文档库 最新最全的文档下载
当前位置:文档库 › 基于磁悬浮摆件的设计与研究

基于磁悬浮摆件的设计与研究

基于磁悬浮摆件的设计与研究

基于磁悬浮摆件的设计与研究

摘要

“磁悬浮”在一般人印象里都是特别简单的,只是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。但其实磁悬浮问题还是非常复杂性的,做到悬浮是非常不容易的一件事。

随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。本文将研究的重点就是通过磁悬浮摆件来研究磁悬浮的控制问题。磁悬浮摆件是一种典型的机电一体化系统,运用磁悬浮的科学手段,也就是磁路定律和磁场区域产生磁力的动力学原理,由控制器和执行器两部分而组成。只要让磁场方向和上方的磁铁几何重心保护在一条直线上,且此时的磁力和上方的磁铁的重力相同时,即可让上方的特体悬浮在空中某一点。用手轻碰上方的地球仪却能有轻微的转动,而后又会回复到回点。

本文从介绍磁悬浮的基本应用入手,逐步深入地介绍磁悬浮的基本物理性质,然后介绍磁悬浮系统的控制方法、过程和原理。通过对磁悬浮摆件的研究和设计,来了解磁悬浮的基本构造和原理,证明磁悬浮并不是遥不可及的。

关键词:磁悬浮系统、电磁感应、红外测距、负反馈系统

磁悬浮列车设计方案

自制教具 磁悬浮列车 设计方案 一、制作材料:53cm × 20cm×3cm的木料、2cm×1cm×3mm的强力磁铁一百多块、小型铁钉一包、几片10厘米×5厘米的薄木片、53厘米×20厘米、21厘米×20厘米的玻璃各两快、若干装饰彩纸等材料。 二、制作工具:老虎钳、羊角锤、剪刀、尺子等。 三、制作过程: 1. 准备一块长方体木料,大小大致53cm×20cm×3cm,在53cm ×20cm长方形面上横向留出2条宽2厘米磁铁轨道槽,磁铁轨道槽上方用薄木片盖上,并用铁钉加以固定(这样可以防止强力磁铁在拼装过程中向外挤压,可以使强力磁铁的拼装更加方便。) 2. 磁铁轨道槽钉上薄木片以后,把磁铁按排列单位进行横向组合连续磁铁拼装,并将两条磁铁轨道槽拼装完整。两条轨道的磁铁排列呈左右对称方式。 3. 准备一块厚2cm的木料板,木料板宽度略小于53cm ×20cm×3cm长方体木料,长度自定。留出方式和53cm × 20cm×3cm 长方体木料相同。列车上的底面磁铁轨道拼装方式和53cm ×20cm×3cm长方体木料类似,磁铁方向也横向组合连续拼装,以

增强列车悬浮滑行的稳定性,列车上的两条底面磁铁轨道呈左右对称方式,宽度和53cm × 20cm×3cm长方体木料磁铁轨道相同。 4、依据53cm × 20cm×3cm长方体木料,制作底座,用以安放53cm × 20cm×3cm长方体木料。 5. 准备4块玻璃,长53厘米、宽20厘米,长21厘米、宽20厘米的玻璃各两块,再将这4块玻璃固定到长方体底座木料的前后左右四侧,玻璃下面部分和长方体底座木料对齐,成为列车防滑护栏板。为防止悬浮列车滑出两侧,在列车防滑护栏板左右两侧再固定几块小型防滑玻璃。这样即能保证磁悬浮列车的稳定性,又能保障高效的演示性。 6. 最后在根据个人喜好对磁悬浮列车模型进行装饰,模型即宣告制作完成。 注意:1、拼装要紧密; 2、磁铁片的同极向上; 3、拼装时,钉一次薄木片拼装一次,并钉钉抵住磁铁,防止磁铁向外挤压,用相同方法直至拼装完四条磁铁轨道槽。 使用说明: 1. 将磁悬浮列车模型的列车部分,磁铁面朝下横放入列车底座防滑护栏板之间,即能实现列车的有效悬浮,悬浮高度大约是3厘米。

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

磁悬浮系统的PID控制

磁悬浮系统的PID控制

本科毕业设计(论文)题目: 磁悬浮系统的PID控制 姓名: 学号: 专业: 指导教师: 职称: 日期: 华科学院

摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 本设计毕业设计在分析磁悬浮系统构成及工作原理的基础上,建立其数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真研究,得出较好的控制参数。最后,本文对以后研究工作的重点进行了思考,提出了自己的见解。 关键词:磁悬浮系统控制器MATLAB软件PID控制

Abstract Magnetic suspension technology, which has a series of advantages such as contact-free, no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.On the basis of analyzing of magnetic suspension system’s structure and working principle, its system mathematical model was established, this thesis describe PID controller designed and get control scheme. It get the better control parmeters by MATLAB software simulation studies.The key research works for further study are proposed at last. Key Word:Magnetic Levitation Ball System Digital Controller MATLAB PID Control

磁悬浮列车演示实验报告

磁悬浮列车演示实验报 告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

磁悬浮列车演示实验报告 【实验目的】 1.利用超导体对永磁体的排斥作用演示磁悬浮; 【实验器材】 1.超导磁悬浮列车演示仪,如下图所示。由两部分组成:磁导轨支架、磁导轨。其中磁导轨是用550?×?240?×?3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18?×?10×6?mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。 2.高温超导体,是用熔融结构生长工艺制备的,含Ag的YBacuo系高温超导体。之所以称为高温超导体是因为它在液氮温度77KC(-196℃)下呈现出超导性,以区别于以往在液氦温度42K(-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18?mm?左右,厚度为6?mm?,其临界转变温度为90K左右(-183℃)。 3.液氮。 上图:实验装置图? 下图:磁导轨

【实验原理】 实验原理: 超导是超导电性的简称.它是指金属或合金在极低温度下(接近绝对零度)电阻变为零的性质.它是一种宏观量子现象,只有依据量子力学才能给与正确的微观解释.这就是BCS理论. 这是一台高临界温度超导磁悬浮的动态演示装置.该装置为一个盛放高临界温度超导体的简易列车模型,在具有磁束缚的封闭磁轨道上方,利用超导体对永磁体的排斥作用,演示磁悬浮;;并可在旋转磁场加速装置作用下,沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧YBaCuO超导体表面时,磁通线从表面进入超导体内,在超导体内形成很大的磁通密度梯度,感应出高临界电流,从而对永 磁体产生排斥,排斥力随相对距离的减小而逐渐增大,它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上;高温超导体是用熔融结构生长工艺制备的含Ag的YBaCuO系高温超导体,所以称为高温超导体是因为它在液氮温度 77k(-196°C)下呈现出超导性,以区别于以往在液氦温度42k(-269°C)下呈现出超导性的低温材料.它的形状为圆盘形,其临界转变温度为90k(-183°C).超导体样品放在一铝制的列车模型中,四周包有起热屏蔽作用的铝箔,这样可使超导体在移开液氮后仍能在一段时间内保持自身温度在其临界温度以下,以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道用作磁轭,上面铺以钕铁硼(NdFeB)永磁块(表磁为形成磁性导轨.两边轨道起保证超导体周期运动的磁约束作用. 加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的.在扁圆柱形的尼龙轮上, 镶有四块钕铁硼(NdFeB)磁块,尼龙轮固定在玩具电机

磁悬浮主轴设计

1前言 1.1 高速切削简介 高速切削的概念被提出后,经过了长期探索研究与发展后,才在近十几年被广泛应用在机械加工过程中。高速切削作为一种新兴的先进机械加工技术,与传统的机械加工技术相比,其具有一系列的优点。它集高效率、高加工精度、低功耗等于一体。高速切削解决了常规切削加工中一些长期存在而无法解决的问题,例如由于机械加工过程中,刀具的切削量很小,产生的切削热比较少并且绝大部分切削热被切屑及时带走,从而提高了刀具的切削寿命;随着切削速度的提高,在单位时间内被加工材料的去除率有了很大的提高,进而减少了切削时间,提高了工件的加工效率;高速切削的进给量小,因而切削力也就相对要小,而且形成的切屑能够在很短的时间内被排出,切削过程所产生的热量在还没有传导至刀具时,就被切屑带走了,这样就降低了刀具及工件上的切削热;由于高速切削可以达到很高的加工精度,所以在某些场合可以实现以车代铣、以铣代磨等工序。这些优点极大地缩短了产品的制造周期,这在竞争日益激烈的当代是很有发展前途的。 1.2 磁悬浮轴承简介 磁悬浮轴承也被人们称为磁力轴承,它是一种靠磁场力来承受载荷或将转子悬浮起来的一种新型的支承形式,根据不同的工作原理可将磁悬浮轴承系统分为三大类:主动磁悬浮轴承、被动磁悬浮轴承和混合式磁悬浮轴承。主动磁悬浮轴承是利用可控电磁力来悬浮主轴转子的,它有主动电子控制系统;被动磁悬浮轴承是利用磁场本身的特性使主轴转子悬浮,它没有主动电子控制系统,其应用最多的是永磁轴承;混合式磁悬浮轴承是由主动磁悬浮轴承和被动磁悬浮轴承以及其他一些必要的辅助支撑共同组合而成的,它既有主动磁轴承的优点也有被动磁轴承的优点。为了便于设计制造,本设计中采用主动磁悬浮轴承磁悬浮轴承具有一系列的优点:定子与转子之间无接触,因而无摩擦,且功耗低,可以使主轴实现高速旋转;无需润滑和密封,因而可以简化系统结构的设计;支撑精度比一般的接触式轴承还高,工作稳定可靠。但是,其支撑刚度比接触式轴承要低,而且结构复杂,需要专门的控制系统,主轴上还要设计增加位移传感器,成本较高。 虽然磁悬浮轴承由多个磁极构成,但是为便于研究【2】,我们仍然可以将其简化为下图所示结构。

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计 专业班级电气工程及其自动化 11**班 学号 201110710247 学生姓名 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计专业班级电气工程及其自动化11**班 学号 2 学生姓名 ** 指导教师** 学院名称电气信息工程学院 完成日期: 2014年 5 月 7 日

磁悬浮系统建模及其PID控制器设计Magnetic levitation system base don PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业与生命科学等高科技领域有着广泛得应用背景。 随着磁悬浮技术得广泛应用,对磁悬浮系统得控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理得基础上,建立磁悬浮控制系统得数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好得控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作得重点进行了思考,提出了自己得见解。 PID控制器自产生以来,一直就是工业生产过程中应用最广、也就是最成熟得控制器。目前大多数工业控制器都就是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还就是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 一、磁悬浮技术简介 1、概述: 磁悬浮就是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮得平衡状态,磁悬浮瞧起来简单,但就是具体磁悬浮悬浮特性得实现却经历了一个漫长得岁月。由于磁悬浮技术原理就是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体得典型得机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料得发展与转子动力学得进一步得研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营得若干猜想--也就就是磁悬浮得早期模型。并列出了无摩擦阻力得磁悬浮列车使用得可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行得办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮得概念,同时指出:单靠永久磁铁就是不能将一个铁磁体在所有六个自由度上都保持在自由稳定得悬浮状态。

(完整版)基于单片机的磁悬浮小球控制系统设计毕业设计

基于单片机的磁悬浮小球控制系统设计 摘要 随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。磁悬浮的控制系统是一个很复杂的问题。本文 研究的重点就是这两种磁悬浮的控制问题。 超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。 与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。常导磁悬浮可以分为应用电磁铁的磁悬

浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。 在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。 关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

磁悬浮导轨毕业设计

安徽工程大学毕业论文 基于Solidworks的磁悬浮导轨 摘要 随着微机电系统(MEMS)及纳米技术的发展,对精密工作台的位移精度和动态特性等提出越来越高的要求。这就要求作为精密工作台的重要组成部分的导轨具有较高的位移分辨率、定位精度以及动态特性。 本论文针对传统导轨直接接触的固态导轨面之间存在着不可避免的摩擦力导致忽跳忽停的爬行现象,研究一种导向性能优异的磁悬浮导轨。考虑到传统磁悬浮导轨采用的电磁和超导磁悬浮技术不适合用于微定位系统环境,设计采用永磁悬浮导轨。同时,为悬浮的动导轨施加各个方向可调约束力,保证动导轨稳定运行。对磁材料进行深入对比,选择合适的材料。在结构设计时进行了力学平衡优化设计。最后利用solidworks软件,将所设计的磁悬浮导轨做成三维模型。 关键词:磁悬浮导轨;永磁铁;力学平衡

Research on the Structure of Maglev Guideway Based on Solidworks Abstract With the development of MEMS and nana technology, the demands of precision worktable on positioning precision and dynamic characteristic are even higher. This requires as an important part of precision worktable of guide rail has high displacement resolution, positioning accuracy and dynamic characteristics。 Since the inevitable friction force of solid state guide rail surface, traditional guide rail has the crawling phenomenon , that is,to jump or to stop. Thus a new magnetic suspension guide rail is studied with fine guidance acharacter. Since the technologies of traditional magnetic suspension guide rail and superconductivity magnetic suspension doesn’t fit the micro positioning system environment, the permanent maglev guide rail is designed. At the same time, each direction adjustable binding force is designed to achieve steady kinestate of the guide rail. A kind of appropriate material is chose through contrast of several magnetism materials. The optimization design is carried on mechanical balance. Three-dimensional model of maglev guideway is made by Solidworks software finally. Keywords: maglev guideway ,everlasting magnet, mechanics balance

磁悬浮设计文档

项目设计 主题:基于MSP430F5438的交流磁悬浮控制器的设计 完成时间:2013.11.14 学生姓名:刘天月 指导教师:王庐山

○目○录 一、引言 (1) 二、MSP430F5438单片机简介 (1) 三、磁悬浮控制系统结构框图 (2) 四、系统功能实现分析 (2) 五、程序功能说明 (3) 六、程序清单(附) (5)

一、引言 磁悬浮是根据电磁感应原理和楞次定律,由交流电流通过线圈产生交变磁场,交变磁场使闭合的导体产生感生电流,感生电流的方向,总是使自己的磁场阻碍原来磁场的变化。因此线圈产生的磁场和感生电流的磁场是相斥的,若斥力超过重力,可观察到磁悬浮现象。交流磁悬浮控制器的设计采用MSP430F5438A单片机控制,由检测机构反馈高度电信号给单片机,再由MSP430F5438A单片机产生一路触发脉冲信号,控制交流调压模块电路的输出,从而实现对线圈高度的闭环控制。 二、MSP430F5438单片机简介 MSP430系列单片机是美国德州仪器公司研发的一款16位超低功耗单片机[3],因为其具有精简指令集的混合信号处理器,所以称之为混合信号处理器。该系列单片机具有如下特点: ◆处理能力强 MSP430系列单片机是一个16位的单片机,采用了精简指令集(RISC)结构,具有丰富的寻址方式(7 种源操作数寻址、4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令。这些特点保证了可编制出高效率的源程序。 ◆运算速度快 MSP430 系列单片机能在25MHz晶体的驱动下,实现40ns的指令周期。16位的数据宽度、40ns的指令周期以及多功能的硬件乘法器(能实现乘加运算)相配合,能实现数字信号处理的某些算法(如 FFT 等)。 ◆超低功耗 MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压和灵活而可控的运行时钟方面都有其独到之处。 首先,MSP430 系列单片机的电源电压采用的是1.8-3.6V 电压。因而可使其在1MHz 的时钟条件下运行时,芯片的电流最低会在165μA左右,RAM 保持模式下的最低功耗只有0.1μA。 其次,独特的时钟系统设计。在 MSP430 系列中有两个不同的时钟系统:基本时钟系统、锁频环(FLL 和FLL+)时钟系统和DCO数字振荡器时钟系统。可以只使用一个晶体振荡器(32768Hz),也可以使用两个晶体振荡器。由系统时钟系统产生 CPU 和各功能所需的时钟。并且这些时钟可以在指令的控制下,打开和关闭,从而实现对总体功耗的控制。 由于系统运行时开启的功能模块不同,即采用不同的工作模式,芯片的功耗有着显著的不同。在系统中共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在实时时钟模式下,可达2.5μA ,在RAM 保持模式下,最低可达0.1μA 。 ◆片内资源丰富 MSP430 系列单片机的各系列都集成了较丰富的片内外设。它们分别是看门狗(WDT)、模拟比较器A、定时器A0(Timer_A0)、定时器A1(Timer_A1)、定时器B0(Timer_B0)、UART、SPI、I2C、硬件乘法器、液晶驱动器、10位/12位ADC、16位Σ-Δ ADC、DMA、I/O端口、基本定时器(Basic Timer)、实时时钟(RTC)和USB控制器等若干外围模块的不同组合。

基于模拟电路的磁悬浮控制系统

基于模拟电路的磁悬浮控制系统 摘要:本文首先简要地介绍磁浮轴承的发展历程和国内外研究、应用状况,接着利用电磁学、电子学和控制理论对磁悬浮的原理进行了分析,建立了系统的数学模型。对电路参数进行分析,设计了基于模拟电路的磁悬浮控制系统。该系统采用电磁永磁混合支持,提高了系统稳定性并降低了系统功耗。 关键词:混合磁悬浮,霍尔传感器 0 引言 人类希望利用磁场力对物体进行无接触支撑的想法由来已久。20世纪初,科学家首次在实验室利用电流的磁效应实现了物体在空中自由悬浮。然而由于磁悬浮技术是一门涉及多种学科的综合性技术,其发展受到了多方面的制约。随着近几十年电子技术、控制工程、信号处理元器件、电磁理论、新型电磁材料及转子动力学的发展,磁悬浮技术才得到了长足的发展。特别是进入上世纪80年代,超导技术首先应用于磁悬浮。超导技术与磁悬浮技术的结合,新材料,新工艺,新器件的出现以及现代控制技术的发展,使电磁悬浮技术趋于成熟,磁悬浮技术有精度高、非接触和消耗能量少等优点。在能源紧张的今天,研究磁悬浮系统具有重要的实际意义。磁悬浮技术不仅可以应用于磁悬浮列车,而且在磁悬浮轴承、磁悬浮飞轮储能、航天器与电磁炮的磁悬浮发射、磁悬浮精密平台、磁悬浮冶炼等方面也有广泛应用。磁悬浮技术有着广阔的商业前景,适合商业应用。例如,磁悬浮可以用于广告牌悬浮、地球仪悬浮,科技展览、沙盘展示(空中楼阁)、悬空高档礼品等。因此,磁悬浮是一种能带动众多高新技术发展的具有广泛前景的应用技术。基于模拟电路的磁悬浮控制系统可以用来研究电磁式磁悬浮固有的开环不稳定性和非线性性。 1 磁悬浮系统的组成及原理分析 磁悬浮旋转装置主要由永磁体、铁芯、线圈、磁场传感器、功率放大器和控制器等组成。其结构如图a所示

最新磁悬浮动力学实验资料

D H S Y -1型磁悬浮动力学实验仪 实验一 动力学基础实验 随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互作斥力之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。通过实验,学生可以接触到磁悬浮的物理思想和技术,拓宽知识面,加深牛顿定律等动力学方面的感性知识。 本实验仪可构成不同倾斜角的斜面,通过滑块的运动可研究匀变速运动直线规律,加速度测量的误差消除,物体所受外力与加速度的关系等。 【一】 实验目的 1. 学习导轨的水平调整,熟悉磁悬导轨和智能速度加速度测试仪的调整和使用; 2. 学习矢量分解; 3. 学习作图法处理实验数据,掌握匀变速直线运动规律; 4. 测量重力加速度g ,并学习消减系统误差的方法; 5. 探索牛顿第二定律,加深物体运动时所受外力与加速度的关系; 6. 探索动摩擦力与速度的关系。 【二】实验原理 1.瞬时速度的测量 一个作直线运动的物体,在△t 时间内,物体经过的位移为△s ,则该物体在△t 时间内的平均速度为 t s v ??= 为了精确地描述物体在某点的实际速度,应该把时间△t 取得越小越好, △t 越小,所求得的平均速度越接近实际速度。当△t →0时,平均速度趋近于一个极限,即 v t s v t t lim lim 0→?→?=??= (1) 这就是物体在该点的瞬时速度。 但在实验时,直接用上式来测量某点的瞬时速度是极其困难的,因此,一般在一定误 差范围内,且适当修正时间间隔(见图5、6),可以用历时极短的△t 内的平均速度近似地

物理演示实验报告(磁悬浮列车演示实验报告)

磁悬浮列车演示实验报告 【实验目的】 1.利用超导体对永磁体的排斥作用演示磁悬浮; 【实验器材】 1.超导磁悬浮列车演示仪,如图70-1所示。由二部分组成:磁导轨支架、磁导轨。其中磁导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10×6 mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。 2.高温超导体,是用熔融结构生长工艺制备的,含Ag的YBacuo系高温超导体。之所以称为高温超导体是因为它在液氮温度77KC(-196℃)下呈现出超导性,以区别于以往在液氦温度42K(-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,厚度为6 mm ,其临界转变温度为90K 左右(-183℃)。 3.液氮。 上图:实验装置图 下图:磁导轨 【实验原理】 实验原理: 超导是超导电性的简称.它是指金属或合金在极低温度下(接近绝对零度)电阻变为零的性质.它是一种宏观量子现象,只有依据量子力学才能给与正确的微观解释.这就是BCS理论. 这是一台高临界温度超导磁悬浮的动态演示装置.该装置为一个盛放高临界温度超导体的简易列车模型,在具有磁束缚的封闭磁轨道上方,利用超导体对永磁体的排斥作用,演示磁悬浮;;并可在旋转磁场加速装置作用下,沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧YBaCuO超导体表面时,磁通线从表面进入超导体内,在超导体内形成很大的磁通密度梯度,感应出高临界电流,从而对永磁体产生排斥,排斥力随相对距离的减小而逐渐增大,它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上;高温超导体是用熔融结构生长工艺制备的含Ag的YBaCuO系高温超导体,所以称为高温超导体是因为它在液氮温度

PID控制器设计磁悬浮小球控制系统

MATLAB课程设计 课程名称:采用PID控制器设计磁悬浮小球控制系统 学院:电气工程学院 学号:P101813409 姓名:徐敏敏 班级:10级自动化一班 指导教师:杨成慧老师

目录 摘要........................................................1 1.引言.........................................................2 2.系统分析与设计..................................... 5 2.1系统建模及仿真..............................................5 2.2建立磁悬浮小球系统框图....................................7 2.3 PID控制系统..........................................8 2.4 仿真结果分析..............................................13 2.5 总结.....................................................13 2.6 答谢.....................................................13 3.参考文献.......................................................14

摘要: 本文通过对一个磁悬浮小球的分析,简单的描述了磁悬浮列车的原理。控制要求通过调节电流使小球的位置始终保持在平衡位置。通过对磁悬浮小球系统进行数学建模,求出它的系统传递函数,采用PID算法设计调节器,对小球的稳定性进行了分析和仿真,在MATLAB平台仿真获得适当的PID参数范围,进行频域分析,使得磁悬浮小球系统处在平衡状态,在仿真过程中对PI,PD,及PID三种方式进行了比较和分析,对其加入扰动信号,即正弦扰动信号,观察输出波形,对扰动进行分析。本文通过对磁悬浮小球系统的分析,体现了MATLAB的强大功能,突出了它在运算以及作图仿真方面的优势。 关键字: MATLAB, PID控制器, 磁悬浮小球系统,稳定性 1.引言 磁悬浮列车的原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”,亦称之为“磁垫车”。由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒

磁悬浮控制系统设计——自动控制原理大作业

原题 原题图片 物理背景描述 对于上图所示的磁悬浮系统,如果钢球在参考位置附近有很小的位移时,影像探测器上的电压e(伏特)由球的位移x(米)决定,即e=100x。 作用在钢球上向上的力f(牛顿)由电流i(安培)以及位移共同决定,其近似关系为f= 0.5i+20x 功率放大器为压流转换装置,其输入输出关系为i=u+V0。 钢球质量m=20(克),地球表面的重力加速度为g=9.8(牛顿/千克)。 其中V0为恒定偏置电压,以保持钢球处于平衡状态时的位移x=0。 问题的描述 以电压u为控制信号,位移x为输出信号,建立系统的传递函数;以影像探测器输出电压e为反馈信号,并给定参考位移(输入)信号r,构成闭环负反馈系统。试设计适当的控制器,使得闭环系统满足下列性能指标: 跟踪阶跃信号的稳态误差为零,跟踪单位斜坡信号的稳态误差小于0.01; 单位阶跃响应的超调量不大于30%,过渡过程时间不大于1秒(?=2%)。

求控制器的传递函数。 问题推导 1.当x=0,r=0时: e=0,u=0; i=V0; f=0.5V0; 0.5V0?mg=m d 2x dt2 =0; mg=0.5V0 2.系统闭环传递函数: u=r?e; i=r?e+V0=r+V0?100x; f=0.5r+0.5V0?50x+20x=0.5r+0.5V0?30x; F=f?mg=0.5r+0.5V0?30x?mg=m d 2x dt2 ; m d2x dt2 +30x=0.5r+0.5V0?mg; (mg=0.5r) m d2x dt2 +30x=0.5r;取拉氏变换 G(s)=x(s) r(s)=0.5 ms2+30 ; (m=0.02kg) G(s)=25 s2+1500 3.系统开环传递函数 前向通道传递函数: F=f?mg=m d2x dt2 ; 20x+0.5i?mg=m d2x dt2 ; 20x+0.5u+0.5V0?mg=m d2x dt2 ; (mg=0.5r) m d2x dt2 ?20x=0.5r; 取拉氏变换 G(s)=x(s) r(s)=0.5 ms?20 ; (m=0.02kg) G(s)=25 s2?1000开环传递函数:

磁悬浮导轨(弹射器)

磁悬浮实验 磁悬浮是磁性原理和控制技术综合应用的技术,经过一百多年的努力,这一技术被用在了很多行业,其中最典型的两大应用领域是磁悬浮列车和磁悬浮轴承,磁悬浮列车的原理就是将列车的车厢用磁力悬浮起来,列车可以以非常高的速度运行.磁悬浮轴承通过磁场力将转子和轴承分开,实现无接触的新型支承组件。 物理实验中使用的磁悬浮导轨,它有一个导轨,导轨上有二个滑块,在导轨和滑块上分别装有永磁体,使导轨和滑块相对应表面呈相同的极性,利用同极性磁极相斥的原理,使滑块脱离导轨作无接触运动,减少运动阻力,提高力学实验准确度,加深对力学知识理解。 【实验目的】 1. 加深理解物体运动时所受外力与加速度的关系,学习矢量分解; 2. 掌握勻变速直线运动规律,学习作图处理实验数据; 3. 消减系统误差,测量滑块上行和下行平均加速度,获得重力加速度G; 4. 学习磁悬浮导轨的使用,会水平调整等; 5. 学习毫秒计使用。 【实验原理】 1.瞬时速度测量 直线运动物体,在Δt时间内,发生的位移为Δs,则其在Δt时间内的平均速度为 V=Δs/Δt 当Δt→0时,平均速度趋于?个极限,即 _ V=limΔs/Δt=lim v 为物体的瞬时速度。但瞬时速度的测量非常困难,只能在一定误差范围内,以尽可能用短时间Δt内的平均速度近似替代瞬时速度。 2. 勻变速直线运动 由图1所示,从高向低沿摩擦很小的斜面滑行的物体m,忽略空气阻力的情况下,可视为勻变速直线运动。相关公式如下:

v=v0+at s=v0t+? at2 v2=v02+2as 由图2所示,斜面上P位置作为起点放置第一光电门,在低一点位置P0放置第二光电门,从P点静止开始下滑,用毫秒计测量P0处的t0及V0 ;然后移第二光电门至P1点,从P点静止开始下滑,测量P1处的t1及V1 ;再移第二光电门至P2点,从P点静止开始下滑,测量P2处的t2及V2 ;……测量P3处的t3及V3 。以t为横坐标,V为纵坐标作V-t图,若图形是一条斜直线,说明物体作勻变速直线运动,斜直线的斜率就为加速度a,截距为V0 。 同样取Si= Pi-Pi-1 ,作S/t-t图和V2-S图,若为直线,和也说明物体作勻变速直线运动,二斜直线的斜率分别为加速度1/2·a和2a,截距分别为V0和V02 。 图1 图2 3. 消减系统误差 滑块在磁悬浮导轨上运动,侧面摩擦力及磁场的不均匀性对滑块还产生阻力作用,用Ff表示,即Ff =maf ,而af作为加速度的修正系数。具体af的获取,先调整磁悬浮导轨为水平状态,推滑块以一定的初速度从左(斜面状态的高端)向右运动,测出加速度值af,多次测量,求出平均值。用以对测量值a0进行修正,实际加速度 a=a0-af,消减阻力的影响。 4.重力加速度G的测定 由图1所示,沿斜面向低滑行的物体,其加速度为 a=gsinθ 由于θ角小于50,所以sinθ≈tanθ,得

相关文档
相关文档 最新文档