文档库 最新最全的文档下载
当前位置:文档库 › 数学建模 建立函数模型解决实际问题2019版 新高一word讲义

数学建模 建立函数模型解决实际问题2019版 新高一word讲义

数学建模 建立函数模型解决实际问题2019版 新高一word讲义
数学建模 建立函数模型解决实际问题2019版 新高一word讲义

数学建模建立函数模型解决实际问题

课标要求

素养要求

收集、阅读一些现实生活、生产实际或

者经济领域中的数学模型,体会人们是

如何借助函数刻画实际问题,感悟数学

模型中参数的现实意义.

通过生活中具体的数学模型,进行提出

问题、分析数据、建立模型、检验模型

来发展数据分析、数学抽象及数学建模

素养.

新知探究

数学建模是在20世纪60和70年代进入一些西方国家大学的,

我国的几所大学也在80年代初将数学建模引入课堂.经过30

多年的发展现在绝大多数本科院校和许多专科学校都开设了

各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径.大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例.可以说数学建模竞赛是在美国诞生,在中国开花、结果的.

问题你知道什么是数学建模吗?

提示数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要过程包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,求解模型、检验结果、得出结论,最终解决实际问题.

1.用函数构建数学模型解决实际问题的步骤

(1)观察实际情景:对实际问题中的变化过程进行分析;

(2)发现和提出问题:析出常量、变量及其相互关系;

(3)收集数据、分析数据:明确其运动变化的基本特征,从而确定它的运动变化类型;

(4)选择函数模型:根据分析结果,选择适当的函数类型构建数学模型,将实际问题化归为数学问题;

(5)求解函数模型:通过运算推理,求解函数模型;

(6)检验模型:利用函数模型的解说明实际问题的变化规律,达到解决问题的目的.

2.数学建模活动的要求

(1)组建团队;(2)开展研究报告;(3)撰写研究报告;(4)交流展示.

拓展深化

[微判断]

1.在构建函数模型时,经常会遇到没有现成数据可用的情况,这时就需要先收集数据.(√)

2.在用函数构建数学模型解决实际问题时,首先要对实际问题中的变化过程进行分析,析出其中的常量、变量及其相互关系.(√)

3.求出函数模型后,还需要利用函数模型的解说明实际问题的变化规律,从而达到解决问题的目的.(√)

[微思考]

数学建模活动是一个科学的研究过程,科学研究通常要经历哪几个步骤?

提示科学研究通常需要经历四个基本步骤

(1)选题;

(2)开题;

(3)做题;

(4)结题.

题型一数学建模主要步骤的探究

【例1】[提出问题]在小傅家门口有一个十字型

的交通路口(如图所示),小傅就想了,警察叔叔需要

指挥多少种情况的汽车运行线路?

[建立模型]此问题需要分是否可以原路调头的情

况来讨论.

(1)每条线路都有往返双向线;

(2)设4条路分别为A,B,C,D;

(3)以A为起始,

①如允许原路调头,则有A→A,A→B,A→C,A→D,

②如不允许原路调头,则有A→B,A→C,A→D.

[求解模型]第一步:始线路条数;第二步:终线路条数.

①如允许原路调头:则N=4×4=16(种)可能;

②如不允许原路调头:则N=4×3=12(种)可能.

[检验结果]如果允许汽车原路调头,那么在此交通路口共有16种不同的行车情况,如果不允许汽车原路调头,那么在此交通路口共有12种不同的行车情况. 【例2】[提出问题]两根同样长的蜡烛,点完粗蜡烛要3小时,点完细蜡烛要1小时.现同时点燃两根蜡烛.一段时间后同时熄灭,发现粗蜡烛的长度是细蜡烛的3倍.问两根蜡烛燃烧了多长时间?

[建立模型] ①设两根蜡烛的长度为l 厘米,粗、细蜡烛的燃烧速度分别为x 、y (厘米/小时),则有y =l =3x ;

②点燃两根蜡烛一段时间后同时熄灭,剩余粗、细蜡烛的长度分别为R 、r ,则R =3r .

[求解模型] 根据条件有:l -r y =l -3r

x (燃烧时间相同)

化简为l =4r ,即细蜡烛燃烧后的长度是原来长度的14? ?

???也即燃烧了34,

所以燃烧的时间为34l y =3

4l l =3

4(小时).

[检验结果] 为了明确各量之间的相互关系,在必要的地方可以加注.

【例3】 [提出问题] 李明玩套圈游戏,游戏规则为:套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分,李明共套10次,且每个小玩具都至少被套中一次.已知李明共得61分,求其中小鸡被套中过多少次. [建立模型] ①设每次不可能同时套中2个及2个以上的玩具;

②为了保证“每个小玩具都至少被套中一次”,可设小鸡、小猴、小狗分别被套中x ,y ,z 次,x ,y ,z ∈N +,然后解不定方程组. [求解模型] 由条件得不定方程组 ?????x +y +z =10,①9x +5y +2z =61,②

②-2×①消去z 得7x +3y =41.

正整数解为?????x =2,y =9(不合方程①),?????x =5,y =2??????x =5,y =2,z =3,

[检验结果] 验证得小鸡、小猴、小狗分别被套中5、2、3次,总共得分61分. 【例4】 [提出问题] 甲、乙两人去沙漠中探险,他们每天向沙漠深处走20千

米,已知每人最多可带一个人4天的食物和水.如果允许将部分食物存放于途中,问其中1人最远可深入沙漠多少千米?(要求最后两人返回出发点)

[建立模型]要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和水?

①经过商议让甲走得更远(最远走4×20=80(千米),但回程就没有食物和水了),需要乙在适当的地点留下足够的食物和水.

②第1天乙在10千米处留下1份食物和水,到20千米处吃1份留下1份,第2天走到30千米处留下1份食物和水后马上往回返,到20千米处再吃1份,第3天走20千米回出发点.

③第1天甲20千米处吃1份,第2天走到40千米处吃1份,第3天走到60千米处吃1份,第4天走到65千米处然后往返,到50千米处吃1份(到此为止甲自带的食物和水已吃完),第5天走到30千米处吃1份(此处食物和水是乙留下的),第6天走到10千米处吃1份,然后回出发点.

[求解模型]所谓“错位推进法”,对于本题来说,关键点为“乙在30千米和10千米处给甲留下食物和水”,根据分析与假设推知结论:其中的一位沙漠探险家最多可深入沙漠65千米.

[检验结果]从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米可以走,但已经回出发点了,考虑一下甲还可以再往前推进5千米吗?

题型二数学建模活动主要过程的探究

【例5】关于外卖垃圾问题的分析与解决

[选题]餐饮业作为我国第三产业中一个传统服务性行业,经历了改革开放进步、数量型扩张、规模连锁发展和品牌提升战略4个阶段,取得突飞猛进的发展.为了满足当今社会快速的生活节奏,“外卖”这一餐饮方式便应运而生.“外卖”这个词是舶来品,原意是离店销售.目前,无论是地处繁华地带的市中心,还是相对冷清的城郊地区,原先并不涉足外卖的餐馆都经营了外卖快餐.外卖有好有坏,它既

方便了我们的生活,但同时也制造了大量的垃圾,这些垃圾造成了生态环境的破坏,海洋动物的死亡,也已经威胁到了我们的生活.本文就此问题,展开对外卖垃圾该如何处理的分析与讨论.

[开题]从具体的处理方式考虑.通过资料我们了解到填埋是我国最重要的垃圾处理方式.而填埋对环境的影响则大多体现在填埋场对周围土地的污染.因此,我们想要在不减少填埋场地所能填埋垃圾的数量的情况下,减少对土地的污染.而填埋数量与填埋场的体积有关.目前,填埋场的深度基本已达最大.因此我们通过改变填埋场的形状,寻找更好的可建为填埋场的图形.在此过程中,我们猜测填埋场对周围土地的污染是以c为半径的.并假设填埋场形状可以为任意形状.在尝试过长方形、正方形、圆形、正三角形后,我们通过公式及定量分析得出圆形为更好的一种选择.因此,在一定的条件下,填埋场建为圆形可以更有效的减少对周围土地的污染.

一、固体废物数据的搜集与处理

我们通过技术手段(代码见附件),在知名外卖网站“饿了么”上面定点抓取了一个地区方圆7 500 m左右所有已在该网站上注册的店铺的数据约32 109条,合计月销量267 305份,并写了一个简单的基于字典的分类算法,分类了135 655份月销量,并按照一个理想数值为每一种商品产生的垃圾进行估算.分类结果如下:

外卖网站数据分类结果

网站ele.me理论单月垃圾产生量

根据网络搜集的市场份额与分类算法的处理偏差可以合理计算出附近外卖垃圾的月总量.

线上外卖网站理论单月垃圾产生量

①饭类、面类、菜类占比较高,根据本小组的实践,这类外卖都会产生塑料碗、塑料袋、一次性筷子,而这些塑料是最难处理的,当塑料上沾上油的时候,清洗也是件困难的事情.

②在这些外卖产生的垃圾中,塑料袋最多,一次性筷子其次,塑料碗也较多. 二、固体废弃物处理情况

由问题一我们推出的一个区域的废弃物再结合网络上的数据我们可以合理推理:

垃圾回收方式占比

①大部分的塑料都是以填埋的方式处理;

②筷子、包装纸等可回收的一般是能回收则回收,但是难以回收的会放弃;

③塑料制品一般是填埋.

根据以上的信息并结合我们手上的数据,可以猜想:

预测垃圾单类回收方法占比

回收(kg) 1 346.8241.68356.0131.49466.63

[

1.问题分析

填埋作为重要的处理方式,可以优化填埋所进行的具体措施来减少污染.我们了解到,填埋的污染主要为土地污染,因此减少土地污染即可.我们通过查找资料得知,填埋对土地的污染大多是以填埋场地为中心,并往四周拓展一定区域,我们假定其是以均匀半径进行拓展.因此可以尝试在同体积的情况下减小其污染的土地.因为目前的填埋场深度基本已达最大深度,所以在此暂不考虑对深度的拓展.假设垃圾填埋场为规则的立体图形.因此要保证同体积的情况下,深度一样,则表面积一样.所以我们的目的便是使在相同的表面积下,什么图形所构成的表面会对土地污染数量最小.

2.模型建立

我们通过网上的信息了解到,目前的填埋场形状大多为长方形.如图:

(周围为污染区)

设长为a,宽为b,对四周土地进行污染的半径为c,总污染面积为S.那么

S=ab+2ac+2bc+πc2=ab+2c(a+b)+πc2

在表面积固定的情况下:ab为定值,c、π均为定值,因此使(a+b)最小即可.由均值不等式可得:

a+b≥2ab

且当a=b时取等号.因此若使S最小,即a=b,因此我们得出结论:垃圾填埋场呈正方形比呈长方形要好.

之后,我们再比较其他形状的垃圾填埋场和传统垃圾填埋场谁更好.为了方便计算和更好的解决问题,以下模型均与正方形所造成的土地污染进行对比,若更好,则模型优化成立.

(1)圆形

在这里为方便,把正方形的图与圆形的图放在一起做对比.

设正方形边长为d ,对四周土地进行污染的半径为c ,圆的半径为r . d 2=πr 2, r =d π

正方形总污染为S 正方形=πc 2+4dc +d 2,

圆形总污染为S 圆形=? ????d π+c 2

π=? ????

d 2π+2dc ππ+c

2·π=d 2+2dc π+c 2·π, 作差得

S 圆形-S 正方形=c 2π+2dc π+d 2-πc 2-4dc -d 2 =2dc π-4dc =2dc (π-2), 又因为π-2<0,

因此S 圆形

设正三角形边长为e ,则S 三角形=3

4e 2, 因为我们要使圆形与三角形的表面积相同,则 34e 2=πr 2,r =e 23π

, 因此通过计算可得

S 三角形污染面积=3

4e 2+πc 2+3ce ,

S 圆形污染面积=?

????

e

23π+c 2

·π =? ????

e 24·3π+ec 3π+c 2·π =3

4e 2+ec

3π+c 2·π,

S 圆形污染面积-S 三角形污染面积=3

4e 2+ec

3π+c 2·π-3

4e 2-πc 2-3ce =ec (

3π-3)<0,

因此S 圆形污染面积

综上所述,目前的填埋场形状为长方形,而我们通过计算得出,圆形实则为更好的一种方案.因此我们可以通过把长方形的填埋场改建为圆形的填埋场,这样可以有效的减少土地污染体积.模型优化成立. [结题] 1.模型优点:

A.该模型可以有效的减少土地污染体积;

B.该模型不需要耗费大量的人力物力. 2.模型缺点:

A.该模型没有考虑渗滤液处理区等方面的限制条件;

B.该模型只能用于填埋场形状为圆形的填埋场.

3.我们了解到填埋是我国目前最重要的垃圾处理方式.而填埋造成的环境污染主要体现在对周围土地的污染.因此我们想在不影响填埋数量的情况下,通过改变填埋场形状来减少对土地的污染.在此模型中,我们采用了枚举法,通过比较不同的形状带来的污染,最后得出结论.在一定的条件下,圆形较好.最后,我们通过调查问卷和数据抓取的方式,得到订外卖的主体为服务业的年轻人.

大量的外卖垃圾正威胁着我们的环境,但并非无解决方法.但是,最重要的还是我们自身需建立起环境保护意识,自觉保护环境,维护生态平衡.只有这样,我们才能继续绿色、健康的生存和发展下去. 【例6】 牙膏价格与重量关系的数学建模

[选题] 在超市购物时,我们注意到大包装商品比小包装商品便宜,比如洁银牙膏50 g 装的每支1.50元,120 g 装的每支3.00元.我们可以通过单位商品价格关于商品重量的函数来分析大包装便宜还是小包装便宜. [开题] 1.分析问题

商品价格是由成本决定的,成本可分为生产成本、包装成本和其他成本.生产成本与重量W成正比,包装成本与表面积成正比,其他成本与W无关.单位重量商品

价格c=总价格

总重量

.牙膏可以近似为圆柱体来思考.

2.模型假设

设如下变量:

商品价格为C,商品重量为W,单位重量价格为c,商品包装面积为S,生产成本为C1,包装成本为C2,其它成本为C3.

3.研究的大体思路、方法与步骤

(1)分析商品价格C与商品重量W的关系.价格由生产成本、包装和其它成本等决定,这些成本中有的与重量W成正比,有的与表面积成正比,还有与W无关的因素.

(2)求单位重量价格c与W的关系,可以用简图分析.最后结合实验结论,对商家或顾客提出合理的建议.

4.研究此问题的意义

实际生活中,经常会遇到大、小包装的问题,如洗衣粉、洗发水、纯净水等.在选择购买时,可依据下面的数学模型做选择.

[做题] 1.模型建立与求解

商品价格由成本决定,商品成本=生产成本+包装成本+其他成本,故C=C1+C2+C3,生产成本与重量W成正比,设C1=k1W(k1为大于0的常数),包装成本与表面积S成正比,商品包装包括牙膏包装和牙膏盒包装,牙膏包装与牙膏表面积有关,牙膏盒为长方体,设牙膏盒包装面积S2,牙膏可以近似为无底的圆柱体,设牙膏包装面积S1即圆柱体侧面积.

设此圆柱体的半径为R,高为L,

S1=2πRL,①

由题意,我们需要将包装面积与商品重量联系在一起,故

我们将牙膏体积V近似为圆柱体积的一半,

则V=1

2πR

2L,②

设牙膏密度为ρ,则V=W ρ,③

一般地,为了美观,牙膏的半径与长度有一定比例关系,在这里: 设R =k 2L (k 2为大于0的常数),④ 根据②③④,可以得出:

半径R =? ????2k 2W ρπ1

3

,⑤

由①④⑤得出

S 1=2πk 2?

????2k 2W ρπ2

3

我们可以把牙膏盒看成一个长为L ,宽高都为2R 的长方体,故牙膏盒包装面积S 2=8R 2+8RL ,

再根据④⑤求得S 2=8? ?

???1+1k 2?

????2k 2W ρπ2

3,

则包装成本C 2=k 32πk 2? ????2k 2W ρπ2

3+k 48? ?

???1+1k 2? ????2k 2W ρπ2

3,

k 3、k 4为大于0的常数,是包装价格与包装面积的比值. 其他成本C 3为固定常数,与W 、S 无关. 即C =C 1+C 2+C 3

=k 1W +k 32πk 2?

????2k 2W ρπ2

3+k 48? ?

???1+1k 2? ????2k 2W ρπ2

3+C 3.

由于k 1,k 2,k 3,k 4,ρ都是大于零的常数,所以商品价格关于商品重量的函数是单调增函数,所以商品重量增大,商品价格增大.

对于单位重量价格c 与商品重量W 的关系,我们已知c =C

W ,

由于k 1,k 2,k 3,k 4,ρ都是大于零的常数,我们发现包装成本与商品重量成正比,可以简化为C 2=k 5×W 2

3, 所以c =C W =k 1+k 5×13W +C 31

W .

2.模型解释

c -W 的简图如图所示:

由函数解析式及图象可知单位商品价格关于商品重量的函数是一个减函数,即随着W的增加,c的减少幅度减少,当W很大时,则c不再减少,所以说,不要盲目追求大包装商品.

[结题]对于商家,一般来说,小包装商品的利润较高,但成本也相应的增多,所以应该包装大小适宜,在适当情况下,可以尽量生产小包装的商品;

对于顾客,在用得完的情况下,尽量买较大的包装,可以节省包装的费用,但是也不能盲目地认为越大包装的商品就越便宜,可能会有其他消耗,如用不完的情况.

数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法、数学模型解题的过程.在构建模型时,经常会遇到没有现成数据可用的情况,这时就需要先收集数据,再进行分析、建模.

下面摘录一些中学生曾经研究过的问题供参考,同学们可根据情况组织团队进行建模活动.

自然方面的问题

公路上雪的融化速度;

都江堰宝瓶口的水有多深;

圭表与日晷原理的数学分析;

利用灯光促进植物生长的实验;

由氢键理论推算冰的密度;

从拼图游戏到人类基因组计划;

水草治理问题;

天体日、月相在旋转点阵屏上运行的数学模型;

云南白马雪山地区树木年轮宽度与气候变化的相关性研究;植物叶表粗糙程度与吸附大气颗粒物能力的关系探究;

孔雀鱼体色基因类型初步研究.

社会方面的问题

“110”巡警站的位置安排;

公路护栏的改良;

防错拨的城市电话号码设置方案;

对小区学生择校问题的研究;

如何使防护林达到最佳防护效果;

保安巡更路线方案及软件流程设计;

高峰期学校门前十字路口红绿灯周期时间的设计;

利用数码相机测量桥梁裂纹;

埙的容积对音高的影响;

考试焦虑的影响因素分析;

老年人免费乘公交车的社会成本;

“梦之队”组建的最优化选择;

汉字结构特征及其识别;

“月上柳梢头,人约黄昏后”——古诗中的天文学问题;中国古建筑建造中“举折法”屋面曲线猜想;

泰森多边形在环境空气监测网络布设中的应用.

生活方面的问题

流行歌曲的流行趋势分析;

地铁站旅客流通情况及优化方案;

暖瓶的最佳保温水位;

讨论适合拼音输入法的键盘布局;

游览卢浮宫的最佳路线;

抽取式面巾纸的包装盒优化设计;

汽车后视镜的角度分析及安装改进;

14款笔记本电脑性价比报告;

地区加油站各区域分布数量方案;

为数独定难度;

太阳能电池板发电设备优化;

区域养老院规划;

城市周边地区住房入住率估算与分析;

碘酸钾碘盐在烹饪食物时碘损失率的研究.

结束语数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程.

初中常用数学模型

【1】中点+平行模型如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2;2.D 【2】一线三等角模型如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE 与△CEF 相似。十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。

【例题1】(2009 ) 【例题 2】(2006 ) 【例题3】(原创) 答案:1. 2或3-24或25 2.(5 453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。巧造旋转往往要有一定的等量关系和特殊角度,如下题:

通过观察可得∠ ABC=∠C=45°,AB=AC。我们可以将△ACD绕A顺时针旋转90°得到△ABE,使得AC与AB 重合。那么就有EB⊥BC,而在RT△AED中,DE2=2AD2(等腰直角三角形)所以BE2+BD2=DE2,即BD2+CD2=2AD2是不是赶脚很难想到?要学会判断,这种感觉是要练出来的!【例题1】(2014 ) 【例题2】【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平 分线,如图,若AD‖BE,BC 平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分这个不难理解,因为等 腰三角形三线合一。这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)

运用数学模型解决问题

运用数学模型解决问题 张家荣 (中山大学新华学院信息科学系逸仙班) 摘要:数学模型是数学创造与数学教学中经常使用的一种重要的数学方法。从方法论的角度考虑,我们了解数学模型的涵义以及它的作用、构建一般的模式,对促进数学学习、灵活的应用数学知识和它的思想方法解决现实问题、提高我们的数学能力都有极其重要的意义。运用数学模型来解决各学科中的数学问题,可以把抽象问题具体化、解题过程规律化,提高答题的准确性,是解决数学问题的有效方法。 关键词:数学模型数学建模数学应用 Abstract: Mathematical model is an important mathematic way in mathematical creation and mathematical education. Thinking in methodology, we realize its mean and function. Setting up the normal mode can improve our mathematic study and use it to solve some mathematic problems. When we solve the problem, we can embody the abstract problem so we can improve our accuracy which is an effective method for solving the mathematic problems. Key words: Mathematical model Mathematical modeling Application of mathematics 前言 随着科学技术的迅速发展,数学模型越来越多的出现我们的工作、生活中。筹划出一个合理的数学模型,必定可以获得更大的效益。在日常活动中也越来越重要,采购中,人们也会谈论找出一个数学模型,或者在出行的时候,优化出行的路线。而对于那些科学技术人员和应用数学工作者来说,建立数学模型解决相关的问题更是必不可少的方法。本论文主要是通过一个例子来阐述数学模型的重要性。 一、什么是数学模型 一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。【1】 二、衣柜能否搬进新居 下面这个例子为“衣柜能否搬进新居”[2],通过这个例子,阐述数学模型的重要性。 题目如下: 老张临搬家前,站在自己大衣柜旁发愁,担心这大衣柜搬不进新居,站在一旁的小李马上拿着一把尺子出去了,不一会儿,小李对老张说:“从量得的电梯前楼道和单元前楼道宽度,绝对没有问题,请问小李的根据是什么?” 这是一个非常普遍的生活问题,而这个问题是完全可以通过建立一个数学模型去解决的!

数学建模是使用数学模型解决实际问题

数学建模是使用数学模型解决实际问题。 对数学的要求其实不高。 我上大一的时候,连高等数学都没学就去参赛,就能得奖。 可见数学是必需的,但最重要的是文字表达能力 回答者:抉择415 - 童生一级 3-13 14:48 数学模型 数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 数学建模 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下: 1、实际问题通过抽象、简化、假设,确定变量、参数; 2、建立数学模型并数学、数值地求解、确定参数; 3、用实际问题的实测数据等来检验该数学模型; 4、符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。 数学模型的分类: 1、按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。 2、按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 ) 【例题2】(2006 ) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 ) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。 其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。 这种模型很常用,常常需要做辅助线(延长之类)

引导学生运用数学模型解决实际问题

引导学生运用数学模型解决实际问题 著名数学家怀特海曾说:“数学就是对于模式的研究。” 所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思维方法,以使学生能运用数学模型解决数学问题和实际问题。 由此,我们可以看到,培养学生运用数学模型解决实际问题的能力,关键是把实际问题抽象为数学问题,通过解决数学问题,从而解决实际问题。本人结合实际教学谈谈运用数学模型,解决实际问题的实例。 实例一:二次函数与实际问题 1.中学课本中的实际例题。 在义务教育课程标准实验数学教材苏科版九年级上第34页习题10:某商场购进一批单价为16 元的日用品。若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖出210件。假定每月销售件数y(件)与价格x(元/件)之间满足一次函数。 (1)试求y与x之间的函数关系式。 (2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润W最大?每月的最大毛利润是多少? 解:(1)y=-30x+960。 (2)设每月的毛利润为W元,则 W=(x-16)(-30x+960) =-30x2+1440x-960×16 =-30(x-24)2+1920。 ∴当x=24时,W有最大值,W最大值=1920。 答:将售价定为24元时,每月的最大毛利润为1920元。 2.在一场战争中,敌方战败,敌方准备乘飞机逃跑。我军战机监测到敌方的飞机位于自己正南30 km外,正以3 km/s的速度向北逃去,而我方战机的速度是4 km/s,由东向西追,如图,请问我方战机在何时方能有把握把敌机击落(最近处)。 分析:设时间x秒,两机相距s千米。 那么s是斜边,两直角边分别为3x km,(30-4x)km,则 S=■ =■ 当x=■=4.8时,s有最小值 所以,经过4.8秒后,去击落敌机最有把握。 二次函数在各领域非常重要,上述二例说明了在经济、军事上的实际应用。当然在其他方面如体育方面、建筑方面等都能用到二次函数,只要认真观察,仔细寻找,我们不难发现数学就在身边,数学不再是简单地运算,而是生活中必不可少的成分。我们的生活与数学密不可分,我们通过学习数学为生活服务。因此,对于现实生活中普遍存在的最优化问题,如造价用料最少,利润产出最大等,可透过实际背景、建立变量之间的目标函数——二次函数,以转化为函数的极值问题。

初中数学几个常用模型

初中数学几个数学模型 模型1、l:r=3600:n0 ①圆锥母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心 角等于( C )A.45°B.60°C.90°D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm,母线长为4cm,在一个边长为8cm的正 方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做(B)能做一个(C)可做二个(D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是(D )A、2r=R B、C、 D、 模型2、角平分线+平行=等腰三角形 如图,ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC, 交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的 大小关系( B ). (A)EF>BE+CF (B)EF=BE+CF (C)EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积:之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积 : 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图, 中, , , ,过点 作 于 , A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

用数学模型思想方法解决实际问题

用数学模型思想方法解决 初中数学实际应用问题 关键词: 数学模型难点策略 随着新课改的进步落实,素质教育全方位、深层次推进,数学学科要求学生具有较高的数学素质、数学意识和较强的数学应用能力。而数学实际应用问题具有这种考查功能。它不仅具有题材贴近生活,题型功能丰富,涉及知识面广等特点,而且其应用性、创造性及开放性的特征明显。新课标把探索培养学生应用数学知识和数学思想方法解决实际问题的能力已落实到各种版本的数学实验教材中去了。今天社会对数学教学提出更高要求,不仅要求培养出一批数学家,更要求培养出一大批善于应用数学知识和数学思想方法解决实际问题的各类人才。初中阶段是探索和培养各类数学人才的黄金时段,而把实际问题转化为数学问题又是绝大多数初中学生的难题,如果在教学中我们有意识地运用数学模型思想帮助学生克服和解决这一难题,那么学生就会摆脱实际应用问题的思想束缚,释放出学习和解决实际应用问题的强大动力,激活创造新思维的火花。 把实际问题转化为一个数学问题,通常称为数学模型。数学模型不同于一般的模型,它是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。建立数学模型的过程称为数学建模。它主要有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解。对初中学生来说,最关键最困惑的是第一步。 一、初中学生解决实际应用问题的难点 1.1、缺乏解决实际问题的信心 与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。具体表现在:在信息的吸收过程中,受应用题中提供信息的次序,过多的干扰语句的影响,许多学生读不懂题意只好放弃;在信息加工过程中,受学生自身阅读分析能力以及数学基础知识掌握程度的影响,许多学生缺乏把握应用题的整体数学结构,并对全立体结构的信息作分层面的线性剖析的能力。即使能读懂题意,也无法解题;在信息提炼过程中,受学生数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换成数学问题的转译能力。 数学建模问题是用数学知识和数学分法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。 1.2、对实际问题中一些名词术语感到生疏 由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。例如:从2001年2月21日起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算)。上星期天,一位同学调查了A、B、C、D、E五位同学某天打本地网营业区内电话

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 47 1+ D. 4 7 1-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2 +1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

构建数学模型 解决生活中的实际问题

构建数学模型解决生活中的实际问题 青州市王府街道刘井小学邢文谦 每次听课对我的课堂教学都有一个新的提升,今天我听了本校教师刘老师的“相遇问题”这节课,我有一种新的感觉是老师引导的太到位了,从学生的生活实际出发,创设与学生的日常生活紧密联系的上学情境,且采用动画形式呈现,学生在现实而有趣的情境吸引下,主动发现问题、提出问题,进而提炼生成完整的数学问题、解决问题,帮助学生构建起“相遇问题的情景模型”。通过观课学习和根据自己的教学实践浅谈一下如何帮助学生构建数学模型: 第一,应激发学生学习数学的兴趣。学生在实际的操作过程中,必须考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。只有对实际原形有充分的了解,明确原型的特征,只有做到这一点,才能使学生对实际问题进行简化。从而培养学生对事物的观察和分辨能力,增强学生的数学意识。结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为应用题教学的问题背景,这样既克服了教材的不足,又对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。 第二,要让学生参与数学模型的建立形成过程。数学模型的建立过程中教师要善于调动学生主动建模的积极性,千万不能对学生的不合理的归纳或不恰当的抽象,以及不合常情的假设加以批评和指责,恰恰相反要抓住他们闪光的地方加以表扬、鼓励,并通过适度的引导和点拨使学生对实际问题的简化更加清楚。 总之,我们要提供实际问题不同层面学生对数模的理解,问题的难易是有层次。例如基本练习,拓展练习和延伸练习。在本节相遇问题的课例中,刘老师通过三个层次的练习:基本练习,拓展练习和延伸练习。让学生将相遇问题的解题策略和解题经验进行迁移,解决生活中简单的实际问题,体会数学与生活的密切联系,获得数学学习的积极情感体验。

最新初中数学几个常用模型

初 中 数 学 几 个 数 学 模 型 ①圆锥母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A .45° B.60° C .90° D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm ,母线长为4cm ,在一个边长为8cm 的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A 、2r=R B 、R r =4 9 C 、R r =3 D 、r 4 模型2如图,?ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC , 交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ). (A )EF>BE+CF (B )EF=BE+CF (C )EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积1S :2S 之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积1A :2A 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图,ABC ?中,?=∠90ACB ,?=∠30B ,1=AC ,过点C 作AB CD ⊥1于1D ,A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

构建数学模型解决实际问题

构建数学模型解决实际问题 “能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下: 解题步骤如下: 1、阅读、审题: 要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。 2、建模: 将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。 3、合理求解纯数学问题 4、解释并回答实际问题 一、方程模型 例:小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。 ⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费) ⑵小刚想在这两种灯中选购一盏: ①当照明时间是多少时,使用两种灯的费用一样多; ②试用特殊值推断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低; ⑶小刚想在这两种灯中选购两盏

假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。 解:(1)用一盏节能灯的费用是(49+0.0045x)元, 用一盏白炽灯的费用是(18+0.02x)元. (2)①由题意,得49+0.0045x=18+0.02x ,解得x=2000, 所以当照明时间是2000小时时,两种灯的费用一样多. ②取特殊值x=1500小时, 则用一盏节能灯的费用是49+0.0045×1500=55.75(元), 用一盏白炽灯的费用是18+0.02×1500=48(元), 所以当照明时间小于2000小时时,选用白炽灯费用低; 取特殊值x=2500小时, 则用一盏节能灯的费用是49+0.0045×2500=60.25(元), 用一盏白炽灯的费用是18+0.02×2500=68(元), 所以当照明时间超过2000小时时,选用节能灯费用低. (3)分下列三种情况讨论: ①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元; ②如果选用两盏白炽灯,则费用是36+0.02×3000=96元; ③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低. 费用是67+0.0045×2800+0.02×200=83.6元 综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低. 变式1:某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆 后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的 20 3 ,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的5 2 。问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 解:(1)设公司第一次改装了y 辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x

初中常用数学模型

初中常用数学模型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 深圳) 答案:1.32 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 太原) 【例题2】(2006 河南) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 武汉) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。

高中物理中常用的三角函数数学模型强烈推荐!!!

高中物理中常用的三角 函数数学模型强烈推 荐!!! Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即(边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 2、由斜边求直角边 3、两直角边互求 (四)典例分析 经典例题1如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少 2所示。 θtan 1?=mg F 经典例题2如图3所示,质量为m ,挡 挡板和使球压紧斜面,重力的分解如图4所示。 二、三角函数求物理极值 因正弦函数和余弦函数都有最大值(为1 的基本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然 后在确定极值。现将两种三角函数求极值的常用模型归纳如下: 1.利用二倍角公式求极值 正弦函数二倍角公式θθθcos sin 22sin = 图3 图4

北师大版高中数学必修一教案用函数模型解决实际问题

《用函数模型解决实际问题》教学设计用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。解决函数建模问题,也就是根据实际问题建立起数学模型来。所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。 学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。 用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。 一.一次函数模型的应用 某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。 (1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。 (2)几个月后这位同学可以第一次汇款? 这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。 二.二次函数模型的应用 建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。 某商店进了一批服装,每件售价为90元,每天售出30件,在一定范围内这批服装的售价每降低1元,每天就多售出1件。请写出利润(元)与售价(元)之间的函数关系,当售价为多少元时,每天的利润最大? 学生首次接触这种类型的题,往往是束手无策,这时教师可引导他们从他们最熟悉的问题做起:利润=单件售价×售出件数,设售价为x,则下面只需要找出售出件数即可,而售出件数又与价钱降低的幅度有关,所以设计下列相关问题让学生去找答案:售价比原定的售价降低了:90-x 售出件数比原来多了:(90-x)×1=90-x 则现在售出件数为:30+(90-x)=120-x 因此,利润y=x(120-x)

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 D (1)等边三角形 O O C E C A 图 1B A 图 2 【条件】:△ OAB和△ OCD均为等边三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=60°;③ OE平分∠ AED D (2)等腰直角三角形 O C E A B A 图 1 D E B D O E C B 图2 【条件】:△ OAB和△ OCD均为等腰直角三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=90°;③ OE平分∠ AED (3)顶角相等的两任意等腰三角形 D O O C 【条件】:△ OAB和△ OCD均为等腰三角形; D E 且∠ COD=∠AOB E 【结论】:①△ OAC≌△ OBD;C ②∠ AEB=∠AOB; ③OE平分∠ AED A图 1B A图 2B

O O 二、模型二:手拉手模型----旋转型相似 (1)一般情况 D 【条件】: CD∥ AB,C D 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA O (2)特殊情况 C D 【条件】:CD∥ AB,∠ AOB=90° 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA; ③ BD OD OB tan ∠ OCD;④ BD⊥AC; AC OC OA ⑤连接 AD、 BC,必有AD2BC 22 2 ;⑥ S△BCD ABCD 三、模型三、对角互补模型 (1)全等型 -90 ° 【条件】:①∠ AOB=∠ DCE=90°;② OC平分∠ AOB E C A B D O C E A B 1 A C BD 2A C D O E B 图 1 【结论】:①;② OD+OE=2;③S △DCE S △OCD S △OCE 1 OC2 CD=CE OC2 证明提示:A C M ①作垂直,如图 2,证明△ CDM≌△ CEN D ②过点 C 作 CF⊥ OC,如图 3,证明△ ODC≌△ FEC ※当∠ DCE的一边交 AO的延长线于 D 时(如图4):O N EB 图 2 以上三个结论:① CD=CE;② OE-OD= 2 OC;A 1 OC 2M C ③ S S △OCE△OCD2A C D O N B E O图 3E F B D 图 4

高考数学函数模型及其应用

重庆名校精华中学08届高考一轮复习教案函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示: 2 (1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。 四.典例解析

高中数学题型解法归纳《线性目标函数和综合函数》

【知识要点】 一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过建立变量之间的函数关系和对所得函数的研究,使问题得到解决. 数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法;数学模型则是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述. 数学模型来源于实际,它是对实际问题抽象概括加以数学描述后的产物,它又要回到实际中去检验,因此对实际问题有深刻的理解是运用数学模型方法的前提. 二、函数是描述客观世界变化规律的基本数学模型,不同的变化现象需要用不同的函数模型来描述,数学应用题的建模过程就是信息的获取、存储、处理、综合、输出的过程,熟悉一些基本的数学模型,有助于提高我们解决实际问题的能力. 三、线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案. 四、利用导数解决生活中的优化问题的一般步骤: (1)读题和审题,主要是读懂那些字母和数字的含义. (2)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系)(x f y =(注意确定函数的定义域); (3)求函数的导数)(/ x f ,解方程0)(/ =x f ; (4)如果函数的定义域是闭区间,可以比较函数在区间端点和使0)(/ =x f 的点的函数值的大小,最大(小)者为最大(小)值; 如果函数的定义域不是闭区间,0)(/ =x f 又只有一个解,则该函数就在此点取得函数的最大(小)值,但是要进行必要的单调性说明.

相关文档 最新文档