文档库 最新最全的文档下载
当前位置:文档库 › 附录2 双曲函数和反双曲函数

附录2 双曲函数和反双曲函数

附录2  双曲函数和反双曲函数
附录2  双曲函数和反双曲函数

附录2 双曲函数和反双曲函数

双曲正弦sinh 2

x x

e e x --=

. (arcsin h ln =x x .

y sinh x y arcsinh x

y sinh x

y arcsinh x

y x

双曲正弦的性质 s i n h

x 的定义域为(), R =-∞+∞, 它是奇函数, 其图形通过原点并关于原点对称, sinh x 在R 内是单调增加的. 当x 无限增大时, 其图形在第一象限内无限逼近于曲线12

x

y e =, 当x 无限减小时, 其图形在第三象限内无限逼近于曲线12

x y e -

=-.

双曲余弦cosh 2

x x

e e x -+=. (arccosh ln =x x .

y cosh x

y cosh x

y arccosh x

y cosh x

y arccosh x

y x

双曲余弦的性质 c o s h

x 的定义域为(), R =-∞+∞, 它是偶函数, 其图形通过点()0, 1并关于y 轴对称. 在(), 0-∞内, 它是单调减少的; 在()0, +∞内, 它是单调增加的. cosh 01=是它的最小值. 当x 无限增大时, 其图形在第一象限内无限逼近于曲线12

x

y e =; 当x 无限减小时, 其图形在第二象限内无限逼近于曲线12

x y e -=

. 记隹如下常用关系:

注 此式与2

2

sin cos 1x x +=相似, 但二者不同. 关于双曲函数, 还有些恒等式, 详见P.18——19.

y sinh x

y cosh x

y

12

e x y

12

e x

双曲正切sinh tanh cosh x x

x x x e e x x e e

---=

=+. ()()11arctanh ln 1, 121+=∈--x x x x .

y tanh x

1

y arctanh x

1

y tanh x

y arctanh x

y x

双曲正切的性质 t a n h

x 的定义域为(), R =-∞+∞, 它是奇函数, 其图形通过原点并关于原点对称. tanh x 在R 内是单调增加的, 其图形夹在水平直线

1y =和1y =-之间; 当x 无限增大时, 其图形在第一象限内无限逼近于直线1y =;当x 无限减小时, 其图形在第三象限内无限逼近于直线1y =-.

tanh x 和sinh x 在0=x 有共同的切线=y x .

y sinh x y tanh x

y x

双曲余切

cosh

coth

sinh

-

-

+

==

-

x x

x x

x e e

x

x e e

. ()

11

arccoth ln1

21

+

=>

-

x

x x

x

.

y coth x

1

y arccoth x

1

y coth x

y arccoth x

y x

tanh x 和coth x 有共同的水平渐近线1=±y .

y tanh x

y coth x

1

双曲正割12

sech cosh -=

=+x x x x e e

.

()1arcsech ln 01=<≤x x x

.

y sech x

y sech x

y arcsech x

y sech x

y arcsech x

y x

双曲余割12

csch sinh

-=

=-x x x x e e

.

(()1sgn arccsch ln 0+=≠x x x x

.

y csch x

y arccsch x

y csch x

y arccsch x

y x

sech x 和csch x 有共同的水平渐近线0=y .

y csch x

y sech x

x.

csch x和coth x有共同的垂直渐近线0

y coth x

y csch x

1

幂函数指数函数和对数函数·反函数

幂函数、指数函数和对数函数·反函数 教学目标 1.使学生正确理解反函数的概念,初步掌握求反函数的方法. 2.培养学生分析问题、解决问题的能力及抽象概括的能力. 3.使学生思维的深刻性进一步完善. 教学重点与难点 教学重点是求反函数的技能训练. 教学难点是反函数概念的理解. 教学过程设计 一、揭示课题 师:今天我们将学习函数中一个重要的概念——反函数. (板书:反函数 1.反函数的概念) 二、讲解新课 师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢? 生:可以构成一个函数. 师:为什么是个函数呢? 一的x与之相对应. 师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?

师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x 表示自变量,用字母y表示因变量,故这个函数的解析式又可以 是不是同一函数呢? 生:是. 师:能具体解释一下吗? 和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数. 生:有.就是y=2x+1. 那么,是不是所有函数都会有反函数呢? 生:不是所有函数都有反函数. 师:能举个例子说明吗? 生:如函数y=x2,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数. 师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.

三角函数公式与双曲函数

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα

诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 编辑本段其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式

第20讲 对数函数的性质及反函数

(一) 教学目标 1.教学知识点 1. 对数函数的单调性;2.同底数对数比较大小;3.不同底数对数比较大小; 4.对数形式的复合函数的定义域、值域; 5.对数形式的复合函数的单调性. 2.能力训练要求 1. 掌握对数函数的单调性;2.掌握同底数对数比较大小的方法; 3.掌握不同底数对数比较大小的方法;4.掌握对数形式的复合函数的定义域、值域; 5.掌握对数形式的复合函数的单调性; 6.培养学生的数学应用意识. 3.众优渗透目标 1.用联系的观点分析问题、解决问题; 2.认识事物之间的相互转化. 教学重点 1.利用对数函数单调性比较同底数对数的大小; 2.求对数形式的复合函数的定义域、值域的方法; 3.求对数形式的复合函数的单调性的方法. 教学难点 1.不同底数的对数比较大小;2.对数形式的复合函数的单调性的讨论. 教学过程 一、 复习引入: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞. 2、

2. 函数y =x +a 与x y a log =的图象可能是__________ 二、新授内容: 例1.比较下列各组中两个值的大小: ⑴6log ,7log 76; ⑵8.0log ,log 23π. (3)6log ,7.0,67.067.0 解:⑴16log 7log 66=> ,17log 6log 77=<,6log 7log 76>∴. ⑵01log log 33=>π ,01log 8.0log 22=<,8.0log log 23>∴π. 小结1:引入中间变量比较大小:例1仍是利用对数函数的增减性比较两个对数的大小,当不能直接比较时,经常在两个对数中间插入1或0等,间接比较两个对数的大小. 练习: 1.比较大小(备用题) ⑴3.0log 7.0log 4.03.0<; ⑵2 1 6.04.3318.0log 7.0log - ?? ? ??<<; ⑶1.0log 1.0log 2.03.0> . 例2.已知x = 4 9 时,不等式 log a (x 2 – x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )34 9 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 , 2( 例3.若函数)10(log )( <<=a x x f a 在区间[a ,2a]上的最大值是最小值的3倍, ③

双曲函数与三角函数

双曲函数 王希 对之前在双曲函数的来历是什么,与三角函数有什么关系? - 数学问题的回答不太满意,故在此重新撰文。尽我所能全面具体详细地介绍双曲函数相关的方方面面,希望它能成为最好的讲解双曲函数的文章。 除了第七部分,高中生都应该可以看懂,因此我不希望大家回复「不明觉厉」,而是看懂它并回复「受益匪浅」。 我希望想了解双曲函数的知友看了我的文章都能有所收获。 一、发展历史 双曲函数的起源是悬链线,首先提出悬链线形状问题的人是达芬奇。他绘制《抱银貂的女人》时曾仔细思索女人脖子上的黑色项链的形状,遗憾的是他没有得到答案就去世了。 时隔170年之久,著名的雅各布·伯努利在一篇论文中又提出了这个问题,并且试图去证明这是一条抛物线。事实上,在他之前的伽利略和吉拉尔都猜测链条的曲线是抛物线。 一年之后,雅各布的证明毫无进展(废话,证明错的东西怎么会有进展)。而他的弟弟约翰·伯努利却解出了正确答案,同一时期的莱布尼茨也正确的给出了悬链线的方程。他们的方法都是利用微积分,根据物理规律给出悬链线的二次微分方程然后再求解。 18世纪,约翰·兰伯特开始研究这个函数,首次将双曲函数引入三角学;19世纪中后期,奥古斯都·德·摩根将圆三角学扩展到了双曲线,威廉·克利福德则使用双曲角参数化单位双曲线。至此,双曲函数在数学上已经占有了举足轻重的地位。 19世纪有一门学科开始了全面发展——复变函数。伴随着欧拉公式的诞生,双曲函数与三角函数这两类看起来截然不同的函数获得了前所未有的统一。 二、函数定义 在讲双曲函数的定义之前,我们先看一看三角函数的定义。如图所示:

在实域内,三角函数的值是通过单位圆和角终边上三角函数线的长度定义的。当然这个「长度」是有正负的。 同理,双曲函数的值也是通过双曲线和角终边上的双曲函数线的长度定义的。如图: 具体的定义为 , , 。 三、函数性质 和对应的三角函数性质十分类似,但又有一定的区别。

双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求围的一个重要的基础知识.那么在高三第一轮复习课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习x b ax y +=(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与 x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表 示的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是 奇函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3233+= 是双曲线,半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲线 的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线, 在曲线上任意取一点P (x, x x 3233+)满足3421=-PF PF 即可;

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2 .∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

三角函数与双曲函数基本公式对照表

圆函数(三角函数) 1.基本性质: sin tan cos x x x = ,cos cot sin x x x = 1sec cos x x = ,1 csc sin x x = tan cot 1x x = sin csc 1x x = sec cos 1x x = 22sin cos 1x x += 《 221tan sec x x +=,221cot csc x x += 2.奇偶性: sin()sin x x -=- cos()cos x x -= tan()tan x x -=- 3.两角和差公式 sin()sin cos cos sin x y x y x y ±=± cos()cos cos sin sin x y x y x y ±= [ tan tan tan()1tan tan x y x y x y ±±= 4.二倍角公式 sin 22sin cos x x x = 2222cos 2cos sin 2cos 112sin x x x x x =-=-=-22tan tan 21tan x x x = - 双曲函数 1.基本性质: sh th ch x x x = ,ch cth sh x x x = 1sech ch x x =,1csch sh x x = - th cth 1x x = sh csch 1x x = sech ch 1x x = 22ch sh 1x x -= 221th sech x x -=,221cth csch x x -=- 2.奇偶性: sh()sh x x -=- ch()ch x x -= ~ th()th x x -=- 3.两角和差公式 sh()sh ch ch sh x y x y x y ±=± ch()ch ch sh sh x y x y x y ±=± th th th()1th th x y x y x y ±±= ± 4.二倍角公式 sh 22sh ch x x x = 2222ch 2ch +sh 2ch 112sh x x x x x ==-=+ [

函数反函数对数及对数函数

函数 一、函数:1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: 重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义 1. 求值域的几种常用方法 (1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数 4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决 (2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数 )32(log 22 1++-=x x y 就是利用函数u y 2 1log =和322++-=x x u 的值域来求。 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数2 21 22 +-+= x x x y 的值域 由2 2122+-+=x x x y 得012)1(22 =-++-y x y yx ,若0=y ,则得21-=x ,所以0 =y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2 ≥--+-=?y y y 得

双曲函数及其几何意义

Hyperbolic functions(双曲函数)and their geometric meaning In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/?s?nt?/ or /??a?n/), and the hyperbolic cosine "cosh" (/?k??/), from which are derived the hyperbolic tangent "tanh" (/?t?nt?/ or /?θ?n/), hyperbolic cosecant "csch" or "cosech" (/?ko???k/ or /?ko?s?t?/), hyperbolic secant "sech" (/???k/ or /?s?t?/), and hyperbolic cotangent "coth" (/?ko?θ/ or /?k?θ/),[1] corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. Hyperbolic functions occur in the solutions of some important linear differential equations, for example the equation defining a catenary, of some cubic equations, and of Laplace's equation in Cartesian coordinates. The latter is important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence meromorphic. Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[3] Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.[4] The abbreviations sh and ch are still used in some other languages, like European French and Russian.

对数函数与反三角函数

对数函数与反三角函数 大家应该都知道,这两个函数是高中里的重要的反函数。 然而呢,这两个反函数又与一般的反函数不一样。因为原函数是代数函数,一般的反函数是属于代数函数,而指数函数和三角函数都是超越函数,所以对数函数与反三角函数也是超越函数。 在学习的时候,不难发现,对数函数与反三角函数这两个函数很多类似点。首先,这两个函数都是出于逆向研究而建立的。一个是要研究全体实数和指数的关系,一个是要研究三角函数值与弧度的关系。而且两个都引入了新的数学符号,都有一系列的恒等公式和反演式。 当然,它们也有许多不同点,因为值域和定义域的不同,反三角函数常常在化简时要非常小心。而且反三角函数有周期性,一般都取一个周期来算。对数函数则全体一一对应。 对于代数函数,我曾经推导过导数。那么对数函数和反三角函数的导数又如何求呢? 首先,用一般的极限法来对对数函数x x f ln )(=求导: x x x x x x x x x f x x f x y x f x x x x ??+=?-?+=?-?+=??=→?→?→?→?)1ln()ln()ln()()()('0 0000000lim lim lim lim 接下来的就感觉无从入手了,无法将x ?消去。 用同样的方法对反三角函数)sin(arc )(x x f =求导:

x x x x x x x x x x x x x x x x x x x x x x x x f x x f x y x f x x x x x x ?--?+-?+=?-?+?+=?-?+=?-?+=?-?+=??=→?→?→?→?→?→?) 1)(1)arcsin(()))(cos(arcsin ))(sin(arcsin ))(cos(arcsin ))(arcsin(arcsin(sin )))arcsin()(arcsin(arcsin(sin )arcsin()arcsin()()()('2002000 000000000000000lim lim lim lim lim lim 很显然,遇到了和对数函数差不多的情况。 对数函数与反三角函数的加减相当的麻烦,几乎如果不是凑好的数据,很难进行运算。 那么反三角函数和对数函数有没有什么另外的方法求导呢? 在前面求导过程中,反三角函数的反演公式的运用给了我启发。 既然x e x =)(ln ,那么令)ln()(,x x f e y x == 则=)('x e f 1 (1为x 求导后的结果) 那么)('y f 又等于什么呢? 很明显,这是一个复合函数的求导,那么要用到链式法则 )()(')('x x e y f e f ?=的导数 而x e 的导数刚好也是x e 1)('-=∴=y y f y e x 那么一般的对数函数一样可以这样求,不过略微复杂一些 1log )(',log )(-?==x e x f x x f a a 反三角函数是不是也可以这样求导呢? 既然x x =)(sin arcsin ,那么令)arcsin()(,sin x x f x y == 则=)(sin 'x f 1 (1为x 求导后的结果) 链式法则(CHAIN RULE) 若H(X)=F(G(X)) 则H'(X)=F'(G(X))G'(X)

双曲函数

定义 双曲函数(Hyperbolic Function)包括下列六种函数: sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2 cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2 tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)] coth / 双曲余切:coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)] sech / 双曲正割:sech(x) = 1 / cosh(x) = 2 / [e^x + e^(-x)] csch / 双曲余割:csch(x) = 1 / sinh(x) = 2 / [e^x - e^(-x)] cosh^2(t) - sinh^2(t) = 1 和性质 t > 0 对于所有的 t。 参数 t 不是圆角而是双曲角,它表示在 x 轴和连接原点和双曲线上的点(cosh t,sinh t) 的直线之间的面积的两倍。 函数 cosh x 是关于 y 轴对称的偶函数。 函数 sinh x 是奇函数,就是说 -sinh x = sinh (-x) 且 sinh 0 = 0。[3]实变双曲函数 y=sh(x),定义域:R,值域:R,奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大,函数图像关于原点对称。

y=ch(x),定义域:R,值域:[1,+∞),偶函数,函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,当x->+∞时是(1/2)e^x 的等价无穷大,函数图像关于y轴对称。 y=th(x),定义域:R,值域:(-1,1),奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,其图像被限制在两渐近线y=1和y=-1之间,lim[x->+∞,tanh(x)=1],lim[x->-∞,tanh(x)=-1]。 y=cth(x),定义域:{x|x≠0},值域:{x||x|>1},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为y=1和y=-1,lim[x->+∞,coth(x)=1], lim[x->-∞,coth(x)=-1]。 y=sch(x),定义域:R,值域:(0,1],偶函数,最高点是(0,1),函数在(0,+∞)严格单调递减,x轴是其渐近线,lim[x->∞,sech(x)]=0。 y=xh(x),定义域:{x|x≠0},值域:{x|x≠0},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为x轴,lim[x->∞,csch(x)]=0。 双曲函数名称的变更:sh也叫sinh,ch也叫cosh,th也叫tanh,cth也叫coth,sch也叫sech,xh也叫csch。 双曲正弦:sh(z) = [ e^z - e^(-z)] / 2 双曲余弦:ch(z) = [e^z + e^(-z)] / 2 解析性:shz,chz是全平面的解析函数。 周期性:shz,chz是周期函数,周期为2πi,这是完全不同于实变函数中的性质。 反双曲函数 反双曲函数是双曲函数的反函数.,它们的定义为: arcsh(x) = ln[x + sqrt(x^2 + 1)] arcch(x) = ln[x + sqrt(x^2 - 1)] arcth(x) = ln[sqrt(1 - x^2) / (1 - x)] = ln[(1 + x) / (1 - x)] / 2 arccth(x) = ln[sqrt(x^2 - 1) / (x - 1)] = ln[(x + 1) / (x - 1)] / 2

2--双曲函数和反双曲函数

附录2 双曲函数和反双曲函数 双曲正弦sinh 2 x x e e x --= . (arcsin h ln =x x . y sinh x y arcsinh x y sinh x y arcsinh x y x 双曲正弦的性质 sinh x 的定义域为(), R =-∞+∞, 它是奇函数, 其图形通过原点并关于原点对称, sinh x 在R 内是单调增加的. 当x 无限增大时, 其图形在第一象限内无限逼近于曲线12 x y e =, 当x 无限减小时, 其图形在第三象限内无限逼近于曲线12 x y e -=- . 双曲余弦cosh 2 x x e e x -+=. (arccosh ln =x x . y cosh x y cosh x y arccosh x < y cosh x y arccosh x y x

双曲余弦的性质 cosh x 的定义域为(), R =-∞+∞, 它是偶函数, 其图形通过点()0, 1并关于y 轴对称. 在(), 0-∞内, 它是单调减少的; 在()0, +∞内, 它是单调增加的. cosh01=是它的最小值. 当x 无限增大时, 其图形在第一象限内无限逼近于曲线12 x y e =; 当x 无限减小时, 其图形在第二象限内无限逼近于曲线12 x y e -= . 记隹如下常用关系: 注 此式与22 sin cos 1x x +=相似, 但二者不同. 关于双曲函数, 还有些恒等式, 详见——19. y sinh x y cosh x y 12 e x y 12 e x 双曲正切sinh tanh cosh x x x x x e e x x e e ---==+. ()()11arctanh ln 1, 121+=∈--x x x x . %

高一数学对数函数及其性质完美版

高一数学对数函数及其性质(一)说课稿 一、教材分析 “对数函数”的内容出现在人教课标版高一数学第二学期第五章§5.9节,它是在学过对数与常用对数,反函数以及指数函数的基础上,以类比的方法进行学习,这有利于学生加深和巩固对函数、反函数以及对数函数和指数函数的认识与函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例(统计、规划等)有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。本节内容安排两课时,第一课时是理解对数函数的意义及图像与性质的掌握;第二课时是对数函数图像、性质的应用,本节课是第一课时。 二、学生情况分析 进校时大部分学生数学基础较差,表现在理解能力,运算能力,思维能力等方面较差,学习缺乏主动性,有一部分学生对学好数学的信心不足,有畏难情绪。 三、教学目标的确定: 根据教学大纲,对数函数及其相关知识历来是高考的考点。它的具体要求是能在学习指数函数的基础上,利用反函数的思想来研究对数函数的定义、图象及其性质。根据教材要求,学生的认知结构,学生情况及年龄特点,确定教学目标如下: 1、知识与技能:(1)理解对数函数的概念,理解指数函数与对数函数的内在关系; (2)掌握对数函数的概念、图象和性质,以及初步应用。 (3)培养学生自主学习、综合归纳、数形结合的能力。 2、过程与方法:培养学生用类比方法探索研究数学问题及其反思学习的素养 3、情感态度与价值观:(1)培养学生对待知识的科学态度、勇于探索和创新的精神。 (2)在民主、和谐的教学气氛中,促进师生的情感交流,树立学生学好 数学的自信心。 教学重点、难点: 重点:对数函数的概念、图象和性质; 难点:由指数函数的图象和性质得到对数函数的图象和性质; 四、教学方法和手段: 1、本节课采用建构式教学法,流程是:创设情景、提出问题---合作交流、联想类比---数形结合、加深理解---练习反馈、巩固提高---归纳小结、布置作业。 教学过程是教师和学生共同参与的过程,是学生在已具备对数、反函数以及指数函数的一定的情境背景下,以学生为主体,教师为主导,充分发挥学生的主动性、积极性和首创精神,最终在学习过程中达到帮助学生很好地掌握对数函数的概念、图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解的意义建构的目的。 2、教学手段:计算机多媒体教学 (1)通过动画课件让学生直观、深刻的了解指数函数和对数函数这对反函数的图象之间的关系。 (2)通过列表,对比指数函数与对数函数的性质以达到对对数函数的意义建构的目的。 (3)通过多媒体教学,加大教学容量,提高教学质量和教学效率。

双曲函数公式

恒等式 与双曲函数有关的恒等式如下: cosh^2(x) - sinh^2(x) =1 coth^2(x)-csch^2(x)=1 tanh^2(x)+sech^2(x)=1 * 加法公式: sinh(x+y) = sinh(x) * cosh(y) + cosh(x) * sinh(y) cosh(x+y) = cosh(x) * cosh(y) + sinh(x) * sinh(y) tanh(x+y) = [tanh(x) + tanh(y)] / [1 + tanh(x) * tanh(y)] * 减法公式: sinh(x-y) = sinh(x) * cosh(y) - cosh(x) * sinh(y) cosh(x-y) = cosh(x) * cosh(y) - sinh(x) * sinh(y) tanh(x-y) = [tanh(x) - tanh(y)] / [1 - tanh(x) * tanh(y)] * 二倍角公式: sinh(2x) = 2 * sinh(x) * cosh(x) cosh(2x) = cosh^2(x) + sinh^2(x) = 2 * cosh^2(x) - 1 = 2 * sinh^2(x) + 1 * 半角公式: cosh^2(x / 2) = (cosh(x) + 1) / 2 sinh^2(x / 2) = (cosh(x) - 1) / 2 双曲函数的恒等式都在圆三角函数有相应的公式。Osborn's rule指出:将圆三角函数恒等式中,圆函数转成相应的双曲函数,有两个sinh的积时(包括coth^2(x), tanh^2(x), csch^2(x), sinh(x) * sinh(y))则转换正负号,则可得到相应的双曲函数恒等式。如 * 三倍角公式:

对数函数及反函数的概念

对数函数及反函数的概念 教学目标:掌握对数函数的定义,了解指数函数与对数函数互为反函数。了解反函数的定义及求反函数的方法。 教学重点:对数函数与指数函数的关系。 教学过程: 一、 引例 某种细胞分裂,由1个分裂成2个,2个分裂成4个……一直分裂下去,所得到的细胞个数y 与分裂次数x 的函数关系为x y 2=(指数函数). 分析:由此关系,已知分裂次数可求出所得细胞个数,反之,若已知所得细胞个数,能求出细胞的分裂次数吗? 如32=y ,则5=x . 由指数和对数的关系可知x y 2=?y x 2log =. 利用此关系式可求出细胞的次数. 当我们把y 看成自变量时,得x 是y 的函数. 二、 对数函数的定义 u x y lg =为常用函数.以无理数e 为底的对数函数x y ln =为自然对数函数. 1、 同底的指数函数与对数函数的关系 对同底的指数函数x a y =和对数函数y x a log =. 它们刻画的是同一对变量x ,y 之间的关系,不同的是:在x a y =中,x 是自变量,y 是x 的函数,它的定义域是R ,值域是),0(+∞;在y x a log =中,y 是自变量,x 是y 的函数,它的定义域是),0(+∞,值域是R . 2、 反函数定义 从某个函数)(x f y =中解出x (用y 表示),定义域和值域互换得到的函数称为它的反函数,显然它们是互为反函数. 上面表明:同底的指数函数与对数函数是互为反函数. 例1:写出下列函数的反函数: (1)x y 3 1log =;(2))2lg(x y =;(3)125+=x y ;(4)3)32(-=-x y . 例2:求出下列函数的反函数: (1)222++-=x x y )1(≤x .(2)112++=x y )0(

高中数学三角函数与双曲函数基本公式对照表

圆函数(三角函数) 1.基本性质: sin tan cos x x x = ,cos cot sin x x x = 1sec cos x x = ,1 csc sin x x = tan cot 1x x = sin csc 1x x = sec cos 1x x = 22sin cos 1x x += 221tan sec x x +=,221cot csc x x += 2.奇偶性: sin()sin x x -=- cos()cos x x -= tan()tan x x -=- 3.两角和差公式 sin()sin cos cos sin x y x y x y ±=± cos()cos cos sin sin x y x y x y ±= tan tan tan()1tan tan x y x y x y ±±= 4.二倍角公式 sin 22sin cos x x x = 2222cos 2cos sin 2cos 112sin x x x x x =-=-=-22tan tan 21tan x x x = - 双曲函数 1.基本性质: sh th ch x x x = ,ch cth sh x x x = 1sech ch x x =,1csch sh x x = th cth 1x x = sh csch 1x x = sech ch 1x x = 22ch sh 1x x -= 221th sech x x -=,221cth csch x x -=- 2.奇偶性: sh()sh x x -=- ch()ch x x -= th()th x x -=- 3.两角和差公式 sh()sh ch ch sh x y x y x y ±=± ch()ch ch sh sh x y x y x y ±=± th th th()1th th x y x y x y ±±= ± 4.二倍角公式 sh 22sh ch x x x = 2222ch 2ch +sh 2ch 112sh x x x x x ==-=+ 22th th 21th x x x = +

相关文档