:“我没有足够的勇气去作出像门捷列夫那样深信不疑的预言。”他之所以没有勇气,在他1870发表的有关元素周期性的代章里有答案,他说:“在差不多每天都有许多新事物出现的领域里,任何概括性的新学说随时都会碰到一些事实,它们把这一学说加以否定。这种危险的确是存在的……因此我们必须特别小心。”迈耶尔比门捷列夫早几年也在本生的实验室里工作过。 门捷列夫发表的第一张周期表对我们来说,已经不太好懂了,因为它并不完整。例如,门捷列夫周期表里没有稀有气体。后来的化学发现终于使门捷列夫元素周期系变得完整。到1905年,维尔纳(A.Werner,1913年诺贝尔奖获得者)制成了现代形式的元素周期表,而当时还不知道原子序数的实在物理意义。1913年,英国物理学家莫斯莱发现,门捷列夫周期表里的原子序数原来是原子的核电荷数。从此,元素周期律被表述为:元素的性质随核电荷数递增发生周期性的递变。

化学史门捷列夫和元素周期表

化学史门捷列夫和元素周期表 在十九世纪初期,人们已经发现了不少元素。在这些元素的状态和性质方面,有些极为相似,有些则完全例外,有些元素在某些性质方面很相似,但在另一些方面却又差别很大。化学家们很自然地产生了一种寻求元素相之间内在联系从而把元素作一科学分类的要求。科学家们在这方面作了不少的工作,曾发表了部分元素间相互联系的论述。 1829年德国段柏莱纳根据元素性质的相似性,提出“三素组”的分类法,并指出每组中间元素的原子量大约等于两端的元素原子量的平均值。但他当时只排了五个三素组,还有许多元素没找到其间相互联系的规律。 1864年德国迈耶按元素的原子量顺序把元素分成六组,使化学性质相似的元素排在同一纵行里。但也没有指出原子量跟所有元素之间究竟有什么联系。 1865年英国纽兰兹把当时所知道的元素按原子量增加的顺序排列,发现每个元素它的位置前后的第七个元素有相似的性质。他称这个规律叫“八音律”。他的缺点在于机械地看待原子量,把一些元素(MN、FE等)放在不合适的位置上而把表排满,没有考虑发现新元素的可能性。 直到1868年,迈耶发表了出名的原子体积周期性图解。都末找出元素间最根源的内在联系,但却一步步地向真理逼近,为发现元素周期律开辟了道路。 俄国化学家门捷列总结了前人的经验。经过长期研究,花了很大的精力,寻求化学元素间的规律。终于1869年发现了化学元素周期律。一位彼得堡小报的记者向他打听胜利的奥秘:“你是怎样想到你的周期律的?”捷列夫哈哈笑着答道:“这个问题我大约考虑了二十年,而他们却认为,坐着不动,五个戈比一行,五个戈比一行地写着,突然就成了。事情并不是这样!” 门捷列夫的“周期表”比纽兰兹的元素表更为繁复,也更接近我们今天认为是正确的东西。当某一元素的性质使他不能按原子量排列时,门氏就大胆地把它的位调换一下。他这祥做的根据是:元素的性质比元素的原子量更为严重。后来终于证明,他这样做是正确的。例如碲的原子量是127.61,如果按原子量排,它应排在碘的后面,因碘的原子量是126.91。但是,在周期表中,门捷列

相关文档
相关文档 最新文档